Exercise 3.4Z: Eye Opening and Level Number

From LNTwww
Revision as of 15:01, 4 May 2022 by Hwang (talk | contribs)

Binary and quaternary eye diagrams

In this exercise, a redundancy-free binary system and a redundancy-free quaternary system are compared with respect to vertical eye opening. The same boundary conditions apply to the two transmission systems:

  • The basic transmission pulse  $g_s(t)$  is NRZ rectangular in each case and has the height  $s_0 = 1 \, {\rm V}$.
  • The (equivalent) bit rate is  $R_{\rm B} = 100 \, {\rm Mbit/s}$.
  • The AWGN noise has the noise power density  $N_0$.
  • Let the receiver filter be a Gaussian low-pass filter with cutoff frequency  $f_{\rm G} = 30 \, {\rm MHz}$:
$$H_{\rm G}(f) = {\rm e}^{{- \pi \cdot f^2}/{(2f_{\rm G})^2}}\hspace{0.05cm}.$$
  • The decision thresholds are optimal. The detection time is  $T_{\rm D} = 0$.


For the half-eye opening of an M-level transmission system, the following holds in general:

$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} - \sum_{\nu = 1}^{\infty} |g_\nu | - \sum_{\nu = 1}^{\infty} |g_{-\nu} |\hspace{0.05cm}.$$

Here,  $g_0 = g_d(t = 0)$  is the main value of the basic transmitter pulse  $g_d(t) = g_s(t) * h_{\rm G}(t)$. The second term describes the trailer  $g_{\rm \nu} = g_d(t = \nu T)$  and the last term the precursor  $g_{\rm -\nu} = g_d(t = -\nu T)$.

Note that in the present configuration with Gaussian low-pass

  • all the basic transmitter pulse values  $\text{...} \, g_{\rm -1}, \, g_0, \, g_1, \, \text{...}$  are positive,
  • the (infinite) sum  $\text{...} \, + \, g_{\rm -1} + g_0 + g_1\,\text{...}$  gives the constant value  $s_0$, 
  • the main value can be calculated with the complementary Gaussian error function  ${\rm Q}(x)$: 
$$g_0 = s_0 \cdot\big [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\big] \hspace{0.05cm}.$$

The graph shows the eye diagrams of the binary and quaternary systems and, in red, the corresponding basic transmitter pulses  $g_d(t)$:

  • The optimal decision thresholds  $E$  $($for $M = 2)$  and  $E_1$,  $E_2$,  $E_3$ $($for $M = 4)$ are also drawn.
  • In subtask (7) these are to be determined numerically.



Notes:

  • For the complementary Gaussian error function applies:
$${\rm Q}(0.25) = 0.4013,\hspace{0.2cm}{\rm Q}(0.50) = 0.3085,\hspace{0.2cm}{\rm Q}(0.75) = 0.2266,\hspace{0.2cm}{\rm Q}(1.00) = 0.1587,$$
$${\rm Q}(1.25) = 0.1057,\hspace{0.2cm}{\rm Q}(1.50) = 0.0668,\hspace{0.2cm}{\rm Q}(1.75) = 0.0401,\hspace{0.2cm}{\rm Q}(2.00) = 0.0228.$$


Questions

1

What is the symbol duration  $T$  for the binary or the quaternary system?

$M = 2\text{:}\hspace{0.4cm} T \ = \ $

$\ {\rm ns}$
$M = 4\text{:}\hspace{0.4cm} T \ = \ $

$\ {\rm ns}$

2

Calculate the main value  $g_0$  for the binary system.

$M = 2\text{:}\hspace{0.4cm} g_0\ = \ $

$\ {\rm V}$

3

Calculate the main value  $g_0$  for the quaternary system.

$M = 4\text{:}\hspace{0.4cm} g_0\ = \ $

$\ {\rm V}$

4

Which equations are valid considering the Gaussian low-pass?

$\ddot{o}(T_{\rm D})/2 = M \cdot g_0/(M - 1) - s_0,$
$\ddot{o}(T_{\rm D})/2 = M \cdot s_0/(M - 1) - g_0,$
$\ddot{o}(T_{\rm D})/2 = s_0/(M - 1) \cdot \big [1 - 2 \cdot M \cdot {\rm Q}(\sqrt{2\pi} \cdot {\rm log_2} \, (M) \cdot f_{\rm G}/R_{\rm B}) \big ].$

5

What is the eye opening for the binary system?

$M = 2\text{:}\hspace{0.4cm} \ddot{o}(T_{\rm D})\ = \ $

$\ {\rm V}$

6

What is the eye opening for the quaternary system?

$M = 4\text{:}\hspace{0.4cm} \ddot{o}(T_{\rm D})\ = \ $

$\ {\rm V}$

7

Determine the optimal thresholds of the quaternary system. Enter the lower threshold  $E_1$  as a control.

$M = 4\text{:}\hspace{0.4cm} E_1\ = \ $

$\ {\rm V}$


Solution

(1)  In the binary system, the bit duration is equal to the reciprocal of the equivalent bit rate:

$$T = \frac{1}{R_{\rm B}}= \frac{1}{100\,{\rm Mbit/s}}\hspace{0.15cm}\underline {= 10\,{\rm ns}}\hspace{0.05cm}.$$

The symbol duration of the quaternary system is twice as large:

$$T = \frac{{\rm log_2}\hspace{0.1cm}4}{R_{\rm B}}\hspace{0.15cm}\underline {= 20\,{\rm ns}}\hspace{0.05cm}.$$

(2)  According to the given equation, the following holds for the binary system:

$$g_0 \ = \ s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right]= 1\,{\rm V} \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot 30\,{\rm MHz} \cdot 10\,{\rm ns} \right)\right] $$
$$\Rightarrow \hspace{0.3cm} g_0 \ \approx \ 1\,{\rm V} \cdot\left [ 1- 2 \cdot {\rm Q} \left( 0.75 \right)\right] = 1\,{\rm V} \cdot\left [ 1- 2 \cdot 0.2266 \right]\hspace{0.15cm}\underline { = 0.547\,{\rm V}} \hspace{0.05cm}.$$


(3)  Due to the double symbol duration, the same cutoff frequency for $M = 4$:

$$g_0 \ = 1\,{\rm V} \cdot\left [ 1- 2 \cdot {\rm Q} \left( 1.5 \right)\right] = 1\,{\rm V} \cdot\left [ 1- 2 \cdot 0.0668 \right] \hspace{0.15cm}\underline {= 0.867\,{\rm V}} \hspace{0.05cm}.$$


(4)  Extending the given equation by $±g_0$, we obtain:

$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} + g_0 - g_0 - \sum_{\nu = 1}^{\infty} g_\nu - \sum_{\nu = 1}^{\infty} g_{-\nu} = \frac{M}{ M-1} \cdot g_0 - s_0 \hspace{0.05cm}.$$

Here is taken into account:

  • In the case of the Gaussian low-pass filter, the magnitude formation can be omitted.
  • The sum over all detection pulse values is equal to $s_0$.


The first, but also the last solution is correct:

$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ \frac{M}{ M-1} \cdot g_0 - s_0 = \frac{M}{ M-1} \cdot s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right]- s_0 $$
$$\Rightarrow \hspace{0.3cm} {\ddot{o}(T_{\rm D})}/{ 2} \ = \ \frac{s_0}{ M-1} \cdot \left [ 1- 2 \cdot M \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot T \right)\right] \hspace{0.05cm}.$$

Using the relation $T = {\rm log_2} \,(M)/R_{\rm B}$, we arrive at the third proposed solution, which is also applicable.


(5)  Using the results from (2) and (4) and $M = 2$, one obtains:

$${\ddot{o}(T_{\rm D})} = 2 \cdot (2 \cdot g_0 - s_0) = 2 \cdot (2 \cdot 0.547\,{\rm V} - 1\,{\rm V}) \hspace{0.15cm}\underline {= 0.188\,{\rm V}} \hspace{0.05cm}.$$


(6)  On the other hand, with $g_0 = 0.867 \, {\rm V}$, $s_0 = 1 \, {\rm V}$ and $M = 4$, we get:

$${\ddot{o}(T_{\rm D})} = 2 \cdot ({4}/{3} \cdot 0.867\,{\rm V} - 1\,{\rm V}) \hspace{0.15cm}\underline {= 0.312\,{\rm V}} \hspace{0.05cm}.$$


(7)  According to subtask (3), $g_0 = 0.867 \, {\rm V}$ and correspondingly $g_{\rm VN} = 0.133 \, {\rm V}$ (sum of all precursors and trailers).

  • The eye opening is $\ddot{o} = 0.312 \, {\rm V}$.
  • From the sketch on the information section, we can see that the upper boundary of the upper eye has the following value (for $T_{\rm D} = 0$):
$$o = s_0 - 2 \cdot g_{\rm VN}= g_0 - g_{\rm VN}= 0.867\,{\rm V} - 0.133\,{\rm V} = 0.734\,{\rm V} \hspace{0.05cm}.$$
  • The lower limit is at:
$$u = o -{\ddot{o}} = 0.734\,{\rm V} - 0.312\,{\rm V} = 0.422\,{\rm V} \hspace{0.05cm}.$$
  • From this follows for the optimal decision threshold of the upper eye:
$$E_3 = \frac{o + u}{2} = \frac{0.734\,{\rm V} + 0.422\,{\rm V}}{2} { = 0.578\,{\rm V}} \hspace{0.05cm}.$$
  • The sought threshold (for the lower eye) is $E_1 \, \underline {= \, –0.578 \, V}$.
  • The average decision threshold is $E_2 = 0$ for symmetry reasons.