Difference between revisions of "Aufgaben:Exercise 3.3Z: Optimization of a Coaxial Cable System"

From LNTwww
 
(20 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
   
 
   
{{quiz-Header|Buchseite=Digitalsignalübertragung/Ber%C3%BCcksichtigung_von_Kanalverzerrungen_und_Entzerrung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Consideration_of_Channel_Distortion_and_Equalization
 
}}
 
}}
  
[[File:P_ID1409__Dig_Z_3_3.png|right|frame|Normierte Systemgrößen für verschiedene Grenzfrequenzen]]
+
[[File:P_ID1409__Dig_Z_3_3.png|right|frame|Normalized system parameters for different cutoff frequencies]]
Wir betrachten ein redundanzfreies binäres Übertragungssystem mit folgenden Spezifikationen:
+
We consider a redundancy-free binary transmission system with the following specifications:
* Die Sendeimpulse sind NRZ–rechteckförmig und besitzen die Energie $E_{\rm B} = s_0^2 \cdot T$.  
+
* The transmission pulses are NRZ rectangular and have energy  $E_{\rm B} = s_0^2 \cdot T$.
* Der Kanal ist ein Koaxialkabel mit der charakteristischen Kabeldämpfung $a_* = 40 \, {\rm dB}$.
+
* Es liegt AWGN–Rauschen mit der Rauschleistungsdichte $N_0 = 0.0001 \cdot E_{\rm B}$ vor.
+
* The channel is a coaxial cable with characteristic cable attenuation  $a_* = 40 \, {\rm dB}$.
* Der Empfängerfrequenzgang $H_{\rm E}(f)$ beinhaltet einen idealen Kanalentzerrer $H_{\rm K}^{\rm -1}(f)$ und einen Gaußtiefpass $H_{\rm G}(f)$ mit Grenzfrequenz $f_{\rm G}$ zur Rauschleistungsbegrenzung.
 
  
 +
* AWGN noise with (one-sided) noise power density  $N_0 = 0.0001 \cdot E_{\rm B}$  is present.
  
Die Tabelle zeigt die Augenöffnung $\ddot{o}(T_{\rm D})$ sowie den Detektionsrauscheffektivwert $\sigma_{\rm d}$ – jeweils normiert auf die Sendeamplitude $s_0$ – für verschiedene Grenzfrequenzen $f_{\rm G}$. Die Grenzfrequenz ist so zu wählen, dass die ungünstigste Fehlerwahrscheinlichkeit möglichst klein ist, wobei folgende Definition gilt:
+
* The receiver frequency response  $H_{\rm E}(f)$  includes an ideal channel equalizer  $H_{\rm K}^{\rm -1}(f)$  and a Gaussian low-pass filter  $H_{\rm G}(f)$  with cutoff frequency  $f_{\rm G}$  for noise power limitation.
 +
 
 +
 
 +
The table shows the eye opening   $\ddot{o}(T_{\rm D})$   as well as the detection noise rms value   $\sigma_{\rm d}$   – each normalized to the transmitted amplitude  $s_0$  – for different cutoff frequencies  $f_{\rm G}$.  The cutoff frequency is to be chosen such that the worst-case error probability is as small as possible,  with the following definition:
 
:$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}
 
:$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}
 
   \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
 
   \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
  
*Diese stellt eine obere Schranke für die mittlere Fehlerwahrscheinlichkeit $p_{\rm S}$ dar:    $p_{\rm S} \le p_{\rm U}$.  
+
*This quantity represents an upper bound for the mean error probability    $p_{\rm S} \le p_{\rm U}$.
*Für $f_{\rm G} \cdot T ≥ 0.4$ kann auch eine untere Schranke angegeben werden:    $p_{\rm S} \ge p_{\rm U}/4$.
+
 +
*For  $f_{\rm G} \cdot T ≥ 0.4$,  a lower bound can also be given:    $p_{\rm S} \ge p_{\rm U}/4$.
 +
 
 +
 
  
 +
Notes:
 +
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/Consideration_of_Channel_Distortion_and_Equalization|"Consideration of Channel Distortion and Equalization"]].
  
''Hinweise:''
+
* Use the interaction module  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]]  for numerical evaluation of the Q-function.
*Die Aufgabe gehört zum  Kapitel [[Digitalsignal%C3%BCbertragung/Ber%C3%BCcksichtigung_von_Kanalverzerrungen_und_Entzerrung|Berücksichtigung von Kanalverzerrungen und Entzerrung]].
+
* Verwenden Sie zur numerischen Auswertung der Q–Funktion das Interaktionsmodul [[Komplementäre Gaußsche Fehlerfunktionen]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Bestimmen Sie innerhalb des vorgegebenen Rasters die optimale Grenzfrequenz hinsichtlich des Kriteriums &bdquo;ungünstigste Fehlerwahrscheinlichkeit&rdquo;.
+
{Within the given grid,&nbsp; determine the optimal cutoff frequency with respect to the&nbsp; "worst-case error probability"&nbsp; criterion.
 
|type="{}"}
 
|type="{}"}
 
$f_\text{G, opt} \cdot T \  = \ $  { 0.4 3% }
 
$f_\text{G, opt} \cdot T \  = \ $  { 0.4 3% }
  
{Welche Werte ergeben sich damit für den ungünstigsten Störabstand und die ungünstigste Fehlerwahrscheinlichkeit?
+
{What values does this give for the&nbsp; "worst-case signal-to-noise ratio"&nbsp; and the worst-case error probability?
 
|type="{}"}
 
|type="{}"}
 
$f_\text{G} = \text{G, opt:}\hspace{0.4cm} 10 \cdot {\rm lg} \, \rho_{\rm U}  \  = \ $ { 5.41 3% } ${\ \rm dB}$
 
$f_\text{G} = \text{G, opt:}\hspace{0.4cm} 10 \cdot {\rm lg} \, \rho_{\rm U}  \  = \ $ { 5.41 3% } ${\ \rm dB}$
 
$\hspace{4.07cm}p_{\rm U}  \  = \ $ { 3.1 3% } $\ \rm \%$
 
$\hspace{4.07cm}p_{\rm U}  \  = \ $ { 3.1 3% } $\ \rm \%$
  
{Auf welchen Wert müsste man die Rauschleistungsdichte $N_0$ (bezogen auf die Signalenergie) verringern, damit $p_{\rm U}$ nicht größer ist als $10^{\rm -6}$?
+
{To what value would we need to reduce the noise power density &nbsp;$N_0$&nbsp; (with respect to signal energy)&nbsp; so that &nbsp;$p_{\rm U}$&nbsp; is not greater than &nbsp;$10^{\rm -6}$?
 
|type="{}"}
 
|type="{}"}
 
$N_0/E_{\rm B} \  = \ $ { 1.53 3% } $\ \cdot 10^{\rm -5}$
 
$N_0/E_{\rm B} \  = \ $ { 1.53 3% } $\ \cdot 10^{\rm -5}$
  
{Geben Sie für den unter (3) getroffenen Annahmen eine untere und eine obere Schranke für die mittlere Fehlerwahrscheinlichkeit $p_{\rm S}$ an.
+
{For the assumptions made in&nbsp; '''(3)''',&nbsp; give a lower  and an upper bound for the&nbsp; "average error probability" &nbsp; $p_{\rm S}$.&nbsp;
 
|type="{}"}
 
|type="{}"}
 
$p_\text{ S, min}\hspace{0.02cm} \  = \ $ { 0.25 3% } $\ \cdot 10^{\rm -6}$
 
$p_\text{ S, min}\hspace{0.02cm} \  = \ $ { 0.25 3% } $\ \cdot 10^{\rm -6}$
Line 47: Line 53:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Für die Optimierung genügt es , den Quotienten $\ddot{o}(T_{\rm D})/\sigma_d$ zu maximieren. Dieser ist von den in der Tabelle gegebenen Werten für die Grenzfrequenz $f_{\rm G, opt} \cdot T = \underline {= 0.4}$ mit $0.735/0.197 \approx 3.73$ maximal. Zum Vergleich: Für $f_{\rm G} \cdot T = 0.3$ ergibt sich aufgrund der kleineren Augenöffnung $0.192/0.094 \approx 2.04$ und für $f_{\rm G} \cdot T = 0.5$ ist der Quotient ebenfalls kleiner als beim Optimum: $1.159/0.379 \approx 3.05$.
+
'''(1)'''&nbsp; For the optimization it is sufficient to maximize the quotient&nbsp; $\ddot{o}(T_{\rm D})/\sigma_d$:
 +
*This is maximized from the values given in the table for the cutoff frequency &nbsp;$f_{\rm G, opt} \cdot T \underline {= 0.4}$&nbsp; with&nbsp; $0.735/0.197 \approx 3.73$.  
 +
*As a comparison: &nbsp; For &nbsp;$f_{\rm G} \cdot T = 0.3$&nbsp; the result is&nbsp; $0.192/0.094 \approx 2.04$&nbsp; due to the smaller eye opening.
 +
*For &nbsp;$f_{\rm G} \cdot T = 0.5$&nbsp; the quotient is also smaller than for the optimum:&nbsp; $1.159/0.379 \approx 3.05$.
 +
*An even larger cutoff frequency leads to a very large noise rms value without simultaneously increasing the vertical eye opening in the same way.
  
Eine noch größere Grenzfrequenz führt zu einem sehr großen Störeffektivwert, ohne dass gleichzeitig die vertikale Augenöffnung in gleicher Weise vergrößert wird.
 
  
  
'''(2)'''&nbsp; Mit dem Ergebnis aus 1) erhält man weiter:
+
'''(2)'''&nbsp; Using the result from&nbsp; '''(1)''',&nbsp; we further obtain:
 
:$$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  10 \cdot {\rm
 
  10 \cdot {\rm
lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline { = 5.41\,{\rm dB}}$$
+
lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline { = 5.41\,{\rm dB}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q}\left (
:$$\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q}\left (
 
 
{3.73}/{2} \right) \hspace{0.15cm}\underline {\approx 0.031} \hspace{0.05cm}.$$
 
{3.73}/{2} \right) \hspace{0.15cm}\underline {\approx 0.031} \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Mit dem gegebenen $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ \rm dB$, also $E_{\rm B}/N_0 = 10^4$ hat sich der ungünstigste Störabstand zu $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$ ergeben. Für die ungünstigste Fehlerwahrscheinlichkeit $p_{\rm U} = 10^{\rm -6}$ muss aber $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$ sein. Dies erreicht man, indem man den Quotienten $E_{\rm B}/N_0$ entsprechend erhöht:
+
'''(3)'''&nbsp; With the given&nbsp; $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ \rm dB$,&nbsp; i.e. $E_{\rm B}/N_0 = 10^4$,&nbsp; the worst-case signal-to-noise ratio has been found to be&nbsp; $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$.  
 +
*However,&nbsp; for the worst-case error probability&nbsp; $p_{\rm U} = 10^{\rm -6}$ &nbsp; &rArr; &nbsp;  $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$&nbsp; must be obtained.
 +
*This is achieved by increasing the quotient&nbsp; $E_{\rm B}/N_0$&nbsp; accordingly:
 
:$$10 \cdot {\rm
 
:$$10 \cdot {\rm
 
lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB}
 
lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB}
 
\hspace{0.1cm}+\hspace{0.1cm}13.55\,{\rm dB}
 
\hspace{0.1cm}+\hspace{0.1cm}13.55\,{\rm dB}
\hspace{0.1cm}-\hspace{0.1cm}5.41\,{\rm dB}= 48.14\,{\rm dB}$$
+
\hspace{0.1cm}-\hspace{0.1cm}5.41\,{\rm dB}= 48.14\,{\rm dB}\hspace{0.3cm}
:$$\Rightarrow
+
\Rightarrow
 
\hspace{0.3cm} {E_{\rm B}}/{N_0} = 10^{4.814}\approx 65163
 
\hspace{0.3cm} {E_{\rm B}}/{N_0} = 10^{4.814}\approx 65163
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  {N_0}/{E_{\rm B}}\hspace{0.15cm}\underline {  =
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  {N_0}/{E_{\rm B}}\hspace{0.15cm}\underline {  =
Line 73: Line 83:
  
  
'''(4)'''&nbsp; Die obere Schranke für $p_{\rm S}$ ist gleich der ungünstigsten Fehlerwahrscheinlichkeit $p_{\rm U} = \underline {10^{\rm -6}}$. Die untere Schranke liegt bei $\underline {0.25 \cdot 10^{\rm -6}}$, ist also um den Faktor 4 kleiner.
+
'''(4)'''&nbsp;  
 +
*The upper bound&nbsp; for $p_{\rm S}$&nbsp; is equal to the worst-case error probability&nbsp; $p_{\rm U} = \underline {10^{\rm -6}}$.
 +
 +
*The lower bound is&nbsp; $\underline {0.25 \cdot 10^{\rm -6}}$,&nbsp; which is smaller by a factor of&nbsp; $4$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.3 Kanalverzerrungen und Entzerrung^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.3 Channel Distortion and Equalization^]]

Latest revision as of 15:06, 28 June 2022

Normalized system parameters for different cutoff frequencies

We consider a redundancy-free binary transmission system with the following specifications:

  • The transmission pulses are NRZ rectangular and have energy  $E_{\rm B} = s_0^2 \cdot T$.
  • The channel is a coaxial cable with characteristic cable attenuation  $a_* = 40 \, {\rm dB}$.
  • AWGN noise with (one-sided) noise power density  $N_0 = 0.0001 \cdot E_{\rm B}$  is present.
  • The receiver frequency response  $H_{\rm E}(f)$  includes an ideal channel equalizer  $H_{\rm K}^{\rm -1}(f)$  and a Gaussian low-pass filter  $H_{\rm G}(f)$  with cutoff frequency  $f_{\rm G}$  for noise power limitation.


The table shows the eye opening   $\ddot{o}(T_{\rm D})$   as well as the detection noise rms value   $\sigma_{\rm d}$   – each normalized to the transmitted amplitude  $s_0$  – for different cutoff frequencies  $f_{\rm G}$.  The cutoff frequency is to be chosen such that the worst-case error probability is as small as possible,  with the following definition:

$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d} \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
  • This quantity represents an upper bound for the mean error probability   $p_{\rm S} \le p_{\rm U}$.
  • For  $f_{\rm G} \cdot T ≥ 0.4$,  a lower bound can also be given:   $p_{\rm S} \ge p_{\rm U}/4$.


Notes:



Questions

1

Within the given grid,  determine the optimal cutoff frequency with respect to the  "worst-case error probability"  criterion.

$f_\text{G, opt} \cdot T \ = \ $

2

What values does this give for the  "worst-case signal-to-noise ratio"  and the worst-case error probability?

$f_\text{G} = \text{G, opt:}\hspace{0.4cm} 10 \cdot {\rm lg} \, \rho_{\rm U} \ = \ $

${\ \rm dB}$
$\hspace{4.07cm}p_{\rm U} \ = \ $

$\ \rm \%$

3

To what value would we need to reduce the noise power density  $N_0$  (with respect to signal energy)  so that  $p_{\rm U}$  is not greater than  $10^{\rm -6}$?

$N_0/E_{\rm B} \ = \ $

$\ \cdot 10^{\rm -5}$

4

For the assumptions made in  (3),  give a lower and an upper bound for the  "average error probability"   $p_{\rm S}$. 

$p_\text{ S, min}\hspace{0.02cm} \ = \ $

$\ \cdot 10^{\rm -6}$
$p_\text{ S, max} \ = \ $

$\ \cdot 10^{\rm -6}$


Solution

(1)  For the optimization it is sufficient to maximize the quotient  $\ddot{o}(T_{\rm D})/\sigma_d$:

  • This is maximized from the values given in the table for the cutoff frequency  $f_{\rm G, opt} \cdot T \underline {= 0.4}$  with  $0.735/0.197 \approx 3.73$.
  • As a comparison:   For  $f_{\rm G} \cdot T = 0.3$  the result is  $0.192/0.094 \approx 2.04$  due to the smaller eye opening.
  • For  $f_{\rm G} \cdot T = 0.5$  the quotient is also smaller than for the optimum:  $1.159/0.379 \approx 3.05$.
  • An even larger cutoff frequency leads to a very large noise rms value without simultaneously increasing the vertical eye opening in the same way.


(2)  Using the result from  (1),  we further obtain:

$$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline { = 5.41\,{\rm dB}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q}\left ( {3.73}/{2} \right) \hspace{0.15cm}\underline {\approx 0.031} \hspace{0.05cm}.$$


(3)  With the given  $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ \rm dB$,  i.e. $E_{\rm B}/N_0 = 10^4$,  the worst-case signal-to-noise ratio has been found to be  $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$.

  • However,  for the worst-case error probability  $p_{\rm U} = 10^{\rm -6}$   ⇒   $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$  must be obtained.
  • This is achieved by increasing the quotient  $E_{\rm B}/N_0$  accordingly:
$$10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}13.55\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}5.41\,{\rm dB}= 48.14\,{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {E_{\rm B}}/{N_0} = 10^{4.814}\approx 65163 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {N_0}/{E_{\rm B}}\hspace{0.15cm}\underline { = 1.53 \cdot 10^{-5}} \hspace{0.05cm}.$$


(4) 

  • The upper bound  for $p_{\rm S}$  is equal to the worst-case error probability  $p_{\rm U} = \underline {10^{\rm -6}}$.
  • The lower bound is  $\underline {0.25 \cdot 10^{\rm -6}}$,  which is smaller by a factor of  $4$.