Difference between revisions of "Aufgaben:Exercise 3.7: Bit Error Rate (BER)"

From LNTwww
Line 16: Line 16:
 
$\rm (A)$  The most important evaluation criterion of such a digital system is
 
$\rm (A)$  The most important evaluation criterion of such a digital system is
 
:the  '''Bit Error Probability''' .
 
:the  '''Bit Error Probability''' .
:*Mit dem Erwartungswert  ${\rm E}\big[\text{ ...} \big]$  ist diese ist wie folgt definiert:
+
:*With the expected value  ${\rm E}\big[\text{ ...} \big]$  this is defined as follows:
 
:: $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$
 
:: $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$
  
:*Der rechte Teil dieser Gleichung beschreibt eine Zeitmittelung; diese muss zum Beispiel bei zeitvarianten Kanälen stets angewandt werden.  
+
:*The right part of this equation describes a time averaging; this must always be applied, for example, to time-varying channels.  
:*Ist die Fehlerwahrscheinlichkeit für alle Symbole gleich (was hier vorausgesetzt wird), so kann man die obige Gleichung vereinfachen:
+
:*If the error probability is the same for all symbols (which is assumed here), the above equation can be simplified:
 
::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
 
::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
  
:Die Bitfehlerwahrscheinlichkeit ist eine ''A-priori-Kenngröße'', erlaubt also eine Vorhersage für das zu erwartende Resultat.  
+
:The bit error probability is an ''a priori parameter'', so it allows a prediction for the expected result.  
  
  
$\rm (B)$  Dagegen muss zur messtechnischen Ermittlung der Übertragungsqualität oder bei der Systemsimulation auf
+
$\rm (B)$  On the other hand, for the metrological determination of the transmission quality or for the system simulation, it is necessary to rely on
 
+
:the comparable ''A-posteriori parameter''  '''Bit error rate'''  must be ignored.
:die vergleichbare ''A-posteriori-Kenngröße''&nbsp; '''Bitfehlerquote'''&nbsp; (englisch: &nbsp; <i>Bit Error Rate</i>)&nbsp; übergegangen werden:
 
 
::$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
 
::$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
  
:*$h_{\rm B}$&nbsp; is a&nbsp; [[Digital_Signal_Transmission/Error_Probability_in_Baseband_Transmission#Definition_of_Bit_Error_Ratio|relative H&auml;ufigkeit]].&nbsp; $n_{\rm B}$&nbsp; indicates the number of bit errors occurred when a total of&nbsp; $N$&nbsp; symbols (bits) &uuml;btransmitted.
+
:*$h_{\rm B}$&nbsp; is a&nbsp; [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Definition_der_Bitfehlerquote|relative frequency]].&nbsp; $n_{\rm B}$&nbsp; indicates the number of bit errors occurred when a total of&nbsp; $N$&nbsp; symbols (bits) transmitted.
  
 
:*In the limiting case&nbsp; $N \to \infty$&nbsp; the relative frequency&nbsp; $h_{\rm B}$&nbsp; coincides with the probability&nbsp; $p_{\rm B}$&nbsp;.  
 
:*In the limiting case&nbsp; $N \to \infty$&nbsp; the relative frequency&nbsp; $h_{\rm B}$&nbsp; coincides with the probability&nbsp; $p_{\rm B}$&nbsp;.  
Line 44: Line 43:
  
  
''Hinweise:''
+
Hints:  
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgröße|Gaußverteilte Zufallsgrößen]].
+
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables|Gaussian random variables]].
 
   
 
   
*L&ouml;sen Sie die Aufgaben so weit wie m&ouml;glich allgemein.  
+
*Read the exercises as far as possible in general.  
*Verwenden Sie zur Kontrolleingabe die Parameterwerte&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; und&nbsp; $N = 10^{5}$.  
+
*Use the parameter values&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $N = 10^{5}$ for control input.  
*Nachfolgend finden Sie einige Werte der sogenannten Q-Funktion:
+
*The following are some values of the so-called Q-function:
 
:$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$  
 
:$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$  
  
Line 56: Line 55:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Für&nbsp; $n_{\rm B}$&nbsp; sind alle Werte&nbsp; $(0$, ... , $N)$&nbsp; gleichwahrscheinlich.
+
- For&nbsp; $n_{\rm B}$&nbsp; all values&nbsp; $(0$, ... , $N)$&nbsp; are equally likely.
+ Die Zufallsgr&ouml;&szlig;e&nbsp; $n_{\rm B}$&nbsp; ist binomialverteilt.
+
+ The random variable&nbsp; $n_{\rm B}$&nbsp; is binomially distributed.
+ Mit&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; und&nbsp; $N = 10^{5}$&nbsp; ergibt sich&nbsp; ${\rm E}\big[n_{\rm B}\big] = 100$.
+
+ With&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $N = 10^{5}$&nbsp; we get&nbsp; ${\rm E}\big[n_{\rm B}\big] = 100$.
  
  
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e&nbsp; $n_{\rm B}$&nbsp; für&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; und&nbsp; $N = 10^{5}$?
+
{How large; is the dispersion of the random variable&nbsp; $n_{\rm B}$&nbsp; for&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $N = 10^{5}$?
 
|type="{}"}
 
|type="{}"}
$\sigma_{n{\rm B}} \ = \ $ { 10 3% }  
+
$\sigma_{n{\rm B}} \ = \ $ { 10 3% }  
  
  
{Welche Werte kann die Bitfehlerquote&nbsp; $h_{\rm B}$&nbsp; annehmen?&nbsp; <br>Zeigen Sie, dass der lineare Mittelwert&nbsp; $m_{h{\rm B}}$&nbsp; dieser Zufallsgröße gleich der tats&auml;chlichen Bitfehlerwahrscheinlichkeit&nbsp; $p_{\rm B}$&nbsp; ist.&nbsp; Wie gro&szlig; ist deren Streuung?
+
{What values can the bit error rate&nbsp; $h_{\rm B}$&nbsp; take?&nbsp; <br>Show that the linear mean&nbsp; $m_{h{\rm B}}$&nbsp; of this random variable is equal to the actual bit error probability&nbsp; $p_{\rm B}$&nbsp; What is its dispersion?
 
|type="{}"}
 
|type="{}"}
$\sigma_{h{\rm B}} \ = \ $ { 0.0001 3% }  
+
$\sigma_{h{\rm B}} \ = \ $ { 0.0001 3% }  
  
  
{Unter gewissen Voraussetzungen kann eine binomialverteilte Zufallsgr&ouml;&szlig;e durch eine Gau&szlig;verteilung mit gleichem Mittelwert&nbsp; $(m_{h{\rm B}})$&nbsp; und gleicher Streuung&nbsp; $(\sigma_{h{\rm B}})$&nbsp; angen&auml;hert werden.&nbsp; Welche Aussage ist zutreffend?
+
{Under certain conditions, a binomially distributed random variable can be approximated by a Gaussian distribution with equal mean&nbsp; $(m_{h{\rm B}})$&nbsp; and equal dispersion&nbsp; $(\sigma_{h{\rm B}})$&nbsp; Which statement is true?
 
|type="()"}
 
|type="()"}
+ ${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{{\it h}{\rm B}}}).$
+
+ ${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{\it h}{\rm B}}).$
- ${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- \rm Q({\varepsilon}/{2\cdot \sigma_{{\it h}{\rm B}}}).$
+
- ${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- \rm Q({\varepsilon}/{2\cdot \sigma_{\it h}{\rm B}}).$
  
  
  
{Zur Abk&uuml;rzung verwenden wir das Konfidenzniveau&nbsp; $p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)$.&nbsp; Welches&nbsp;   $p_\varepsilon$&nbsp; ergibt sich mit&nbsp; $\varepsilon = 10^{-4}$,&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; und&nbsp; $N = 10^{5}$&nbsp;?
+
{For abbreviation, we use the confidence level&nbsp; $p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)$. &nbsp; Which&nbsp; $p_\varepsilon$&nbsp; results with&nbsp; $\varepsilon = 10^{-4}$,&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $N = 10^{5}$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$p_\varepsilon \ = \ $ { 0.684 3% }
+
$p_\varepsilon \ = \ $ { 0.684 3% }
  
  
{Das Argument der Q-Funktion sei&nbsp; $\alpha$.&nbsp; Wie gro&szlig; muss&nbsp; $\alpha$&nbsp; mindestens gew&auml;hlt werden, damit das Konfidenzniveau&nbsp; $p_\varepsilon = 95\%$&nbsp; betr&auml;gt&nbsp;?
+
{Let the argument of the Q-function be&nbsp; $\alpha$.&nbsp; What is the minimum &nbsp; $\alpha$&nbsp; that must be chosen for the confidence level&nbsp; $p_\varepsilon = 95\%$&nbsp; to be&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\alpha_{\rm min} \ = \ $ { 1.96 3% }
+
$\alpha_{\rm min} \ = \ $ { 1.96 3% }
  
  
{Es gelte weiterhin&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; und&nbsp; $p_\varepsilon = 95\%$. &nbsp; &Uuml;ber wie viele Symbole&nbsp; $(N_\text{min})$&nbsp; muss mindestens gemittelt werden, <br>damit die ermittelte Bitfehlerquote im Bereich zwischen&nbsp; $0.9 \cdot 10^{-3}$&nbsp; und&nbsp; $1.1 \cdot 10^{-3}$&nbsp; liegt &nbsp; $(\varepsilon = 10^{-4}, \ \text{10% vom Sollwert)}$&nbsp;?
+
{It still holds&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; and&nbsp; $p_\varepsilon = 95\%$. &nbsp; &Uuml;over how many symbols&nbsp; $(N_\text{min})$&nbsp; must be averaged at least, <br>so that the determined bit error rate in the range between&nbsp; $0. 9 \cdot 10^{-3}$&nbsp; and&nbsp; $1.1 \cdot 10^{-3}$&nbsp; lies &nbsp; $(\varepsilon = 10^{-4}, \ \text{10% of nominal value)}$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$N_\text{min} \ = \ ${ 400000 3% }
+
$N_\text{min} \ = \ ${ 400000 3% }
  
  
Line 101: Line 100:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die <u>beiden letzten Aussagen</u> stimmen:  
+
'''(1)'''&nbsp; The <u>last two statements</u> are true:  
*Bez&uuml;glich der Zufallsgr&ouml;&szlig;e&nbsp; $n_{\rm B}$&nbsp; liegt der klassische Fall einer Binomialverteilung vor.  
+
*Relative to the random variable&nbsp; $n_{\rm B}$&nbsp; there is the classical case of a binomial distribution.  
*Es wird die Summe &uuml;ber&nbsp; $N$&nbsp; bin&auml;re Zufallsgr&ouml;&szlig;en gebildet.  
+
*The sum over&nbsp; $N$&nbsp; binary random variables is formed.  
*Die m&ouml;glichen Werte von&nbsp; $n_{\rm B}$&nbsp; liegen somit zwischen&nbsp; $0$&nbsp; und&nbsp; $N$.  
+
*The possible values of&nbsp; $n_{\rm B}$&nbsp; thus lie between&nbsp; $0$&nbsp; and&nbsp; $N$.  
*Der lineare Mittelwert ergibt &nbsp; $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$
+
*The linear mean gives &nbsp; $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$
  
  
  
'''(2)'''&nbsp; F&uuml;r die Streuung der Binomialverteilung gilt mit guter Näherung:
+
'''(2)'''&nbsp; Für the rms of the binomial distribution holds with good approximation:
 
:$$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}
 
:$$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}
 
\hspace{0.15cm}\underline{\approx 10}.$$
 
\hspace{0.15cm}\underline{\approx 10}.$$
Line 117: Line 116:
  
  
'''(3)'''&nbsp; M&ouml;gliche Werte von&nbsp; $h_{\rm B}$&nbsp; sind alle ganzzahligen Vielfachen von&nbsp; $1/N$.&nbsp; Diese liegen alle zwischen&nbsp; $0$&nbsp; und&nbsp; $1$.  
+
'''(3)'''&nbsp; Possible values of&nbsp; $h_{\rm B}$&nbsp; are all integer multiples of&nbsp; $1/N$.&nbsp; These all lie between&nbsp; $0$&nbsp; and&nbsp; $1$.  
  
*F&uuml;r den Mittelwert erh&auml;lt man:
+
*For the mean value, one obtains:
 
:$$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$
 
:$$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$
  
*Die Streuung ergibt sich zu
+
*The scatter results in
:$$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.$$
+
:$$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.$$
  
  
'''(4)'''&nbsp; Richtig ist <u>der erste Vorschlag</u>. Es gilt:
+
'''(4)'''&nbsp; Correct is <u>the first proposition</u>. It holds:
:$${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}}),$$
+
:$${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}),$$
:$$\rm Pr(\it h_{\rm B} < p_{\rm B} - \varepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}}{\rm )}$$
+
:$$\rm Pr(\it h_{\rm B} < p_{\rm B} - \itvarepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}{\rm )}$$
:$$\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}}).$$
+
:$$\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}).$$
  
  
  
'''(5)'''&nbsp; Man erh&auml;lt mit den Zahlenwerten&nbsp; $\varepsilon = \sigma_{h{\rm B}} = 10^{-4}$:
+
'''(5)'''&nbsp; One obtains with the numerical values&nbsp; $\varepsilon = \sigma_{h{\rm B}} = 10^{-4}$:
 
:$$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$
 
:$$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$
  
In Worten:  
+
In words:  
*Bestimmt man die Bitfehlerquote per Simulation &uuml;ber&nbsp; $10^5$&nbsp; Symbole,  
+
*If one determines the bit error rate by simulation over&nbsp; $10^5$&nbsp; symbols,  
*so erh&auml;lt man mit einem Konfidenzniveau von&nbsp; $\underline{68.4\%}$&nbsp; einen Wert zwischen&nbsp; $0.9 \cdot 10^{-3}$&nbsp; und&nbsp; $1.1 \cdot 10^{-3}$,  
+
*with a confidence level of&nbsp; $\underline{68.4\%}$&nbsp; one obtains a value between&nbsp; $0.9 \cdot 10^{-3}$&nbsp; and&nbsp; $1.1 \cdot 10^{-3}$,  
*wenn&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; ist.
+
*if&nbsp; $p_{\rm B} = 10^{-3}$&nbsp; is.
  
  
  
'''(6)'''&nbsp; Aus der Beziehung&nbsp; $p_{\varepsilon}=\rm 1-\rm 2\cdot {\rm Q}(\alpha) = 0.95$&nbsp; folgt direkt:
+
'''(6)'''&nbsp; From the relation&nbsp; $p_{\varepsilon}=\rm 1-\rm 2\cdot {\rm Q}(\alpha) = 0.95$&nbsp; it follows directly:
 
:$$\alpha_{\rm min}=\rm Q^{\rm -1}\Big(\frac{\rm 1-\it p_{\varepsilon}}{\rm 2}\Big)=\rm Q^{\rm -1}(\rm 0.025)\hspace{0.15cm}\underline{=\rm 1.96}\hspace{0.15cm}{\approx\rm 2}.$$
 
:$$\alpha_{\rm min}=\rm Q^{\rm -1}\Big(\frac{\rm 1-\it p_{\varepsilon}}{\rm 2}\Big)=\rm Q^{\rm -1}(\rm 0.025)\hspace{0.15cm}\underline{=\rm 1.96}\hspace{0.15cm}{\approx\rm 2}.$$
  
  
  
'''(7)'''&nbsp; Es muss&nbsp; $\alpha = \varepsilon/\sigma_{h{\rm B}}$&nbsp; gelten.&nbsp; Mit dem Ergebnis der Teilaufgabe&nbsp; '''(2)'''&nbsp; folgt dann:
+
'''(7)'''&nbsp; It must&nbsp; $\alpha = \varepsilon/\sigma_{h{\rm B}}$&nbsp; With the result of the subtask&nbsp; '''(2)'''&nbsp; then follows:
 
:$$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm}
 
:$$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm}
 
N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.$$
 
N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.$$

Revision as of 22:36, 3 January 2022

To illustrate the bit error rate

We consider a binary transmission system with.

  • the source symbol sequence  $\langle q_\nu \rangle $  and
  • the sink symbol sequence  $\langle v_\nu \rangle $.


If sink symbol  $v_\nu$  and source symbol  $q_\nu$  do not match, there is a bit error   ⇒   $e_\nu = 1$.


Otherwise  $e_\nu = 0$ holds.


$\rm (A)$  The most important evaluation criterion of such a digital system is

the  Bit Error Probability .
  • With the expected value  ${\rm E}\big[\text{ ...} \big]$  this is defined as follows:
$$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$
  • The right part of this equation describes a time averaging; this must always be applied, for example, to time-varying channels.
  • If the error probability is the same for all symbols (which is assumed here), the above equation can be simplified:
$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
The bit error probability is an a priori parameter, so it allows a prediction for the expected result.


$\rm (B)$  On the other hand, for the metrological determination of the transmission quality or for the system simulation, it is necessary to rely on

the comparable A-posteriori parameter  Bit error rate  must be ignored.
$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
  • $h_{\rm B}$  is a  relative frequency.  $n_{\rm B}$  indicates the number of bit errors occurred when a total of  $N$  symbols (bits) transmitted.
  • In the limiting case  $N \to \infty$  the relative frequency  $h_{\rm B}$  coincides with the probability  $p_{\rm B}$ .
  • Here now the question shall be clarified, which statistical uncertainty has to be expected with finite  $N$ .





Hints:

  • Read the exercises as far as possible in general.
  • Use the parameter values  $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$ for control input.
  • The following are some values of the so-called Q-function:
$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$



Questions

1

Which of the following statements are true?

For  $n_{\rm B}$  all values  $(0$, ... , $N)$  are equally likely.
The random variable  $n_{\rm B}$  is binomially distributed.
With  $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$  we get  ${\rm E}\big[n_{\rm B}\big] = 100$.

2

How large; is the dispersion of the random variable  $n_{\rm B}$  for  $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$?

$\sigma_{n{\rm B}} \ = \ $

3

What values can the bit error rate  $h_{\rm B}$  take? 
Show that the linear mean  $m_{h{\rm B}}$  of this random variable is equal to the actual bit error probability  $p_{\rm B}$  What is its dispersion?

$\sigma_{h{\rm B}} \ = \ $

4

Under certain conditions, a binomially distributed random variable can be approximated by a Gaussian distribution with equal mean  $(m_{h{\rm B}})$  and equal dispersion  $(\sigma_{h{\rm B}})$  Which statement is true?

${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{\it h}{\rm B}}).$
${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- \rm Q({\varepsilon}/{2\cdot \sigma_{\it h}{\rm B}}).$

5

For abbreviation, we use the confidence level  $p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)$.   Which  $p_\varepsilon$  results with  $\varepsilon = 10^{-4}$,  $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$ ?

$p_\varepsilon \ = \ $

6

Let the argument of the Q-function be  $\alpha$.  What is the minimum   $\alpha$  that must be chosen for the confidence level  $p_\varepsilon = 95\%$  to be ?

$\alpha_{\rm min} \ = \ $

7

It still holds  $p_{\rm B} = 10^{-3}$  and  $p_\varepsilon = 95\%$.   Üover how many symbols  $(N_\text{min})$  must be averaged at least,
so that the determined bit error rate in the range between  $0. 9 \cdot 10^{-3}$  and  $1.1 \cdot 10^{-3}$  lies   $(\varepsilon = 10^{-4}, \ \text{10% of nominal value)}$ ?

$N_\text{min} \ = \ $


Solution

(1)  The last two statements are true:

  • Relative to the random variable  $n_{\rm B}$  there is the classical case of a binomial distribution.
  • The sum over  $N$  binary random variables is formed.
  • The possible values of  $n_{\rm B}$  thus lie between  $0$  and  $N$.
  • The linear mean gives   $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$


(2)  Für the rms of the binomial distribution holds with good approximation:

$$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}} \hspace{0.15cm}\underline{\approx 10}.$$


(3)  Possible values of  $h_{\rm B}$  are all integer multiples of  $1/N$.  These all lie between  $0$  and  $1$.

  • For the mean value, one obtains:
$$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$
  • The scatter results in
$$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.$$


(4)  Correct is the first proposition. It holds:

$${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}),$$
$$\rm Pr(\it h_{\rm B} < p_{\rm B} - \itvarepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}{\rm )}$$
$$\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}).$$


(5)  One obtains with the numerical values  $\varepsilon = \sigma_{h{\rm B}} = 10^{-4}$:

$$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$

In words:

  • If one determines the bit error rate by simulation over  $10^5$  symbols,
  • with a confidence level of  $\underline{68.4\%}$  one obtains a value between  $0.9 \cdot 10^{-3}$  and  $1.1 \cdot 10^{-3}$,
  • if  $p_{\rm B} = 10^{-3}$  is.


(6)  From the relation  $p_{\varepsilon}=\rm 1-\rm 2\cdot {\rm Q}(\alpha) = 0.95$  it follows directly:

$$\alpha_{\rm min}=\rm Q^{\rm -1}\Big(\frac{\rm 1-\it p_{\varepsilon}}{\rm 2}\Big)=\rm Q^{\rm -1}(\rm 0.025)\hspace{0.15cm}\underline{=\rm 1.96}\hspace{0.15cm}{\approx\rm 2}.$$


(7)  It must  $\alpha = \varepsilon/\sigma_{h{\rm B}}$  With the result of the subtask  (2)  then follows:

$$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.$$