Difference between revisions of "Aufgaben:Exercise 3.6: Transversal Filter of the Optimal Nyquist Equalizer"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Digitalsignalübertragung" to "Category:Digital Signal Transmission: Exercises")
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Lineare Nyquistentzerrung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Linear_Nyquist_Equalization
 
}}
 
}}
  
[[File:P_ID1432__Dig_A_3_6.png|right|frame|Transversalfilter des <br>Optimalen Nyquistentzerrers]]
+
[[File:P_ID1432__Dig_A_3_6.png|right|frame|Transversal filter of the <br>Optimal Nyquist Equalizer]]
Am Eingang des in der Grafik gezeigten symmetrischen Transversalfilters zweiter Ordnung &nbsp;$(N = 2)$&nbsp; liegt ein Dreieckimpuls (auf $1$ normiert):
+
At the input of the symmetric second order transversal filter &nbsp;$(N = 2)$&nbsp; shown in the diagram there is a triangular pulse&nbsp; $($normalized to $1)$:
 
:$$g_x(t) =  \left\{ \begin{array}{c} 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{(2T)}    \\
 
:$$g_x(t) =  \left\{ \begin{array}{c} 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{(2T)}    \\
 
  \\ 0  \\  \end{array} \right.
 
  \\ 0  \\  \end{array} \right.
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  \\ {\rm{f\ddot{u}r}} \\ \end{array}
+
\begin{array}{*{1}c} {\rm{for}}\\  \\ {\rm{for}} \\ \end{array}
 
\begin{array}{*{20}c}|\hspace{0.05cm}t\hspace{0.05cm}| \le 2\hspace{0.05cm}T, \\ \\  |\hspace{0.05cm}t\hspace{0.05cm}| \ge 2\hspace{0.05cm}T. \\
 
\begin{array}{*{20}c}|\hspace{0.05cm}t\hspace{0.05cm}| \le 2\hspace{0.05cm}T, \\ \\  |\hspace{0.05cm}t\hspace{0.05cm}| \ge 2\hspace{0.05cm}T. \\
 
\end{array}$$
 
\end{array}$$
  
Sind alle Filterkoeffizienten &nbsp;$k_0$, &nbsp;$k_1$&nbsp; und&nbsp; $k_2$&nbsp; ungleich Null, so gilt für den Impuls am Ausgang:
+
If all filter coefficients &nbsp;$k_0$, &nbsp;$k_1$&nbsp; and&nbsp; $k_2$&nbsp; are nonzero,&nbsp; then the following holds for the pulse at the output:
 
:$$g_y(t) \ =  k_0 \cdot g_x(t) +  k_1 \cdot \big[ g_x(t-T)+
 
:$$g_y(t) \ =  k_0 \cdot g_x(t) +  k_1 \cdot \big[ g_x(t-T)+
 
g_x(t+T) \big] +  k_2  \cdot \big[ g_x(t-2T)+ g_x(t+2T)
 
g_x(t+T) \big] +  k_2  \cdot \big[ g_x(t-2T)+ g_x(t+2T)
 
\big]\hspace{0.05cm}.$$
 
\big]\hspace{0.05cm}.$$
  
Durch geeignete Wahl der Filterkoeffizienten &nbsp;$k_0$, &nbsp;$k_1$&nbsp; und&nbsp; $k_2$&nbsp; kann der Ausgangsimpuls folgende Bedingungen erfüllen:
+
By appropriate choice of filter coefficients &nbsp;$k_0$, &nbsp;$k_1$&nbsp; and&nbsp; $k_2$,&nbsp; the output pulse can satisfy the following conditions:
 
:$$g_0 = g_y(t = 0) = 1,\hspace{0.2cm}g_1 = g_y(t = \pm T) =
 
:$$g_0 = g_y(t = 0) = 1,\hspace{0.2cm}g_1 = g_y(t = \pm T) =
 
0,\hspace{0.2cm}g_2 = g_y(t = \pm 2 T) = 0 \hspace{0.05cm}.$$
 
0,\hspace{0.2cm}g_2 = g_y(t = \pm 2 T) = 0 \hspace{0.05cm}.$$
  
*Ein Filter erster Ordnung &nbsp;$(N = 1)$&nbsp; ergibt sich aus obiger Anordnung und Gleichung, indem man den Koeffizienten&nbsp; $k_2 = 0$&nbsp; setzt.
+
*A first order filter &nbsp;$(N = 1)$&nbsp; is obtained from the above arrangement and equation by setting the coefficient&nbsp; $k_2 = 0$.&nbsp;
*Durch geeignete Wahl von &nbsp;$k_0$&nbsp; und&nbsp; $k_1$&nbsp; kann dann &nbsp;$g_0 = 1$&nbsp; und&nbsp; $g_1 = 0$&nbsp; erreicht werden. Allerdings wird in diesem Fall stets &nbsp;$g_2 &ne; 0$&nbsp; sein.
+
 
+
*Then,&nbsp; by appropriate choice of &nbsp;$k_0$&nbsp; and&nbsp; $k_1$,&nbsp; &nbsp;$g_0 = 1$&nbsp; and&nbsp; $g_1 = 0$&nbsp; can be obtained. However,&nbsp; in this case,&nbsp; always will  be &nbsp;$g_2 &ne; 0$.&nbsp;
 
 
  
  
  
  
''Hinweis:''
+
Note:&nbsp; The exercise belongs to the chapter &nbsp;[[Digital_Signal_Transmission/Linear_Nyquist_Equalization|"Linear Nyquist Equalization"]].
*Die Aufgabe gehört zum  Kapitel &nbsp;[[Digitalsignal%C3%BCbertragung/Lineare_Nyquistentzerrung|Linare Nyquistentzerrung]].
 
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die optimalen Koeffizienten für das Filter erster Ordnung &nbsp; &rArr; &nbsp; $k_2 = 0$?
+
{What are the optimal coefficients for the first order filter &nbsp; &rArr; &nbsp; $k_2 = 0$?
 
|type="{}"}
 
|type="{}"}
 
$k_0\ = \ $  { 2 3% }
 
$k_0\ = \ $  { 2 3% }
 
$k_1\ = \ $ { -1.03--0.97 }
 
$k_1\ = \ $ { -1.03--0.97 }
  
{Wie groß sind die Ausgangswerte zu den Zeitpunkten &nbsp;$t = 2T$&nbsp; und &nbsp;$t = 3T$?
+
{What are the output values at time points &nbsp;$t = 2T$&nbsp; and &nbsp;$t = 3T$?
 
|type="{}"}
 
|type="{}"}
 
$g_2\ = \ $ { -0.515--0.485  }
 
$g_2\ = \ $ { -0.515--0.485  }
 
$g_3\ = \ $ { 0 3% }
 
$g_3\ = \ $ { 0 3% }
  
{Wie lauten die optimalen Koeffizienten für das Filter zweiter Ordnung &nbsp;$(N = 2)$?
+
{What are the optimal coefficients for the second order filter &nbsp;$(N = 2)$?
 
|type="{}"}
 
|type="{}"}
 
$k_0\ = \ $ { 3 3% }
 
$k_0\ = \ $ { 3 3% }
Line 52: Line 50:
 
$k_2\ = \ $ { 1 3% }
 
$k_2\ = \ $ { 1 3% }
  
{Wie groß sind die Ausgangswerte zu den Zeitpunkten &nbsp;$t = 3T$&nbsp; und &nbsp;$t = 4T$?
+
{What are the output values at time points &nbsp;$t = 3T$&nbsp; and &nbsp;$t = 4T$?
 
|type="{}"}
 
|type="{}"}
 
$g_3\ = \ $ { 0.5 3% }
 
$g_3\ = \ $ { 0.5 3% }
Line 58: Line 56:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der Eingangsimpuls $g_x(t)$ ist durch folgende Abtastwerte bei Vielfachen von $T$ gegeben:
+
'''(1)'''&nbsp; The input pulse&nbsp; $g_x(t)$&nbsp; is given by the following samples at multiples of&nbsp; $T$:
 
:$$g_x(t = 0) = 1,\hspace{0.2cm}g_x(t = \pm T) =
 
:$$g_x(t = 0) = 1,\hspace{0.2cm}g_x(t = \pm T) =
 
0.5,\hspace{0.2cm}g_x(t = \pm 2 T) = ... = 0
 
0.5,\hspace{0.2cm}g_x(t = \pm 2 T) = ... = 0
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Damit kann folgendes Gleichungssystem aufgestellt werden:
+
*Thus,&nbsp; the following system of equations can be set up:
 +
[[File:P_ID1433__Dig_A_3_6_b.png|right|frame|Output pulse for &nbsp;$N = 1$]]
 
:$$t = 0\hspace{-0.1cm}:\hspace{0.2cm}g_0 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} k_0 \cdot 1.0 + k_1 \cdot 2
 
:$$t = 0\hspace{-0.1cm}:\hspace{0.2cm}g_0 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} k_0 \cdot 1.0 + k_1 \cdot 2
 
\cdot  0.5 = 1\hspace{0.05cm},$$
 
\cdot  0.5 = 1\hspace{0.05cm},$$
 
:$$t = T\hspace{-0.1cm}:\hspace{0.2cm}g_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} k_0 \cdot 0.5 + k_1 \cdot 1.0 = 0
 
:$$t = T\hspace{-0.1cm}:\hspace{0.2cm}g_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} k_0 \cdot 0.5 + k_1 \cdot 1.0 = 0
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
[[File:P_ID1433__Dig_A_3_6_b.png|right|frame|Ausgangsimpuls für &nbsp;$N = 1$]]
+
*From these equations,&nbsp; it follows that&nbsp; $k_0 \ \underline {= \ 2}$&nbsp; and&nbsp; $k_1 \ \underline {= \ &ndash;1}$.
*Aus diesen Gleichungen folgt $k_0 \ \underline {= \ 2}$ und $k_1 \ \underline {= \ &ndash;1}$.
 
  
  
  
'''(2)'''&nbsp; Die Werte $g_0 = 1$&nbsp; und $g_1 = 0$&nbsp; wurden bereits der Optimierung zugrundegelegt und sind deshalb unbestritten.  
+
'''(2)'''&nbsp; The values&nbsp; $g_0 = 1$&nbsp; and&nbsp; $g_1 = 0$&nbsp; have already been used as a basis for the optimization and are therefore undisputed.
*Zum Zeitpunkt $t = 2T$ ergibt sich am Ausgang, wobei $k_{-1} = k_1 = -1$ zu berücksichtigen ist:
+
*At time&nbsp; $t = 2T$,&nbsp; the output results,&nbsp; where $k_{-1} = k_1 = -1$:
 
:$$g_2 = g_y(t =  2 T) = g_x(t =  T) \cdot k_{-1}\hspace{0.15cm}\underline { = -0.5 =
 
:$$g_2 = g_y(t =  2 T) = g_x(t =  T) \cdot k_{-1}\hspace{0.15cm}\underline { = -0.5 =
 
g_{-2}} \hspace{0.05cm}.$$
 
g_{-2}} \hspace{0.05cm}.$$
*Da alle Eingangswerte zu den Zeiten $2T$, $3T$ und $4T$ Null sind, ist $g_3 = g_y(t = 3T) \underline {= \ 0}$.  
+
*Since all input values are zero at times&nbsp; $2T$,&nbsp; $3T$&nbsp; and&nbsp; $4T$ &nbsp; &rArr; &nbsp; $g_3 = g_y(t = 3T) \underline {= \ 0}$.  
*Damit ergibt sich der Ausgangsimpuls $g_y(t)$ gemäß der Skizze.
+
*This gives the output pulse&nbsp; $g_y(t)$ as&nbsp; shown in the sketch.
  
  
[[File:P_ID1439__Dig_A_3_6_d.png|right|frame|Ausgangsimpuls für &nbsp;$N = 2$]]
+
'''(3)'''&nbsp; For a second order filter, the system of equations is:
'''(3)'''&nbsp; Bei einem Filter zweiter Ordnung lautet das Gleichungssystem:
 
 
:$$t = 2T\hspace{-0.1cm}:\hspace{0.2cm}g_2 = k_1 \cdot 0.5 + k_2 \cdot 1.0 = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} k_2 = - 0.5 \cdot k_1\hspace{0.05cm},$$
 
:$$t = 2T\hspace{-0.1cm}:\hspace{0.2cm}g_2 = k_1 \cdot 0.5 + k_2 \cdot 1.0 = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} k_2 = - 0.5 \cdot k_1\hspace{0.05cm},$$
 +
[[File:P_ID1439__Dig_A_3_6_d.png|right|frame|Output pulse for &nbsp;$N = 2$]]
 
:$$t = T\hspace{-0.1cm}:\hspace{0.2cm}g_1= k_0 \cdot 0.5 +k_1 \cdot 1.0 + k_2 \cdot 0.5 = 0\hspace{0.05cm},$$
 
:$$t = T\hspace{-0.1cm}:\hspace{0.2cm}g_1= k_0 \cdot 0.5 +k_1 \cdot 1.0 + k_2 \cdot 0.5 = 0\hspace{0.05cm},$$
 
:$$\hspace{1.6cm}\Rightarrow \hspace{0.3cm}
 
:$$\hspace{1.6cm}\Rightarrow \hspace{0.3cm}
Line 91: Line 89:
 
:$$t = 0\hspace{-0.1cm}:\hspace{0.2cm}g_0 = k_0 \cdot 1.0 + k_1 \cdot 0.5 + k_1 \cdot 0.5 = 1\hspace{0.05cm},$$
 
:$$t = 0\hspace{-0.1cm}:\hspace{0.2cm}g_0 = k_0 \cdot 1.0 + k_1 \cdot 0.5 + k_1 \cdot 0.5 = 1\hspace{0.05cm},$$
 
:$$\hspace{1.6cm}\Rightarrow \hspace{0.3cm} k_0 = 3 \hspace{0.05cm}.$$
 
:$$\hspace{1.6cm}\Rightarrow \hspace{0.3cm} k_0 = 3 \hspace{0.05cm}.$$
*Damit sind die optimalen Koeffizienten
+
*Thus,&nbsp; the optimal coefficients are
 
:$$k_0 \ \underline {=  \ 3},k_1 \ \underline {= \ &ndash;2},  k_2 \ \underline {=  \ 1}.$$
 
:$$k_0 \ \underline {=  \ 3},k_1 \ \underline {= \ &ndash;2},  k_2 \ \underline {=  \ 1}.$$
  
  
'''(4)'''&nbsp; Bei analoger Vorgehensweise wie in der Teilaufgabe '''(2)''' erhält man &nbsp;$g_4 \ \underline {= \ 0}$&nbsp; sowie
+
'''(4)'''&nbsp; Proceeding in the same way as in subtask&nbsp; '''(2)''',&nbsp; we obtain &nbsp;$g_4 \ \underline {= \ 0}$&nbsp; as well as
 
:$$g_3 = g_y(t =  3 T) = g_x(t =  T) \cdot k_{-2} = 0.5 \cdot 1
 
:$$g_3 = g_y(t =  3 T) = g_x(t =  T) \cdot k_{-2} = 0.5 \cdot 1
 
\hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
 
\hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
  
*Die beiden Grafiken zeigen allerdings auch, dass bei der hier vorliegenden Dreickform die optimale Nyquistentzerrung keine Verbesserung bringt.  
+
*However,&nbsp; the two graphs also show that for the triangular shape here,&nbsp; the optimal Nyquist equalization does not improve anything.&nbsp; The eye is&nbsp; "just closed"&nbsp; in all cases:
*Das Auge ist in allen Fällen gerade geschlossen:
 
 
:$$N = 0\hspace{-0.1cm}:\hspace{0.2cm}  \ddot{o}/2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} g_0 - 2 \cdot g_1 = 1- 2 \cdot 0.5 = 0  \hspace{0.05cm}, $$
 
:$$N = 0\hspace{-0.1cm}:\hspace{0.2cm}  \ddot{o}/2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} g_0 - 2 \cdot g_1 = 1- 2 \cdot 0.5 = 0  \hspace{0.05cm}, $$
 
:$$N = 1\hspace{-0.1cm}:\hspace{0.2cm}  \ddot{o}/2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  g_0 - 2 \cdot |g_2 | = 1- 2 \cdot 0.5 = 0  \hspace{0.05cm}, $$
 
:$$N = 1\hspace{-0.1cm}:\hspace{0.2cm}  \ddot{o}/2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  g_0 - 2 \cdot |g_2 | = 1- 2 \cdot 0.5 = 0  \hspace{0.05cm}, $$
Line 107: Line 104:
  
  
[[Category:Digital Signal Transmission: Exercises|^3.5 Lineare Nyquistentzerrung^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.5 Linear Nyquist Equalization^]]

Latest revision as of 16:41, 22 June 2022

Transversal filter of the
Optimal Nyquist Equalizer

At the input of the symmetric second order transversal filter  $(N = 2)$  shown in the diagram there is a triangular pulse  $($normalized to $1)$:

$$g_x(t) = \left\{ \begin{array}{c} 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{(2T)} \\ \\ 0 \\ \end{array} \right. \begin{array}{*{1}c} {\rm{for}}\\ \\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c}|\hspace{0.05cm}t\hspace{0.05cm}| \le 2\hspace{0.05cm}T, \\ \\ |\hspace{0.05cm}t\hspace{0.05cm}| \ge 2\hspace{0.05cm}T. \\ \end{array}$$

If all filter coefficients  $k_0$,  $k_1$  and  $k_2$  are nonzero,  then the following holds for the pulse at the output:

$$g_y(t) \ = k_0 \cdot g_x(t) + k_1 \cdot \big[ g_x(t-T)+ g_x(t+T) \big] + k_2 \cdot \big[ g_x(t-2T)+ g_x(t+2T) \big]\hspace{0.05cm}.$$

By appropriate choice of filter coefficients  $k_0$,  $k_1$  and  $k_2$,  the output pulse can satisfy the following conditions:

$$g_0 = g_y(t = 0) = 1,\hspace{0.2cm}g_1 = g_y(t = \pm T) = 0,\hspace{0.2cm}g_2 = g_y(t = \pm 2 T) = 0 \hspace{0.05cm}.$$
  • A first order filter  $(N = 1)$  is obtained from the above arrangement and equation by setting the coefficient  $k_2 = 0$. 
  • Then,  by appropriate choice of  $k_0$  and  $k_1$,   $g_0 = 1$  and  $g_1 = 0$  can be obtained. However,  in this case,  always will be  $g_2 ≠ 0$. 



Note:  The exercise belongs to the chapter  "Linear Nyquist Equalization".


Questions

1

What are the optimal coefficients for the first order filter   ⇒   $k_2 = 0$?

$k_0\ = \ $

$k_1\ = \ $

2

What are the output values at time points  $t = 2T$  and  $t = 3T$?

$g_2\ = \ $

$g_3\ = \ $

3

What are the optimal coefficients for the second order filter  $(N = 2)$?

$k_0\ = \ $

$k_1\ = \ $

$k_2\ = \ $

4

What are the output values at time points  $t = 3T$  and  $t = 4T$?

$g_3\ = \ $

$g_4\ = \ $


Solution

(1)  The input pulse  $g_x(t)$  is given by the following samples at multiples of  $T$:

$$g_x(t = 0) = 1,\hspace{0.2cm}g_x(t = \pm T) = 0.5,\hspace{0.2cm}g_x(t = \pm 2 T) = ... = 0 \hspace{0.05cm}.$$
  • Thus,  the following system of equations can be set up:
Output pulse for  $N = 1$
$$t = 0\hspace{-0.1cm}:\hspace{0.2cm}g_0 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} k_0 \cdot 1.0 + k_1 \cdot 2 \cdot 0.5 = 1\hspace{0.05cm},$$
$$t = T\hspace{-0.1cm}:\hspace{0.2cm}g_1 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} k_0 \cdot 0.5 + k_1 \cdot 1.0 = 0 \hspace{0.05cm}.$$
  • From these equations,  it follows that  $k_0 \ \underline {= \ 2}$  and  $k_1 \ \underline {= \ –1}$.


(2)  The values  $g_0 = 1$  and  $g_1 = 0$  have already been used as a basis for the optimization and are therefore undisputed.

  • At time  $t = 2T$,  the output results,  where $k_{-1} = k_1 = -1$:
$$g_2 = g_y(t = 2 T) = g_x(t = T) \cdot k_{-1}\hspace{0.15cm}\underline { = -0.5 = g_{-2}} \hspace{0.05cm}.$$
  • Since all input values are zero at times  $2T$,  $3T$  and  $4T$   ⇒   $g_3 = g_y(t = 3T) \underline {= \ 0}$.
  • This gives the output pulse  $g_y(t)$ as  shown in the sketch.


(3)  For a second order filter, the system of equations is:

$$t = 2T\hspace{-0.1cm}:\hspace{0.2cm}g_2 = k_1 \cdot 0.5 + k_2 \cdot 1.0 = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} k_2 = - 0.5 \cdot k_1\hspace{0.05cm},$$
Output pulse for  $N = 2$
$$t = T\hspace{-0.1cm}:\hspace{0.2cm}g_1= k_0 \cdot 0.5 +k_1 \cdot 1.0 + k_2 \cdot 0.5 = 0\hspace{0.05cm},$$
$$\hspace{1.6cm}\Rightarrow \hspace{0.3cm} k_1 = - {2}/{3} \cdot k_0\hspace{0.05cm},$$
$$t = 0\hspace{-0.1cm}:\hspace{0.2cm}g_0 = k_0 \cdot 1.0 + k_1 \cdot 0.5 + k_1 \cdot 0.5 = 1\hspace{0.05cm},$$
$$\hspace{1.6cm}\Rightarrow \hspace{0.3cm} k_0 = 3 \hspace{0.05cm}.$$
  • Thus,  the optimal coefficients are
$$k_0 \ \underline {= \ 3},k_1 \ \underline {= \ –2}, k_2 \ \underline {= \ 1}.$$


(4)  Proceeding in the same way as in subtask  (2),  we obtain  $g_4 \ \underline {= \ 0}$  as well as

$$g_3 = g_y(t = 3 T) = g_x(t = T) \cdot k_{-2} = 0.5 \cdot 1 \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
  • However,  the two graphs also show that for the triangular shape here,  the optimal Nyquist equalization does not improve anything.  The eye is  "just closed"  in all cases:
$$N = 0\hspace{-0.1cm}:\hspace{0.2cm} \ddot{o}/2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} g_0 - 2 \cdot g_1 = 1- 2 \cdot 0.5 = 0 \hspace{0.05cm}, $$
$$N = 1\hspace{-0.1cm}:\hspace{0.2cm} \ddot{o}/2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} g_0 - 2 \cdot |g_2 | = 1- 2 \cdot 0.5 = 0 \hspace{0.05cm}, $$
$$N = 2\hspace{-0.1cm}:\hspace{0.2cm} \ddot{o}/2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} g_0 - 2 \cdot g_3 = 1- 2 \cdot 0.5 = 0 \hspace{0.05cm}.$$