Difference between revisions of "Aufgaben:Exercise 3.7: Bit Error Rate (BER)"

From LNTwww
Line 4: Line 4:
  
 
[[File:EN_Sto_A_3_7.png|right|frame|To illustrate the bit error rate]]
 
[[File:EN_Sto_A_3_7.png|right|frame|To illustrate the bit error rate]]
We consider a binary transmission system with.
+
We consider a binary transmission system with
  
*the source symbol sequence  $\langle q_\nu \rangle $  and
+
*the source symbol sequence  $\langle q_\nu \rangle $,  and
 
*the sink symbol sequence  $\langle v_\nu \rangle $.
 
*the sink symbol sequence  $\langle v_\nu \rangle $.
  
  
If sink symbol  $v_\nu$  and source symbol  $q_\nu$  do not match, there is a bit error   ⇒   $e_\nu = 1$.  
+
If the sink symbol  $v_\nu$  and source symbol  $q_\nu$  do not match,  there is a  "bit error"   ⇒   $e_\nu = 1$.  Otherwise  $e_\nu = 0$  holds.
<br>Otherwise&nbsp; $e_\nu = 0$ holds.
 
  
  
$\rm (A)$&nbsp; The most important evaluation criterion of such a digital system is
+
$\rm (A)$&nbsp; The most important evaluation criterion of such a digital system is the&nbsp; '''Bit Error Probability''':
:the&nbsp; '''Bit Error Probability'''&nbsp;.
 
 
:*With the expected value&nbsp; ${\rm E}\big[\text{ ...} \big]$&nbsp; this is defined as follows:
 
:*With the expected value&nbsp; ${\rm E}\big[\text{ ...} \big]$&nbsp; this is defined as follows:
 
:: $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$
 
:: $$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$
  
:*The right part of this equation describes a time averaging;&nbsp;this must always be applied, for example, to time-varying channels.  
+
:*The right part of this equation describes a time averaging;&nbsp;this must always be applied to time-varying channels.  
:*If the error probability is the same for all symbols (which is assumed here), the above equation can be simplified:
+
:*If the error probability is the same for all symbols&nbsp; (which is assumed here),&nbsp; the above equation can be simplified:
 
::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
 
::$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
 +
:*The bit error probability is an&nbsp; "a priori parameter",&nbsp; so it allows a prediction for the expected result.
  
:The bit error probability is an ''a priori parameter'', so it allows a prediction for the expected result.
 
  
 
+
$\rm (B)$&nbsp; For the metrological determination of the transmission quality or for a system simulation,&nbsp; it is necessary to rely on the&nbsp; '''Bit Error Rate'''&nbsp; $\rm (BER)$:
$\rm (B)$&nbsp; On the other hand, for the metrological determination of the transmission quality or for the system simulation, it is necessary to rely on
 
:the comparable ''A-posteriori parameter''&nbsp; '''Bit Error Rate'''&nbsp; must be ignored.
 
 
::$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
 
::$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
  
Line 34: Line 30:
 
:*In the limiting case&nbsp; $N \to \infty$&nbsp; the relative frequency&nbsp; $h_{\rm B}$&nbsp; coincides with the probability&nbsp; $p_{\rm B}$&nbsp;.  
 
:*In the limiting case&nbsp; $N \to \infty$&nbsp; the relative frequency&nbsp; $h_{\rm B}$&nbsp; coincides with the probability&nbsp; $p_{\rm B}$&nbsp;.  
 
:*Here now the question shall be clarified, which statistical uncertainty has to be expected with finite&nbsp; $N$&nbsp;.
 
:*Here now the question shall be clarified, which statistical uncertainty has to be expected with finite&nbsp; $N$&nbsp;.
 +
:it is necessary to rely on the comparable ''A-posteriori parameter''&nbsp; '''Bit Error Rate'''&nbsp; must be ignored.
  
  

Revision as of 17:46, 1 February 2022

To illustrate the bit error rate

We consider a binary transmission system with

  • the source symbol sequence  $\langle q_\nu \rangle $,  and
  • the sink symbol sequence  $\langle v_\nu \rangle $.


If the sink symbol  $v_\nu$  and source symbol  $q_\nu$  do not match,  there is a  "bit error"   ⇒   $e_\nu = 1$.  Otherwise  $e_\nu = 0$  holds.


$\rm (A)$  The most important evaluation criterion of such a digital system is the  Bit Error Probability:

  • With the expected value  ${\rm E}\big[\text{ ...} \big]$  this is defined as follows:
$$\it p_{\rm B} = \rm E\big[\rm Pr(\it v_{\nu} \ne q_{\nu} \rm )\big]=\rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\lim_{{\it N}\to\infty}\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm Pr(\it e_{\nu}=\rm 1). $$
  • The right part of this equation describes a time averaging; this must always be applied to time-varying channels.
  • If the error probability is the same for all symbols  (which is assumed here),  the above equation can be simplified:
$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]=\rm E\big[\it e_{\nu} \rm \big].$$
  • The bit error probability is an  "a priori parameter",  so it allows a prediction for the expected result.


$\rm (B)$  For the metrological determination of the transmission quality or for a system simulation,  it is necessary to rely on the  Bit Error Rate  $\rm (BER)$:

$$h_{\rm B}=\frac{n_{\rm B}}{N}=\frac{\rm 1}{\it N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu}.$$
  • $h_{\rm B}$  is a  relative frequency.  $n_{\rm B}$  indicates the number of bit errors occurred when a total of  $N$  symbols (bits) transmitted.
  • In the limiting case  $N \to \infty$  the relative frequency  $h_{\rm B}$  coincides with the probability  $p_{\rm B}$ .
  • Here now the question shall be clarified, which statistical uncertainty has to be expected with finite  $N$ .
it is necessary to rely on the comparable A-posteriori parameter  Bit Error Rate  must be ignored.





Hints:

  • Read the exercises as far as possible in general.
  • Use the parameter values  $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$ for control input.
  • The following are some values of the so-called Q-function:
$$\rm Q(\rm 1.00)=\rm 0.159,\hspace{0.5cm}\rm Q(\rm 1.65)=\rm 0.050,\hspace{0.5cm}\rm Q(\rm 1.96)=\rm 0.025,\hspace{0.5cm}\rm Q(\rm 2.59)=\rm 0.005.$$



Questions

1

Which of the following statements are true?

For  $n_{\rm B}$  all values  $(0$, ... , $N)$  are equally likely.
The random variable  $n_{\rm B}$  is binomially distributed.
With  $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$  we get  ${\rm E}\big[n_{\rm B}\big] = 100$.

2

How large; is the rms of the random variable  $n_{\rm B}$  for  $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$?

$\sigma_{n{\rm B}} \ = \ $

3

What values can the bit error rate  $h_{\rm B}$  take? 
Show that the linear mean  $m_{h{\rm B}}$  of this random variable is equal to the actual bit error probability  $p_{\rm B}$  What is its dispersion?

$\sigma_{h{\rm B}} \ = \ $

4

Under certain conditions, a binomially distributed random variable can be approximated by a Gaussian distribution with equal mean  $(m_{h{\rm B}})$  and equal dispersion  $(\sigma_{h{\rm B}})$  Which statement is true?

${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- 2\cdot \rm Q({\varepsilon}/{\sigma_{\it h}{\rm B}}).$
${\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)=1- \rm Q({\varepsilon}/{2\cdot \sigma_{\it h}{\rm B}}).$

5

For abbreviation, we use the confidence level  $p_\varepsilon = {\rm Pr}(\hspace{0.05cm}|\hspace{0.05cm}h_{\rm B} - p_{\rm B}\hspace{0.05cm}| \le \varepsilon)$.   Which  $p_\varepsilon$  results with  $\varepsilon = 10^{-4}$,  $p_{\rm B} = 10^{-3}$  and  $N = 10^{5}$ ?

$p_\varepsilon \ = \ $

6

Let the argument of the Q-function be  $\alpha$.  What is the minimum   $\alpha$  that must be chosen for the confidence level  $p_\varepsilon = 95\%$  to be ?

$\alpha_{\rm min} \ = \ $

7

It still holds  $p_{\rm B} = 10^{-3}$  and  $p_\varepsilon = 95\%$.   Over how many symbols  $(N_\text{min})$  must be averaged at least,
so that the determined bit error rate in the range between  $0. 9 \cdot 10^{-3}$  and  $1.1 \cdot 10^{-3}$  lies   $(\varepsilon = 10^{-4}, \ \text{10% of nominal value)}$ ?

$N_\text{min} \ = \ $


Solution

(1)  The last two statements are true:

  • Relative to the random variable  $n_{\rm B}$  there is the classical case of a binomial distribution.
  • The sum over  $N$  binary random variables is formed.
  • The possible values of  $n_{\rm B}$  thus lie between  $0$  and  $N$.
  • The linear mean gives   $m_{n{\rm B}}=p_{\rm B}\cdot N=\rm 10^{-3}\cdot 10^{5}=\rm 100.$


(2)  Für the rms of the binomial distribution holds with good approximation:

$$\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}} \hspace{0.15cm}\underline{\approx 10}.$$


(3)  Possible values of  $h_{\rm B}$  are all integer multiples of  $1/N$.  These all lie between  $0$  and  $1$.

  • For the mean value, one obtains:
$$m_{h{\rm B}}=m_{n{\rm B}}/N=p_{\rm B} = 10^{-3}.$$
  • The rms results in
$$\sigma_{h{\rm B}}=\frac{\sigma_{n{\rm B}}}{N}=\sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B}{\rm )}}{N}}\hspace{0.15cm}\underline{\approx \rm 0.0001}.$$


(4)  Correct is the first proposition. It holds:

$${\rm Pr}(h_{\rm B} > p_{\rm B} + \varepsilon)=\rm Q({\it\varepsilon}/{\it\sigma_{h{\rm B}}}),$$
$$\rm Pr(\it h_{\rm B} < p_{\rm B} - \varepsilon {\rm )}=\rm Q(\it{\varepsilon}/{\sigma_{h{\rm B}}}{\rm )}$$
$$\Rightarrow \hspace{0.5cm}\rm Pr(\it |h_{\rm B} - p_{\rm B}| \le \varepsilon \rm )=\rm 1-\rm 2\cdot \rm Q({\it \varepsilon}/{\it \sigma_{h{\rm B}}}).$$



(5)  One obtains with the numerical values  $\varepsilon = \sigma_{h{\rm B}} = 10^{-4}$:

$$p_{\varepsilon}=\rm 1-\rm 2\cdot \rm Q(\frac{\rm 10^{\rm -4}}{\rm 10^{\rm -4}} {\rm )}=\rm 1-\rm 2\cdot\rm Q(\rm 1)\hspace{0.15cm}\underline{\approx\rm 0.684}.$$

In words:

  • If one determines the bit error rate by simulation over  $10^5$  symbols,
  • with a confidence level of  $\underline{68.4\%}$  one obtains a value between  $0.9 \cdot 10^{-3}$  and  $1.1 \cdot 10^{-3}$,
  • if  $p_{\rm B} = 10^{-3}$  is.


(6)  From the relation  $p_{\varepsilon}=\rm 1-\rm 2\cdot {\rm Q}(\alpha) = 0.95$  it follows directly:

$$\alpha_{\rm min}=\rm Q^{\rm -1}\Big(\frac{\rm 1-\it p_{\varepsilon}}{\rm 2}\Big)=\rm Q^{\rm -1}(\rm 0.025)\hspace{0.15cm}\underline{=\rm 1.96}\hspace{0.15cm}{\approx\rm 2}.$$


(7)  It must  $\alpha = \varepsilon/\sigma_{h{\rm B}}$  With the result of the subtask  (2)  then follows:

$$\frac{\varepsilon}{\sqrt{p_{\rm B}\cdot(\rm 1-\it p_{\rm B})/N}}\ge {\rm 2} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} N\ge \frac{\rm 4\cdot \it p_{\rm B}\cdot(\rm 1-\it p_{\rm B})}{\varepsilon^{\rm 2}}\approx \frac{\rm 4\cdot 10^{-3}}{10^{-8}}\hspace{0.15cm}\underline{=\rm 400\hspace{0.08cm}000}.$$