Difference between revisions of "Aufgaben:Exercise 3.4: Systematic Convolution Codes"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Kanalcodierung" to "Category:Channel Coding: Exercises")
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
+
{{quiz-Header|Buchseite=Channel_Coding/Algebraic_and_Polynomial_Description}}
  
[[File:P_ID2629__KC_A_3_4.png|right|frame|Vorgegebene Filterstrukturen]]
+
[[File:EN_KC_A_3_4.png|right|frame|Predefined filter structures]]
Man spricht von einem systematischen Faltungscode der Rate  $R = 1/2$   ⇒   $k = 1, \ n = 2$, wenn das Codebit  $x_i^{(1)}$  gleich dem momentan anliegenden Informationsbit  $u_i$  ist.  
+
One speaks of a  "systematic convolutional code"  of rate  $R = 1/2$   ⇒   $k = 1, \ n = 2$,  if the code bit  $x_i^{(1)}$  is equal to the currently applied information bit  $u_i$.  
  
Die Übertragungsfunktionsmatrix eines solchen Codes lautet:
+
*The transfer function matrix of such a code is:
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Der in der oberen Grafik dargestellte Coder  $\rm A$  ist sicher nicht systematisch, da für diesen  $G^{(1)}(D) ≠ 1$  gilt. Zur Herleitung der Matrix  $\mathbf{G}(D)$  verweisen wir auf ein  [[Channel_Coding/Algebraische_und_polynomische_Beschreibung#Anwendung_der_D.E2.80.93Transformation_auf_Rate.E2.80.931.2Fn.E2.80.93Faltungscoder| früheres Beispiel]], in dem für unseren Standard–Rate–1/2–Coder mit Gedächtnis  $m = 2$  die Übertragungsfunktionsmatrix ermittelt wurde:
+
*The encoder  $\rm A$  shown in the upper graph is certainly not systematic,  since for this  $G^{(1)}(D) ≠ 1$  holds.  To derive the matrix  $\mathbf{G}(D)$  we refer to an  [[Channel_Coding/Algebraic_and_Polynomial_Description#Application_of_the_D-transform_to_rate-1. 2Fn-convolution_encoders|$\text{earlier example}$]],  where for our standard rate–1/2  encoder with memory  $m = 2$  the transfer function matrix was determined:
 
:$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) = \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 +  D^2 \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) = \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 +  D^2 \hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Der Coder  $\rm A$  unterscheidet sich gegenüber diesem Beispiel nur durch Vertauschen der beiden Ausgänge.  
+
:The encoder  $\rm A$  differs from this example only by swapping the two outputs.  
*Lautet die Übertragungsfunktionsmatrix eines Codes
+
*If the transfer function matrix of a code is
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big )  
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
*so gilt für die äquivalente systematische Repräsentation dieses Rate–1/2–Faltungscodes allgemein:
+
:then the equivalent systematic representation of this rate–1/2  convolutional code holds in general:
 
:$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
In der Teilaufgabe '''(3)''' ist zu prüfen, welcher der systematischen Anordnungen äquivalent zum Coder  $\rm A$  ist?  
+
In subtask  '''(3)''',  check which of the systematic arrangements is equivalent to encoder  $\rm A$?  
*Entweder Coder  $\rm B$,
+
*Either encoder  $\rm B$,
* oder Coder  $\rm C$ 
 
*oder auch beide.
 
  
 +
*or encoder  $\rm C$ 
 +
 +
*or both.
  
  
Line 33: Line 34:
  
  
 +
Hints:
 +
* This exercise belongs to the chapter  [[Channel_Coding/Algebraic_and_Polynomial_Description| "Algebraic and Polynomial Description"]].
  
''Hinweise:''
+
* Reference is made in particular to the sections 
* Die Aufgabe gehört zum  Kapitel  [[Channel_Coding/Algebraische_und_polynomische_Beschreibung| Algebraische und polynomische Beschreibung]].
+
:* [[Channel_Coding/Algebraic_and_Polynomial_Description#Transfer_Function_Matrix|"Transfer Function Matrix"]]  and 
* Bezug genommen wird insbesondere auf die Seiten 
+
:* [[Channel_Coding/Algebraic_and_Polynomial_Description#Equivalent_systematic_convolutional_code|"Equivalent systematic convolutional code"]].
:: [[Channel_Coding/Algebraische_und_polynomische_Beschreibung#.C3.9Cbertragungsfunktionsmatrix_.E2.80.93_Transfer_Function_Matrix|Übertragungsfunktionsmatrix – Transfer Function Matrix]]  sowie 
 
:: [[Channel_Coding/Algebraische_und_polynomische_Beschreibung#.C3.84quivalenter_systematischer_Faltungscode|Äquivalenter systematischer Faltungscode]].
 
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die Übertragungsfunktionsmatrix von &nbsp;$\rm A$?
+
{What is the transfer function matrix of &nbsp;$\rm A$?
 
|type="()"}
 
|type="()"}
 
+ $\mathbf{G}(D) = (1 + D^2, \ 1 + D + D^2)$,
 
+ $\mathbf{G}(D) = (1 + D^2, \ 1 + D + D^2)$,
Line 50: Line 51:
 
- $\mathbf{G}(D) = (1, \ 1 + D + D^2)$.
 
- $\mathbf{G}(D) = (1, \ 1 + D + D^2)$.
  
{Wie lautet die äquivalente systematische Übertragungsfunktionsmatrix?
+
{What is the equivalent systematic transfer function matrix?
 
|type="()"}
 
|type="()"}
 
- $\mathbf{G}_{\rm sys}(D) = (1 + D + D^2, \ 1 + D^2)$,
 
- $\mathbf{G}_{\rm sys}(D) = (1 + D + D^2, \ 1 + D^2)$,
Line 56: Line 57:
 
+ $\mathbf{G}_{\rm sys}(D) = (1, \ (1 + D + D^2)/(1 + D^2))$.
 
+ $\mathbf{G}_{\rm sys}(D) = (1, \ (1 + D + D^2)/(1 + D^2))$.
  
{Welcher Coder ist zu &nbsp;$\rm A$&nbsp; äquivalent und systematisch?
+
{Which encoder is equivalent to &nbsp;$\rm A$&nbsp; and systematic?
|type="()"}
+
|type="[]"}
- Coder &nbsp;$\rm B$&nbsp;,
+
- Encoder &nbsp;$\rm B$&nbsp;,
+ Coder &nbsp;$\rm C$&nbsp;.
+
+ encoder &nbsp;$\rm C$&nbsp;.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>:
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>proposed solution 1</u>:
*Der Vorschlag 2 würde sich ergeben, wenn man die beiden Ausgänge vertauscht, also für den im Theorieteil meist betrachteten [[Channel_Coding/Algebraische_und_polynomische_Beschreibung#Anwendung_der_D.E2.80.93Transformation_auf_Rate.E2.80.931.2Fn.E2.80.93Faltungscoder| Rate&ndash;1/2&ndash;Standardcode]].
+
*Proposition 2 would result if the two outputs were swapped,&nbsp; that is,&nbsp; for the [[Channel_Coding/Algebraic_and_Polynomial_Description#Application_of_the_D-transform_to_rate-1.2Fn-convolution_encoders|"rate&ndash;1/2 standard code"]] mostly considered in the theory section.
  
*Der Vorschlag 3 gilt für einen systematischen Code &#8658; $\underline{x}^{(1)} = \underline{u}$. Der hier betrachtete Coder &nbsp;$\rm A$&nbsp; weist diese Eigenschaft allerdings nicht auf.
+
*Proposition 3 applies to a systematic code &nbsp; &#8658; &nbsp; $\underline{x}^{(1)} = \underline{u}$.&nbsp; However,&nbsp; the coder&nbsp;$\rm A$&nbsp; considered here  does not exhibit this property.
 
   
 
   
  
  
'''(2)'''&nbsp; Um von einem nichtsystematischen $(n, \ k)$&ndash;Code mit Matrix $\mathbf{G}(D)$ zum äquivalenten systematischen Code &nbsp; &#8658; &nbsp; Matrix $\mathbf{G}_{\rm sys}(D)$ zu gelangen, <br>muss man allgemein $\mathbf{G}(D)$ aufspalten in eine $k &times; k$&ndash;Matrix $\mathbf{T}(D)$ und eine Restmatrix $\mathbf{Q}(D)$.  
+
'''(2)'''&nbsp; To go from a nonsystematic&nbsp; $(n, \ k)$&nbsp; code with matrix&nbsp; $\mathbf{G}(D)$&nbsp; to the equivalent systematic code &nbsp; &#8658; &nbsp; matrix&nbsp; $\mathbf{G}_{\rm sys}(D)$,&nbsp; one must generally split&nbsp; $\mathbf{G}(D)$&nbsp; into a&nbsp; $k &times; k$&nbsp; matrix&nbsp; $\mathbf{T}(D)$&nbsp; and a remainder matrix&nbsp; $\mathbf{Q}(D)$.  
  
*Das gewünschte Ergebnis lautet dann mit der $k &times; k$&ndash;Einheitsmatrix $\mathbf{I}_k$:
+
*The desired result is then with the&nbsp; $k &times; k$&nbsp; identity matrix&nbsp; $\mathbf{I}_k$:
 
:$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm I}}_k\hspace{0.05cm} ; \hspace{0.1cm} {\boldsymbol{\rm T}}^{-1}(D) \cdot  {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm I}}_k\hspace{0.05cm} ; \hspace{0.1cm} {\boldsymbol{\rm T}}^{-1}(D) \cdot  {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Wir gehen hier von der $\mathbf{G}(D)$&ndash;Matrix für den Coder &nbsp;$\rm A$&nbsp; aus.
+
*We assume here the&nbsp; $\mathbf{G}(D)$&nbsp; matrix for the coder &nbsp;$\rm A$.&nbsp; Because of&nbsp; $k = 1$&nbsp; here both&nbsp; $\mathbf{T}(D)$&nbsp; and $\mathbf{Q}(D)$&nbsp; have dimension&nbsp; $1 &times; 1$,&nbsp; so strictly speaking they are not matrices at all:
*Wegen $k = 1$ haben hier sowohl $\mathbf{T}(D)$ als auch $\mathbf{Q}(D)$ die Dimension $1 &times; 1$, sind also streng genommen gar keine Matrizen:
 
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm T}}(D)\hspace{0.05cm} ; \hspace{0.2cm}  {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm T}}(D)\hspace{0.05cm} ; \hspace{0.2cm}  {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big )  
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\boldsymbol{\rm T}}(D) = \big ( 1+D^2\big )\hspace{0.05cm} , \hspace{0.2cm}
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\boldsymbol{\rm T}}(D) = \big ( 1+D^2\big )\hspace{0.05cm} , \hspace{0.2cm}
 
  {\boldsymbol{\rm Q}}(D) = \big ( 1+D+D^2\big )\hspace{0.05cm} .$$
 
  {\boldsymbol{\rm Q}}(D) = \big ( 1+D+D^2\big )\hspace{0.05cm} .$$
  
*Für die beiden Elemente der systematischen Übertragungsfunktionsmatrix erhält man:
+
*For the two elements of the systematic transfer function matrix,&nbsp; we obtain:
 
:$$G^{(1)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm T}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = 1 C,\hspace{0.8cm}
 
:$$G^{(1)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm T}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = 1 C,\hspace{0.8cm}
 
G^{(2)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm Q}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = \frac{1+D+D^2}{1+D^2}$$  
 
G^{(2)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm Q}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = \frac{1+D+D^2}{1+D^2}$$  
Line 89: Line 89:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Richtig ist also der <u>letzte Lösungsvorschlag</u>:  
+
So the&nbsp; <u>last proposed solution</u>&nbsp; is correct:  
*Der Lösungsvorschlag 1 beschreibt keinen systematischen Code.  
+
*Proposed solution 1 does not describe a systematic code.
*Ein Code entsprechend Lösungsvorschlag 2 ist zwar systematisch, aber nicht äquivalent zum Coder &nbsp;$\rm A$&nbsp; entsprechend der vorgegebenen Schaltung und Übertragungsfunktionsmatrix $\mathbf{G}(D)$.
+
 +
*A code according to solution suggestion 2 is systematic,&nbsp; but not equivalent to the coder &nbsp;$\rm A$&nbsp; according to the given circuit and transfer function matrix&nbsp; $\mathbf{G}(D)$.
  
  
'''(3)'''&nbsp; Die Generatorfunktionsmatrix von Coder &nbsp;$\rm B$&nbsp; lautet:
+
'''(3)'''&nbsp; The generator function matrix of encoder &nbsp;$\rm B$&nbsp; is:
 
:$${\boldsymbol{\rm G}}_{\rm B}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {1+D+D^2} \hspace{0.05cm}\big )  
 
:$${\boldsymbol{\rm G}}_{\rm B}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {1+D+D^2} \hspace{0.05cm}\big )  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Dieser Coder ist also nicht äquivalent zum Coder &nbsp;$\rm A$.  
+
*So this encoder is not equivalent to encoder &nbsp;$\rm A$.  
*Betrachten wir nun den Coder &nbsp;$\rm C$. Hier gilt für das zweite Matrixelement von $\mathbf{G}(D)$:
+
 
 +
*Let us now consider the encoder &nbsp;$\rm C$.&nbsp; Here the second matrix element of&nbsp; $\mathbf{G}(D)$:
 
:$$w_i \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_i + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm}
 
:$$w_i \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_i + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm}
 
{U}(D) =  W(D) \cdot (1 + D^2 ) \hspace{0.05cm},\hspace{0.8cm}
 
{U}(D) =  W(D) \cdot (1 + D^2 ) \hspace{0.05cm},\hspace{0.8cm}
Line 106: Line 108:
 
:$$\Rightarrow \hspace{0.3cm} G^{(2)}(D) = \frac{{X}^{(2)}(D)}{{U}(D)} = \frac{1+D+D^2}{1+D^2}\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} G^{(2)}(D) = \frac{{X}^{(2)}(D)}{{U}(D)} = \frac{1+D+D^2}{1+D^2}\hspace{0.05cm}.$$
  
Dies entspricht genau dem Ergebnis der Teilaufgabe '''(2)''' &nbsp;&#8658;&nbsp; <u>Lösungsvorschlag 2</u>.
+
*This corresponds exactly to the result of subtask&nbsp; '''(2)''' &nbsp; &#8658; &nbsp; <u>Proposed solution 2</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Channel Coding: Exercises|^3.2 Polynomische Beschreibung^]]
+
[[Category:Channel Coding: Exercises|^3.2 Polynomial Description^]]

Latest revision as of 19:34, 10 November 2022

Predefined filter structures

One speaks of a  "systematic convolutional code"  of rate  $R = 1/2$   ⇒   $k = 1, \ n = 2$,  if the code bit  $x_i^{(1)}$  is equal to the currently applied information bit  $u_i$.

  • The transfer function matrix of such a code is:
$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) \hspace{0.05cm}.$$
  • The encoder  $\rm A$  shown in the upper graph is certainly not systematic,  since for this  $G^{(1)}(D) ≠ 1$  holds.  To derive the matrix  $\mathbf{G}(D)$  we refer to an  $\text{earlier example}$,  where for our standard rate–1/2  encoder with memory  $m = 2$  the transfer function matrix was determined:
$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) = \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 + D^2 \hspace{0.05cm}\big ) \hspace{0.05cm}.$$
The encoder  $\rm A$  differs from this example only by swapping the two outputs.
  • If the transfer function matrix of a code is
$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) \hspace{0.05cm},$$
then the equivalent systematic representation of this rate–1/2  convolutional code holds in general:
$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big ) \hspace{0.05cm}.$$


In subtask  (3),  check which of the systematic arrangements is equivalent to encoder  $\rm A$?

  • Either encoder  $\rm B$,
  • or encoder  $\rm C$ 
  • or both.




Hints:

  • Reference is made in particular to the sections 


Questions

1

What is the transfer function matrix of  $\rm A$?

$\mathbf{G}(D) = (1 + D^2, \ 1 + D + D^2)$,
$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$,
$\mathbf{G}(D) = (1, \ 1 + D + D^2)$.

2

What is the equivalent systematic transfer function matrix?

$\mathbf{G}_{\rm sys}(D) = (1 + D + D^2, \ 1 + D^2)$,
$\mathbf{G}_{\rm sys}(D) = (1, \ 1 + D + D^2)$,
$\mathbf{G}_{\rm sys}(D) = (1, \ (1 + D + D^2)/(1 + D^2))$.

3

Which encoder is equivalent to  $\rm A$  and systematic?

Encoder  $\rm B$ ,
encoder  $\rm C$ .


Solution

(1)  Correct is the  proposed solution 1:

  • Proposition 2 would result if the two outputs were swapped,  that is,  for the "rate–1/2 standard code" mostly considered in the theory section.
  • Proposition 3 applies to a systematic code   ⇒   $\underline{x}^{(1)} = \underline{u}$.  However,  the coder $\rm A$  considered here does not exhibit this property.


(2)  To go from a nonsystematic  $(n, \ k)$  code with matrix  $\mathbf{G}(D)$  to the equivalent systematic code   ⇒   matrix  $\mathbf{G}_{\rm sys}(D)$,  one must generally split  $\mathbf{G}(D)$  into a  $k × k$  matrix  $\mathbf{T}(D)$  and a remainder matrix  $\mathbf{Q}(D)$.

  • The desired result is then with the  $k × k$  identity matrix  $\mathbf{I}_k$:
$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm I}}_k\hspace{0.05cm} ; \hspace{0.1cm} {\boldsymbol{\rm T}}^{-1}(D) \cdot {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big ) \hspace{0.05cm}.$$
  • We assume here the  $\mathbf{G}(D)$  matrix for the coder  $\rm A$.  Because of  $k = 1$  here both  $\mathbf{T}(D)$  and $\mathbf{Q}(D)$  have dimension  $1 × 1$,  so strictly speaking they are not matrices at all:
$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} {\boldsymbol{\rm T}}(D)\hspace{0.05cm} ; \hspace{0.2cm} {\boldsymbol{\rm Q}}(D)\hspace{0.05cm}\big ) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\boldsymbol{\rm T}}(D) = \big ( 1+D^2\big )\hspace{0.05cm} , \hspace{0.2cm} {\boldsymbol{\rm Q}}(D) = \big ( 1+D+D^2\big )\hspace{0.05cm} .$$
  • For the two elements of the systematic transfer function matrix,  we obtain:
$$G^{(1)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm T}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = 1 C,\hspace{0.8cm} G^{(2)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\boldsymbol{\rm Q}}(D) \cdot {\boldsymbol{\rm T}}^{-1}(D) = \frac{1+D+D^2}{1+D^2}$$
$$\Rightarrow \hspace{0.3cm}{\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.1cm} \frac{1+D+D^2}{1+D^2} \hspace{0.05cm}\big ) \hspace{0.05cm}.$$

So the  last proposed solution  is correct:

  • Proposed solution 1 does not describe a systematic code.
  • A code according to solution suggestion 2 is systematic,  but not equivalent to the coder  $\rm A$  according to the given circuit and transfer function matrix  $\mathbf{G}(D)$.


(3)  The generator function matrix of encoder  $\rm B$  is:

$${\boldsymbol{\rm G}}_{\rm B}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {1+D+D^2} \hspace{0.05cm}\big ) \hspace{0.05cm}.$$
  • So this encoder is not equivalent to encoder  $\rm A$.
  • Let us now consider the encoder  $\rm C$.  Here the second matrix element of  $\mathbf{G}(D)$:
$$w_i \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_i + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {U}(D) = W(D) \cdot (1 + D^2 ) \hspace{0.05cm},\hspace{0.8cm} x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} w_i + w_{i-1} + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {X}^{(2)}(D) = W(D) \cdot (1 +D + D^2 )$$
$$\Rightarrow \hspace{0.3cm} G^{(2)}(D) = \frac{{X}^{(2)}(D)}{{U}(D)} = \frac{1+D+D^2}{1+D^2}\hspace{0.05cm}.$$
  • This corresponds exactly to the result of subtask  (2)   ⇒   Proposed solution 2.