Difference between revisions of "Aufgaben:Exercise 3.5: PM and FM for Rectangular Signals"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Modulationsverfahren" to "Category:Modulation Methods: Exercises")
 
(16 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Frequenzmodulation (FM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Frequency_Modulation_(FM)
 
}}
 
}}
  
[[File:P_ID1099__Mod_A_3_5.png|right|frame|Zwei Signalverläufe bei Winkelmodulation ]]
+
[[File:P_ID1099__Mod_A_3_5.png|right|frame|Two signal waveforms in angle modulation]]
Wir gehen von einem bipolaren und rechteckförmigen Quellensignal  $q(t)$  aus, wie im oberen Diagramm dargestellt.  Dieses Signal kann nur die beiden Signalwerte  $±A = ±2 \ \rm V$  annehmen und die Dauer der positiven und negativen Rechtecke ist jeweils  $T = 1 \ \rm ms$.  Die Periodendauer von  $q(t)$  ist demzufolge  $T_0 = 2 \ \rm ms$.
+
Assume a bipolar and rectangular source signal $q(t)$ , as shown in the upper diagram.  This signal can only take on the two signal values  $±A = ±2 \ \rm V$  and the duration of the positive and negative rectangles are each $T = 1 \ \rm ms$.  The period of  $q(t)$  is therefore   $T_0 = 2 \ \rm ms$.
  
Die Signale  $s_1(t)$  und  $s_2(t)$  zeigen zwei Sendesignale bei Winkelmodulation  $\rm (WM)$, die jeweils in der Form
+
The signals $s_1(t)$  and  $s_2(t)$  display two transmitted signals with angle modulation  $\rm (WM)$, each of which can be represented as
 
:$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.05cm}\big [\psi (t) \big ]$$
 
:$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.05cm}\big [\psi (t) \big ]$$
darstellbar sind.  Hierbei unterscheidet man zwischen der Phasenmodulation  $\rm (PM)$  mit der Winkelfunktion
+
Here, we distinguish between phase modulation  $\rm (PM)$  with the angular function
 
:$$\psi(t)  =  \omega_{\rm T} \cdot t + \phi(t)  =  \omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t)$$
 
:$$\psi(t)  =  \omega_{\rm T} \cdot t + \phi(t)  =  \omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t)$$
und der Frequenzmodulation  $\rm (FM)$, bei der die Augenblicksfrequenz linear mit $q(t)$ zusammenhängt:
+
and frequency modulation  $\rm (FM)$, where the instantaneous freqiency is linearly related to $q(t)$:
 
:$$f_{\rm A}(t) = \frac{\omega_{\rm A}(t)}{2\pi}, \hspace{0.3cm} \omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm FM} \cdot q(t)\hspace{0.05cm}.$$
 
:$$f_{\rm A}(t) = \frac{\omega_{\rm A}(t)}{2\pi}, \hspace{0.3cm} \omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm FM} \cdot q(t)\hspace{0.05cm}.$$
$K_{\rm PM}$  und  $K_{\rm FM}$  bezeichnen dimensionsbehaftete, durch die Realisierung des PM– bzw. FM–Modulators vorgegebene Konstante.  Der Frequenzhub  $Δf_{\rm A}$  gibt die maximale Abweichung der Augenblicksfrequenz von der Trägerfrequenz an.
+
$K_{\rm PM}$  and  $K_{\rm FM}$  denote the dimensionally constrained constants given by the realizations of the PM and FM modulators, respectively.  The frequency deviation  $Δf_{\rm A}$  indicates the maximum deviation of the instantaneous frequency from the carrier frequency.
  
  
Line 21: Line 21:
  
  
''Hinweise:''
+
''Hints:''
*Die Aufgabe gehört zum  Kapitel  [[Modulation_Methods/Frequenzmodulation_(FM)|Frequenzmodulation]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Frequency_Modulation_(FM)|Frequency Modulation]].
*Bezug genommen wird aber auch auf das Kapitel   [[Modulation_Methods/Phasenmodulation_(PM)|Phasenmodulation]].
+
*Reference is also made to the chapter   [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
 
   
 
   
*Im Vorgriff auf das vierte Kapitel sei erwähnt, dass man die Phasenmodulation bei digitalem Eingangssignal auch als ''Phase Shift Keying''  $\rm (PSK)$  und entsprechend die Frequenzmodulation als ''Frequency Shift Keying''  $\rm (FSK)$  bezeichnet.
+
*In anticipation of the fourth chapter, it should be mentioned that phase modulation with a digital input signal is also called ''Phase Shift Keying''  $\rm (PSK)$  and frequency modulation is analogously called ''Frequency Shift Keying''  $\rm (FSK)$ .
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welches der Signale ist durch Phasenmodulation, welches durch Frequenzmodulation entstanden?
+
{Which of the signals is due to phase modulation and which is due to frquency modulation?
 
|type="()"}
 
|type="()"}
- $s_1(t)$&nbsp; beschreibt eine Phasenmodulation.
+
- $s_1(t)$&nbsp; represents a phase modulation.
+ $s_1(t)$&nbsp; beschreibt eine Frequenzmodulation.
+
+ $s_1(t)$&nbsp; represents a frequency modulation.
  
{Wie groß ist die Trägerphase &nbsp;$ϕ_{\rm T}$, die man ohne Nachrichtensignal &nbsp; &rArr;  &nbsp; $q(t) \equiv 0$&nbsp; messen könnte?
+
{What is the carrier phase &nbsp;$ϕ_{\rm T}$ that could be measured without a message signal &nbsp; &rArr;  &nbsp; $q(t) \equiv 0$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$ϕ_{\rm T} \ = \ $ { 0. } $\ \rm Grad$  
 
$ϕ_{\rm T} \ = \ $ { 0. } $\ \rm Grad$  
  
{Welche Trägerfrequenz&nbsp; $($bezogen auf &nbsp;$1/T)$&nbsp; wurde bei den Grafiken verwendet?
+
{What carrier frequency&nbsp; $($with respect to &nbsp;$1/T)$&nbsp; was used in the graphs?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm T} · T \ = \ $ { 6 3% }  
 
$f_{\rm T} · T \ = \ $ { 6 3% }  
  
{Die Phase des PM–Signals ist &nbsp;$±90^\circ$.&nbsp; Wie groß ist die Modulatorkonstante?
+
{The phase of the PM signal is &nbsp;$±90^\circ$.&nbsp; What is the modulator constant?
 
|type="{}"}
 
|type="{}"}
 
$K_{\rm PM} \ = \ $ { 0.785 3% } $\ \rm V^{-1}$  
 
$K_{\rm PM} \ = \ $ { 0.785 3% } $\ \rm V^{-1}$  
  
{Wie groß ist der Frequenzhub &nbsp;$Δf_{\rm A}$&nbsp; des FM–Signals, bezogen auf &nbsp;$1/T$?
+
{What is the frequency deviation &nbsp;$Δf_{\rm A}$&nbsp; of the FM signal with respect to &nbsp;$1/T$?
 
|type="{}"}
 
|type="{}"}
 
$Δf_{\rm A} · T \ = \ $ { 2 3% }  
 
$Δf_{\rm A} · T \ = \ $ { 2 3% }  
  
{Wie groß ist die FM–Modulatorkonstante?
+
{What is the FM modulator constant?
 
|type="{}"}
 
|type="{}"}
 
$K_{\rm FM} \ = \ $ { 6283 3% } $\ \rm (Vs)^{-1}$
 
$K_{\rm FM} \ = \ $ { 6283 3% } $\ \rm (Vs)^{-1}$
Line 61: Line 61:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist die <u>Antwort 2</u>:
+
'''(1)'''&nbsp; <u>Answer 2</u> is correct:
*Bei einem rechteckförmigen (digitalen) Quellensignal erkennt man die Phasenmodulation (PM) an den typischen Phasensprüngen siehe Signalverlauf&nbsp; $s_2(t)$.  
+
*For a rectangular (digital) source signal, phase modulation (PM) can be recognised by the typical phase jumps see the signal waveform&nbsp; $s_2(t)$.  
*Die Frequenzmodulation (FM) hat dagegen zu den verschiedenen Zeiten unterschiedliche Augenblicksfrequenzen wie bei&nbsp; $s_1(t)$.
+
*Frequency modulation (FM), on the other hand, has diverse instantaneous frequencies at different times, as in&nbsp; $s_1(t)$.
  
  
  
'''(2)'''&nbsp;  Mit&nbsp; $q(t) = 0$&nbsp; erhält man entsprechend den gegebenen Gleichungen sowohl für PM als auch für FM
+
'''(2)'''&nbsp;  When&nbsp; $q(t) = 0$&nbsp;, the equations provided for both PM and FM give
 
:$$s(t) = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t ) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \phi_{\rm T} \hspace{0.15cm}\underline {= 0}\hspace{0.05cm}.$$
 
:$$s(t) = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t ) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \phi_{\rm T} \hspace{0.15cm}\underline {= 0}\hspace{0.05cm}.$$
  
  
  
'''(3)'''&nbsp;  Die Trägerfrequenz&nbsp; $f_{\rm T}$&nbsp; kann direkt nur aus dem PM–Signal&nbsp; $s_2(t)$&nbsp; ermittelt werden.  
+
'''(3)'''&nbsp;  The carrier frequency&nbsp; $f_{\rm T}$&nbsp; can be directly determined only from the PM signal &nbsp; $s_2(t)$&nbsp;.  
*Durch Abzählen der Schwingungen von&nbsp; $s_2(t)$&nbsp; im Zeitintervall&nbsp; $T$&nbsp; erkennt man, dass&nbsp; $f_{\rm T} · T\hspace{0.15cm}\underline{ = 6}$&nbsp; verwendet wurde.
+
*By counting the oscillations of&nbsp; $s_2(t)$&nbsp; in the time interval&nbsp; $T$&nbsp;, it can be seen that&nbsp; $f_{\rm T} · T\hspace{0.15cm}\underline{ = 6}$&nbsp; was used.
*Bei der Frequenzmodulation eines bipolaren Quellensignals tritt&nbsp; $f_{\rm T}$&nbsp; nicht direkt auf.  
+
*When frequency modulating a bipolar source signal, &nbsp; $f_{\rm T}$&nbsp; does not occur directly.  
*Die Grafiken lassen allerdings darauf schließen, dass hier ebenfalls&nbsp;  $f_{\rm T} · T = 6$&nbsp; zugrunde liegt.
+
*However, the graphs do indicate that &nbsp;  $f_{\rm T} · T = 6$&nbsp; is also used here.
  
  
  
  
'''(4)'''&nbsp;  Der Amplitudenwert&nbsp; $A = 2 \ \rm V$&nbsp; führt zur Phase&nbsp; $90^\circ$&nbsp; bzw.&nbsp; $π/2$&nbsp; (Minus–Sinusverlauf).&nbsp; Daraus folgt:
+
'''(4)'''&nbsp;  The amplitude value&nbsp; $A = 2 \ \rm V$&nbsp; results in the phase&nbsp; $90^\circ$&nbsp; or&nbsp; $π/2$&nbsp; (minus sine wave).&nbsp; This gives:
 
:$$K_{\rm PM} = \frac {\pi /2}{2\,{\rm V}} \hspace{0.15cm}\underline {= 0.785\,{\rm V}^{-1}} \hspace{0.05cm}.$$
 
:$$K_{\rm PM} = \frac {\pi /2}{2\,{\rm V}} \hspace{0.15cm}\underline {= 0.785\,{\rm V}^{-1}} \hspace{0.05cm}.$$
  
  
  
'''(5)'''&nbsp;  Die Grafik für&nbsp; $s_1(t)$&nbsp; zeigt, dass innerhalb eines Zeitintervalls&nbsp; $T$&nbsp; entweder vier oder acht Schwingungen auftreten: &nbsp; $4 \le f_{\rm A}(t) \cdot T \le 8\hspace{0.05cm}.$
+
'''(5)'''&nbsp;  The graph for&nbsp; $s_1(t)$&nbsp; shows that either four or eight oscillations arise within a time interval&nbsp; $T$&nbsp;: &nbsp; $4 \le f_{\rm A}(t) \cdot T \le 8\hspace{0.05cm}.$
*Unter Berücksichtigung der (normiertern) Trägerfrequenz&nbsp; $f_{\rm T} · T = 6$&nbsp; ergibt sich für den (normierten) Frequenzhub:
+
*Considering the (normalized) carrier frequency&nbsp; $f_{\rm T} · T = 6$&nbsp;, the (normalized) frequency deviation is:
 
:$$\Delta f_{\rm A} \cdot T \hspace{0.15cm}\underline {=2}\hspace{0.05cm}.$$
 
:$$\Delta f_{\rm A} \cdot T \hspace{0.15cm}\underline {=2}\hspace{0.05cm}.$$
  
  
  
'''(6)'''&nbsp;  Der Frequenzhub kann auch wie folgt dargestellt werden:
+
'''(6)'''&nbsp;  The frequency deviation can also be represented as follows:
 
:$$\Delta f_{\rm A} = \frac {K_{\rm FM}}{2\pi}\cdot A \hspace{0.05cm}.$$
 
:$$\Delta f_{\rm A} = \frac {K_{\rm FM}}{2\pi}\cdot A \hspace{0.05cm}.$$
*Mit&nbsp; $Δf_{\rm A} · {\rm A}  = 2$&nbsp; erhält man somit:
+
*With &nbsp; $Δf_{\rm A} · {\rm A}  = 2$&nbsp; we thus get:
 
:$$K_{\rm FM} = \frac {2 \cdot 2\pi}{A \cdot T}= \frac {4\pi}{2\,{\rm V} \cdot 1\,{\rm ms}}\hspace{0.15cm}\underline {= 6283 \,{\rm V}^{-1}{\rm s}^{-1}} \hspace{0.05cm}.$$
 
:$$K_{\rm FM} = \frac {2 \cdot 2\pi}{A \cdot T}= \frac {4\pi}{2\,{\rm V} \cdot 1\,{\rm ms}}\hspace{0.15cm}\underline {= 6283 \,{\rm V}^{-1}{\rm s}^{-1}} \hspace{0.05cm}.$$
  
Line 102: Line 102:
  
  
[[Category:Modulation Methods: Exercises|^3.2 Frequenzmodulation (FM)^]]
+
[[Category:Modulation Methods: Exercises|^3.2 Frequency Modulation^]]

Latest revision as of 17:19, 23 January 2023

Two signal waveforms in angle modulation

Assume a bipolar and rectangular source signal $q(t)$ , as shown in the upper diagram.  This signal can only take on the two signal values  $±A = ±2 \ \rm V$  and the duration of the positive and negative rectangles are each $T = 1 \ \rm ms$.  The period of  $q(t)$  is therefore  $T_0 = 2 \ \rm ms$.

The signals $s_1(t)$  and  $s_2(t)$  display two transmitted signals with angle modulation  $\rm (WM)$, each of which can be represented as

$$s(t) = A_{\rm T} \cdot \cos \hspace{-0.05cm}\big [\psi (t) \big ]$$

Here, we distinguish between phase modulation  $\rm (PM)$  with the angular function

$$\psi(t) = \omega_{\rm T} \cdot t + \phi(t) = \omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t)$$

and frequency modulation  $\rm (FM)$, where the instantaneous freqiency is linearly related to $q(t)$:

$$f_{\rm A}(t) = \frac{\omega_{\rm A}(t)}{2\pi}, \hspace{0.3cm} \omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm FM} \cdot q(t)\hspace{0.05cm}.$$

$K_{\rm PM}$  and  $K_{\rm FM}$  denote the dimensionally constrained constants given by the realizations of the PM and FM modulators, respectively.  The frequency deviation  $Δf_{\rm A}$  indicates the maximum deviation of the instantaneous frequency from the carrier frequency.





Hints:

  • In anticipation of the fourth chapter, it should be mentioned that phase modulation with a digital input signal is also called Phase Shift Keying  $\rm (PSK)$  and frequency modulation is analogously called Frequency Shift Keying  $\rm (FSK)$ .


Questions

1

Which of the signals is due to phase modulation and which is due to frquency modulation?

$s_1(t)$  represents a phase modulation.
$s_1(t)$  represents a frequency modulation.

2

What is the carrier phase  $ϕ_{\rm T}$ that could be measured without a message signal   ⇒   $q(t) \equiv 0$ ?

$ϕ_{\rm T} \ = \ $

$\ \rm Grad$

3

What carrier frequency  $($with respect to  $1/T)$  was used in the graphs?

$f_{\rm T} · T \ = \ $

4

The phase of the PM signal is  $±90^\circ$.  What is the modulator constant?

$K_{\rm PM} \ = \ $

$\ \rm V^{-1}$

5

What is the frequency deviation  $Δf_{\rm A}$  of the FM signal with respect to  $1/T$?

$Δf_{\rm A} · T \ = \ $

6

What is the FM modulator constant?

$K_{\rm FM} \ = \ $

$\ \rm (Vs)^{-1}$


Solution

(1)  Answer 2 is correct:

  • For a rectangular (digital) source signal, phase modulation (PM) can be recognised by the typical phase jumps – see the signal waveform  $s_2(t)$.
  • Frequency modulation (FM), on the other hand, has diverse instantaneous frequencies at different times, as in  $s_1(t)$.


(2)  When  $q(t) = 0$ , the equations provided for both PM and FM give

$$s(t) = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t ) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \phi_{\rm T} \hspace{0.15cm}\underline {= 0}\hspace{0.05cm}.$$


(3)  The carrier frequency  $f_{\rm T}$  can be directly determined only from the PM signal   $s_2(t)$ .

  • By counting the oscillations of  $s_2(t)$  in the time interval  $T$ , it can be seen that  $f_{\rm T} · T\hspace{0.15cm}\underline{ = 6}$  was used.
  • When frequency modulating a bipolar source signal,   $f_{\rm T}$  does not occur directly.
  • However, the graphs do indicate that   $f_{\rm T} · T = 6$  is also used here.



(4)  The amplitude value  $A = 2 \ \rm V$  results in the phase  $90^\circ$  or  $π/2$  (minus sine wave).  This gives:

$$K_{\rm PM} = \frac {\pi /2}{2\,{\rm V}} \hspace{0.15cm}\underline {= 0.785\,{\rm V}^{-1}} \hspace{0.05cm}.$$


(5)  The graph for  $s_1(t)$  shows that either four or eight oscillations arise within a time interval  $T$ :   $4 \le f_{\rm A}(t) \cdot T \le 8\hspace{0.05cm}.$

  • Considering the (normalized) carrier frequency  $f_{\rm T} · T = 6$ , the (normalized) frequency deviation is:
$$\Delta f_{\rm A} \cdot T \hspace{0.15cm}\underline {=2}\hspace{0.05cm}.$$


(6)  The frequency deviation can also be represented as follows:

$$\Delta f_{\rm A} = \frac {K_{\rm FM}}{2\pi}\cdot A \hspace{0.05cm}.$$
  • With   $Δf_{\rm A} · {\rm A} = 2$  we thus get:
$$K_{\rm FM} = \frac {2 \cdot 2\pi}{A \cdot T}= \frac {4\pi}{2\,{\rm V} \cdot 1\,{\rm ms}}\hspace{0.15cm}\underline {= 6283 \,{\rm V}^{-1}{\rm s}^{-1}} \hspace{0.05cm}.$$