Difference between revisions of "Aufgaben:Exercise 3.6: Even and Odd Time Signals"

From LNTwww
 
(32 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Transform_Laws
 
}}
 
}}
  
[[File:P_ID516__Sig_A_3_6_neu.png|250px|right|Gerades/ungerades Zeitsignal (Aufgabe A3.6)]]
+
[[File:P_ID516__Sig_A_3_6_neu.png|250px|right|frame|"Wedge function" as well as an even and an odd time signal]]
  
Gesucht ist das Spektrum $X(f)$ des nebenstehend skizzierten impulsförmigen Signals $x(t)$, das im Bereich von $–T/2$ bis $T/2$ linear von 2 V auf 4 V ansteigt und außerhalb 0 ist.
+
We are looking for the spectrum  $X(f)$  of the pulse  $x(t)$ sketched opposite, which rises linearly from  $2\hspace{0.05cm} \text{V}$  to  $4\hspace{0.05cm} \text{V}$  in the range from  $–T/2$  to  $+T/2$  and is zero outside.
Die Spektralfunktionen der unten dargestellten Signale $g(t)$ und $u(t)$ können als bekannt vorausgesetzt werden.
+
 
*Die gerade, rechteckförmige Zeitfunktion $g(t)$ besitzt das Spektrum
+
The spectral functions of the signals  $g(t)$  and  $u(t)$  shown below are assumed to be known:
 +
*The even (German:  gerade) rectangular time function  $g(t)$  has the spectrum
 
   
 
   
$$G( f ) = A_g  \cdot T \cdot {\mathop{\rm si}\nolimits}( {{\rm{\pi }}fT} ) \hspace{0.3cm} {\rm{mit}}\hspace{0.3cm} {\mathop{\rm si}\nolimits}( x ) = \frac{{\sin ( x )}}{x}.$$
+
:$$G( f ) = A_g  \cdot T \cdot {\mathop{\rm si}\nolimits}( { {\rm{\pi }}fT} ) \hspace{0.3cm} {\rm{with}}\hspace{0.3cm} {\mathop{\rm si}\nolimits}( x ) = {\sin ( x )}/{x}.$$
  
*Das Spektrum der unsymmetrischen Funktion $u(t)$ lautet:
+
*The spectrum of the odd (German:  ungerade) function  $u(t)$  is:
 
   
 
   
$$U( f ) =  - {\rm{j}} \cdot \frac{{A_u  \cdot T}}{{2{\rm{\pi }}fT}}\left[ {{\mathop{\rm si}\nolimits} ( {{\rm{\pi }}fT} ) - \cos ( {{\rm{\pi }}fT} )} \right].$$
+
:$$U( f ) =  - {\rm{j}} \cdot \frac{ {A_u  \cdot T}}{ {2{\rm{\pi }}fT}}\big[ {{\mathop{\rm si}\nolimits} ( { {\rm{\pi }}fT} ) - \cos ( { {\rm{\pi }}fT} )} \big].$$
 +
 
 +
 
  
Verwenden Sie für die Teilaufgaben a) und b) die Signalparameter Au = 1 V und T = 1 ms.
 
Hinweis: Lösen Sie diese Aufgabe mit Hilfe des Zuordnungssatzes in Kapitel 3.3.
 
  
  
===Fragebogen===
+
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Transform_Theorems|Fourier Transform Theorems]].
 +
*All the theorems presented here are illustrated with examples in the (German language) learning video<br> &nbsp; &nbsp; &nbsp;[[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] &nbsp; &rArr; &nbsp;  "Regularities to the Fourier transform".
 +
*Solve this task with the help of the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|Assignment Theorem]].
 +
*For the first two subtasks use the signal parameters&nbsp; $A_u = 1\,\text{V}$&nbsp; and&nbsp; $T = 1\,\text{ms}$.
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die (rein imaginären) Spektralwerte des unsymmetrischen Signals u(t) bei den Frequenzen f = 0.5 kHz und f = 1 kHz.
+
{Calculate the (imaginary) spectral values of the odd signal&nbsp; $u(t)$&nbsp; at the frequencies&nbsp; $f = 0.5\,\text{kHz}$&nbsp; and&nbsp; $f = 1\,\text{kHz}$.
 
|type="{}"}
 
|type="{}"}
$Im[U(f=0.5 \text{kHz}] =$ { -0.2 } mV/Hz
+
${\rm Im}\big[U(f=0.5 \,\text{kHz})\big] \ = \ $ { -0.205--0.195 } &nbsp;$\text{mV/Hz}$
$Im[U(f=1 \text{kHz}] =$ { 1.59 3% } mV/Hz
+
${\rm Im}\big[U(f=1.0 \,\text{kHz})\big]\ = \ $ { 0.159 3% } &nbsp;$\text{mV/Hz}$
  
{Wie groß ist der Spektralwert von u(t) bei der Frequenz f = 0?  
+
{What is the spectral value of&nbsp; $u(t)$&nbsp; at the frequency&nbsp; $f = 0$? &nbsp; &nbsp;
Hinweis: Lieber denken als rechnen.
+
''Hint'': Think before you calculate.
 
|type="{}"}
 
|type="{}"}
$Im[U(f=0 \text{kHz}] =$ { 0 } mV/Hz
+
${\rm Im}\big[U(f=0)\big]\ = \ $ { 0. } &nbsp;$\text{mV/Hz}$
  
{Berechnen Sie unter Verwendung des Ergebnisses aus a) den Spektralwert des Signals x(t) bei der Frequenz f = 0.5 kHz.
+
{Using the result from&nbsp; '''(1)'''&nbsp; calculate the spectral value of the signal&nbsp; $x(t)$&nbsp; at the frequency&nbsp; $f=0.5 \,\text{kHz}$.  
 
|type="{}"}
 
|type="{}"}
$Re[X(f=0.5 \text{kHz}] =$ { 1.91 3% } mV/Hz
+
${\rm Re}\big[X(f=0.5 \,\text{kHz})\big]\ = \ $ { 1.91 3% } &nbsp;$\text{mV/Hz}$
$Im[X(f=0.5 \text{kHz}] =$ { -0.2 } mV/Hz
+
${\rm Im}\big[X(f=0.5 \,\text{kHz})\big]\ = \ $ { -0.205--0.195 } &nbsp;$\text{mV/Hz}$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
  
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' a) Für f · T = 0.5 erhält man aus der angegebenen Gleichung:
+
'''(1)'''&nbsp; For&nbsp; $f \cdot T = 0.5$&nbsp; one obtains from the given equation:
 
   
 
   
$$U( {f = 0.5\;{\rm{kHz}}} ) =  - {\rm{j}} \cdot \frac{{A_u  \cdot T}}{{\rm{\pi }}} \cdot {\mathop{\rm si}\nolimits} ( {\frac{{\rm{\pi }}}{2}} ) =  - {\rm{j}} \cdot \frac{2}{{{\rm{\pi }}^{\rm{2}} }} \cdot A_{\rm u}  \cdot T.$$
+
:$$U( {f = 0.5\;{\rm{kHz}}} ) =  - {\rm{j}} \cdot \frac{ {A_u  \cdot T}}{ {\rm{\pi }}} \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) =  - {\rm{j}} \cdot \frac{2}{ { {\rm{\pi }}^{\rm{2}} }} \cdot A_{\rm u}  \cdot T.$$
  
Der Imaginärteil ist zahlenmäßig ca. –2 · 10–4 V/Hz. Dagegen liefert die si-Funktion bei f · T = 1 den Wert 0, während der Cosinus gleich –1 ist. Damit erhält man mit Au = 1 V und T = 1 ms:
+
*The imaginary part is&nbsp;  ${\rm Im}[U(f=0.5 \,\text{kHz})]\; \underline{\approx 0.2 \,\text{mV/Hz}}$.  
 +
*In contrast, the&nbsp; $\rm si$&ndash;function at&nbsp; $f \cdot T = 1$&nbsp; yields the value zero, while the cosine is equal to&nbsp; $-1$.&nbsp; Thus with&nbsp; $A_u = 1\,\text{V}$&nbsp; and&nbsp; $T = 1\,\text{ms}$&nbsp; one obtains:
 
   
 
   
$$U( {f = 1\;{\rm{kHz}}} ) = {\rm{j}} \cdot \frac{{A_{\rm u} \cdot T}}{{{\rm{2\pi }}}} \hspace{0.3 cm} \Rightarrow \hspace{0.3 cm} {\rm Re} [...] \hspace{0.15 cm}\underline{ =  0}, \hspace{0.3 cm}{\rm Im} [...] \hspace{0.15 cm}\underline{\approx  \cdot 1.59 \cdot 10^{ - 4} \;{\rm{V/Hz}}}.$$
+
:$$U( {f = 1\;{\rm{kHz}}} ) = {\rm{j}} \cdot \frac{ {A_{\rm u} \cdot T}}{ { {\rm{2\pi }}}} \hspace{0.3 cm} \Rightarrow \hspace{0.3 cm} {\rm Re} [\text{...}] \hspace{0.15 cm}\underline{ =  0}, \hspace{0.3 cm}{\rm Im} [\text{...}] \hspace{0.15 cm}\underline{\approx  0.159 \;{\rm{mV/Hz}}}.$$
  
b) Eine ungerade Zeitfunktion u(t) besitzt nach dem Zuordnungssatz stets ein imaginäres und gleichzeitig ungerades Spektrum:
+
 
 +
 
 +
'''(2)'''&nbsp; According to the&nbsp; "Assignment Theorem", an odd time function&nbsp; $u(t)$&nbsp; always has an imaginary and at the same time odd spectrum&nbsp; $U( { - f} ) =  - U( f )$.&nbsp; With the boundary transition&nbsp; $f \rightarrow \infty$&nbsp; follows from the given equation
 
   
 
   
$$U( { - f} ) =  - U( f ).$$
+
:$$U( f ) =  - {\rm{j}} \cdot \frac{ {A_u  \cdot T}}{ {2{\rm{\pi }}fT}}\big[ { {\mathop{\rm si}\nolimits} ( {{\rm{\pi }}fT} ) - \cos ( { {\rm{\pi }}fT} )} \big]$$
 +
 
 +
the result&nbsp; $U(f = 0) = 0$.&nbsp; Formally, one could confirm this result by applying l'Hospital's rule.  
  
Mit dem Grenzübergang f 0 folgt aus der angegebenen Gleichung
+
We proceed a little more pragmatically.
 +
*For example, if we set&nbsp; $f \cdot T = 0.01$, we obtain:
 
   
 
   
$$U( f ) = - {\rm{j}} \cdot \frac{{A_u  \cdot T}}{{2{\rm{\pi }}fT}}\left[ {{\mathop{\rm si}\nolimits} ( {{\rm{\pi }}fT} ) - \cos ( {{\rm{\pi }}fT} )} \right]$$
+
$$U( {f \cdot T = 0.01}) = -{\rm{j}} \cdot \frac{ {A_{\rm u} \cdot T}}{{0.02{\rm{\pi }}}}\big[ {{\mathop{\rm si}\nolimits} ( {0.01{\rm{\pi }}} ) - \cos ( {0.01{\rm{\pi }}} )} \big ] =  - {\rm{j}} \cdot \frac{ {A{\rm u} \cdot T}}{{0.02{\rm{\pi }}}}( {0.999836 - 0.999507} ) \approx  - {\rm{j}} \cdot 5 \cdot 10^{ - 6} \;{\rm{V/Hz}}{\rm{.}}$$
 +
 
 +
*For even smaller frequency values, the result also becomes smaller and smaller.
 +
*You get to the result&nbsp; $U(f = 0)\;\underline{ = 0}$&nbsp; more quickly if you take into account that the integral over&nbsp; $u(t)$&nbsp; disappears.
 +
*So you don't have to calculate at all.
 +
 
  
das Ergebnis U(f = 0). Formal könnte man dieses Ergebnis durch Anwendung der l'Hospitalschen Regel bestätigen. Wir gehen etwas pragmatischer vor. Setzen wir zum Beispiel f · T = 0.01, so erhält man:
 
 
$$U( {f \cdot T = 0.01}) &=& -{\rm{j}} \cdot \frac{{A_{\rm u} \cdot T}}{{0.02{\rm{\pi }}}}( {{\mathop{\rm si}\nolimits} ( {0.01{\rm{\pi }}} ) - \cos ( {0.01{\rm{\pi }}} )} ) \\&=&  - {\rm{j}} \cdot \frac{{A{\rm u} \cdot T}}{{0.02{\rm{\pi }}}}( {0.999836 - 0.999507} ) \approx  - {\rm{j}} \cdot 5 \cdot 10^{ - 6} \;{\rm{V/Hz}}{\rm{.}}$$
 
  
Für noch kleinere Frequenzwerte wird auch das Ergebnis immer kleiner. Schneller kommt man zum Ergebnis U(f = 0) = 0, wenn man berücksichtigt, dass das Integral über u(t) verschwindet.
+
'''(3)'''&nbsp; The signal&nbsp; $x(t)$&nbsp; can be divided into an even and an odd part, which lead to the even real part and the odd imaginary part of&nbsp; $X(f)$&nbsp;:
c)  Das Signal x(t) kann in einen geraden und einen ungeraden Anteil aufgeteilt werden, die zum geraden Realteil bzw. zum ungeraden Imaginärteil von X(f) führen. Der gerade Anteil ist gleich der Funktion g(t) mit Ag = 3 V. Daraus folgt für den Spektralwert bei f · T = 0.5:
+
*The even part is equal to the function&nbsp; $g(t)$&nbsp; with&nbsp; $A_g = 3\,\text{V}$.&nbsp; From this follows for the real part of the spectral value at&nbsp; $f \cdot T = 0.5$:
 
   
 
   
$${\mathop{\rm Re}\nolimits} \left[ {X( {f \cdot T = 0.5} )} \right] = A_{\rm g}  \cdot T \cdot {\mathop{\rm si}\nolimits} ( {\frac{{\rm{\pi }}}{2}} ) \hspace{0.15 cm}\underline{= 1.91 \cdot 10^{ - 3} \;{\rm{V/Hz}}}{\rm{.}}$$
+
:$${\mathop{\rm Re}\nolimits} \left[ {X( {f \cdot T = 0.5} )} \right] = A_{\rm g}  \cdot T \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \hspace{0.15 cm}\underline{= 1.91 \;{\rm{mV/Hz}}}{\rm{.}}$$
  
Der Imaginärteil ergibt sich aus der Spektralfunktion U(f) mit Au = 1 V. Dieser wurde in der Teilaufgabe a) berechnet:
+
*The imaginary part results from the spectral function&nbsp; $U(f)$&nbsp; with $A_u = 1\,\text{V}$.&nbsp; This was already calculated in subtask&nbsp; '''(1)''':
 
   
 
   
$${\mathop{\rm Im}\nolimits} \left[ {X( {f \cdot T = 0.5} )} \right] \hspace{0.15 cm}\underline{= - 2 \cdot 10^{ - 4} \;{\rm{V/Hz}}}{\rm{.}}$$
+
:$${\mathop{\rm Im}\nolimits} \left[ {X( {f \cdot T = 0.5} )} \right] \hspace{0.15 cm}\underline{\approx - 0.2 \;{\rm{mV/Hz}}}{\rm{.}}$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.3 Fourier Transform Theorems^]]

Latest revision as of 15:22, 27 April 2021

"Wedge function" as well as an even and an odd time signal

We are looking for the spectrum  $X(f)$  of the pulse  $x(t)$ sketched opposite, which rises linearly from  $2\hspace{0.05cm} \text{V}$  to  $4\hspace{0.05cm} \text{V}$  in the range from  $–T/2$  to  $+T/2$  and is zero outside.

The spectral functions of the signals  $g(t)$  and  $u(t)$  shown below are assumed to be known:

  • The even (German:  gerade) rectangular time function  $g(t)$  has the spectrum
$$G( f ) = A_g \cdot T \cdot {\mathop{\rm si}\nolimits}( { {\rm{\pi }}fT} ) \hspace{0.3cm} {\rm{with}}\hspace{0.3cm} {\mathop{\rm si}\nolimits}( x ) = {\sin ( x )}/{x}.$$
  • The spectrum of the odd (German:  ungerade) function  $u(t)$  is:
$$U( f ) = - {\rm{j}} \cdot \frac{ {A_u \cdot T}}{ {2{\rm{\pi }}fT}}\big[ {{\mathop{\rm si}\nolimits} ( { {\rm{\pi }}fT} ) - \cos ( { {\rm{\pi }}fT} )} \big].$$



Hints:



Questions

1

Calculate the (imaginary) spectral values of the odd signal  $u(t)$  at the frequencies  $f = 0.5\,\text{kHz}$  and  $f = 1\,\text{kHz}$.

${\rm Im}\big[U(f=0.5 \,\text{kHz})\big] \ = \ $

 $\text{mV/Hz}$
${\rm Im}\big[U(f=1.0 \,\text{kHz})\big]\ = \ $

 $\text{mV/Hz}$

2

What is the spectral value of  $u(t)$  at the frequency  $f = 0$?     Hint: Think before you calculate.

${\rm Im}\big[U(f=0)\big]\ = \ $

 $\text{mV/Hz}$

3

Using the result from  (1)  calculate the spectral value of the signal  $x(t)$  at the frequency  $f=0.5 \,\text{kHz}$.

${\rm Re}\big[X(f=0.5 \,\text{kHz})\big]\ = \ $

 $\text{mV/Hz}$
${\rm Im}\big[X(f=0.5 \,\text{kHz})\big]\ = \ $

 $\text{mV/Hz}$


Solution

(1)  For  $f \cdot T = 0.5$  one obtains from the given equation:

$$U( {f = 0.5\;{\rm{kHz}}} ) = - {\rm{j}} \cdot \frac{ {A_u \cdot T}}{ {\rm{\pi }}} \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) = - {\rm{j}} \cdot \frac{2}{ { {\rm{\pi }}^{\rm{2}} }} \cdot A_{\rm u} \cdot T.$$
  • The imaginary part is  ${\rm Im}[U(f=0.5 \,\text{kHz})]\; \underline{\approx 0.2 \,\text{mV/Hz}}$.
  • In contrast, the  $\rm si$–function at  $f \cdot T = 1$  yields the value zero, while the cosine is equal to  $-1$.  Thus with  $A_u = 1\,\text{V}$  and  $T = 1\,\text{ms}$  one obtains:
$$U( {f = 1\;{\rm{kHz}}} ) = {\rm{j}} \cdot \frac{ {A_{\rm u} \cdot T}}{ { {\rm{2\pi }}}} \hspace{0.3 cm} \Rightarrow \hspace{0.3 cm} {\rm Re} [\text{...}] \hspace{0.15 cm}\underline{ = 0}, \hspace{0.3 cm}{\rm Im} [\text{...}] \hspace{0.15 cm}\underline{\approx 0.159 \;{\rm{mV/Hz}}}.$$


(2)  According to the  "Assignment Theorem", an odd time function  $u(t)$  always has an imaginary and at the same time odd spectrum  $U( { - f} ) = - U( f )$.  With the boundary transition  $f \rightarrow \infty$  follows from the given equation

$$U( f ) = - {\rm{j}} \cdot \frac{ {A_u \cdot T}}{ {2{\rm{\pi }}fT}}\big[ { {\mathop{\rm si}\nolimits} ( {{\rm{\pi }}fT} ) - \cos ( { {\rm{\pi }}fT} )} \big]$$

the result  $U(f = 0) = 0$.  Formally, one could confirm this result by applying l'Hospital's rule.

We proceed a little more pragmatically.

  • For example, if we set  $f \cdot T = 0.01$, we obtain:

$$U( {f \cdot T = 0.01}) = -{\rm{j}} \cdot \frac{ {A_{\rm u} \cdot T}}{{0.02{\rm{\pi }}}}\big[ {{\mathop{\rm si}\nolimits} ( {0.01{\rm{\pi }}} ) - \cos ( {0.01{\rm{\pi }}} )} \big ] = - {\rm{j}} \cdot \frac{ {A{\rm u} \cdot T}}{{0.02{\rm{\pi }}}}( {0.999836 - 0.999507} ) \approx - {\rm{j}} \cdot 5 \cdot 10^{ - 6} \;{\rm{V/Hz}}{\rm{.}}$$

  • For even smaller frequency values, the result also becomes smaller and smaller.
  • You get to the result  $U(f = 0)\;\underline{ = 0}$  more quickly if you take into account that the integral over  $u(t)$  disappears.
  • So you don't have to calculate at all.


(3)  The signal  $x(t)$  can be divided into an even and an odd part, which lead to the even real part and the odd imaginary part of  $X(f)$ :

  • The even part is equal to the function  $g(t)$  with  $A_g = 3\,\text{V}$.  From this follows for the real part of the spectral value at  $f \cdot T = 0.5$:
$${\mathop{\rm Re}\nolimits} \left[ {X( {f \cdot T = 0.5} )} \right] = A_{\rm g} \cdot T \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \hspace{0.15 cm}\underline{= 1.91 \;{\rm{mV/Hz}}}{\rm{.}}$$
  • The imaginary part results from the spectral function  $U(f)$  with $A_u = 1\,\text{V}$.  This was already calculated in subtask  (1):
$${\mathop{\rm Im}\nolimits} \left[ {X( {f \cdot T = 0.5} )} \right] \hspace{0.15 cm}\underline{\approx - 0.2 \;{\rm{mV/Hz}}}{\rm{.}}$$