Difference between revisions of "Aufgaben:Exercise 3.8Z: Optimal Detection Time for DFE"

From LNTwww
 
(40 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Entscheidungsrückkopplung}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Decision_Feedback}}
  
[[File:P_ID1454__Dig_Z_3_8.png|right|frame|Tabelle der Grundimpulswerte]]
+
[[File:P_ID1454__Dig_Z_3_8.png|right|frame|Table of  $g_d(t)$  samples  (normalized)]]
Wir betrachten wie in der [[Aufgaben:3.8_Decision_Feedback_Equalization_mit_Laufzeitfilter|Aufgabe 3.8]] das bipolare Binärsystem mit Entscheidungsrückkopplung. Im Englischen bezeichnet man diese Konstellation als <i>Decision Feedback Equalization</i> (DFE).
+
As in&nbsp; [[Aufgaben:Exercise_3.8:_Delay_Filter_DFE_Realization|"Exercise 3.8"]],&nbsp; we consider the bipolar binary system with decision feedback equalization&nbsp; $\rm (DFE)$.
  
Der vorentzerrte Grundimpuls $g_d(t)$ am Eingang der DFE entspricht der Rechteckantwort eines Gaußtiefpasses mit der Grenzfrequenz $f_{\rm G} \cdot T = 0.25$. In der Tabelle sind die auf $s_0$ normierten Abtastwerte von $g_d(t)$ angegeben. Auf der Angabenseite zu [[Aufgaben:3.8_Decision_Feedback_Equalization_mit_Laufzeitfilter|Aufgabe 3.8]] ist $g_d(t)$ skizziert.
+
The pre-equalized basic pulse &nbsp;$g_d(t)$&nbsp; at the input of the DFE corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency&nbsp;$f_{\rm G} \cdot T = 0.25$.  
  
Bei der idealen DFE wird ein Kompensationsimpuls $g_w(t)$ gebildet, der für alle Zeiten $t &#8805; T_{\rm D} + T_{\rm V}$ genau gleich dem Eingangsimpuls $g_d(t)$ ist, so dass für den korrigierten Grundimpuls gilt:
+
In the ideal DFE,&nbsp; a compensation pulse &nbsp;$g_w(t)$&nbsp; is formed which is exactly equal to the input pulse &nbsp;$g_d(t)$&nbsp; for all times &nbsp;$t &#8805; T_{\rm D} + T_{\rm V}$,&nbsp; so that the following applies to the corrected basic pulse:
 
:$$g_k(t) \ = \ g_d(t) - g_w(t) = \ \left\{ \begin{array}{c} g_d(t)
 
:$$g_k(t) \ = \ g_d(t) - g_w(t) = \ \left\{ \begin{array}{c} g_d(t)
 
  \\ 0  \\  \end{array} \right.\quad
 
  \\ 0  \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  {\rm{f\ddot{u}r}} \\ \end{array}
+
\begin{array}{*{1}c} {\rm{for}}\\  {\rm{for}} \\ \end{array}
 
\begin{array}{*{20}c} t < T_{\rm D} +  T_{\rm V}, \\  t \ge T_{\rm D} +  T_{\rm V}, \\
 
\begin{array}{*{20}c} t < T_{\rm D} +  T_{\rm V}, \\  t \ge T_{\rm D} +  T_{\rm V}, \\
 
\end{array}$$
 
\end{array}$$
  
Hierbei bezeichnet $T_{\rm D}$ den Detektionszeitpunkt, der eine optimierbare Systemgröße darstellt. $T_{\rm D} = 0$ bedeutet eine Symboldetektion in Impulsmitte.
+
Here &nbsp;$T_{\rm D}$&nbsp; denotes the detection time,&nbsp; which is a system variable that can be optimized.&nbsp; $T_{\rm D} = 0$&nbsp; denotes symbol detection at the pulse midpoint.
  
*Bei einem System mit DFE ist jedoch $g_k(t)$ stark unsymmetrisch, so dass ein Detektionszeitpunkt $T_{\rm D} < 0$ günstiger ist.  
+
*However,&nbsp; for a system with DFE, &nbsp;$g_k(t)$&nbsp; is strongly asymmetric,&nbsp; so a detection time &nbsp;$T_{\rm D} < 0$&nbsp; is more favorable.
*Die Verzögerungszeit $T_{\rm V} = T/2$ gibt an, dass die DFE erst eine halbe Symboldauer nach der Detektion wirksam wird.
+
*Zur Lösung dieser Aufgabe ist $T_{\rm V}$ allerdings nicht relevant.
+
*The delay time &nbsp;$T_{\rm V} = T/2$&nbsp; indicates that the DFE does not take effect until half a symbol duration after detection.
  
 +
*However, &nbsp;$T_{\rm V}$&nbsp; is not relevant for solving this exercise.
  
===Fragebogen===
+
 
 +
A low-effort realization of the DFE is possible with a delay filter,&nbsp; where the filter order must be at least &nbsp;$N = 3$&nbsp; for the given basic pulse.&nbsp; The filter coefficients are to be selected as follows:
 +
:$$k_1 = g_d(T_{\rm D} + T),\hspace{0.2cm}k_2 = g_d(T_{\rm D} + 2T),\hspace{0.2cm}k_3 = g_d(T_{\rm D} + 3T)
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Decision_Feedback|"Decision Feedback"]].
 +
 +
* Note also that decision feedback is not associated with an increase in noise power,&nbsp; so that an increase in&nbsp; (half)&nbsp; eye opening by a factor of &nbsp;$K$&nbsp; simultaneously results in a signal-to-noise ratio gain of &nbsp;$20 \cdot {\rm lg} \, K$.&nbsp;
 +
 +
* The pre-equalized basic pulse &nbsp;$g_d(t)$&nbsp; at the DFE input corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency &nbsp;$f_{\rm G} = 0.25/T$.
 +
 +
*The table shows the sample values of &nbsp;$g_d(t)$&nbsp; normalized to &nbsp;$s_0$.&nbsp; The information section for&nbsp; [[Aufgaben:Exercise_3.8:_Delay_Filter_DFE_Realization| "Exercise 3.8"]]&nbsp; shows a sketch of &nbsp;$g_d(t)$.&nbsp;
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Calculate the half eye opening for &nbsp;$T_{\rm D} = 0$&nbsp; and ideal DFE.
|type="[]"}
+
|type="{}"}
- Falsch
+
$100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0) \ = \ $ { 0.205 3% }
+ Richtig
 
  
 +
{How must the coefficients of the delay filter be set for this?
 +
|type="{}"}
 +
$k_1\ = \ $ { 0.235 3% }
 +
$k_2\ = \ $ { 0.029 3% }
 +
$k_3\ = \ $ { 0.001 3% }
  
{Input-Box Frage
+
{Let &nbsp;$T_{\rm D} = 0$. What (half) eye opening results if the DFE compensates the trailers only &nbsp;$50 \%$?&nbsp;
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$50\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0)\ = \ $ { 0.072 3% }
  
 +
{Determine the optimal detection time and eye opening with ideal DFE.
 +
|type="{}"}
 +
$T_{\rm D, \ opt}/T\ = \ $ { -0.412--0.388 }
 +
$100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_\text{D, opt})/(2s_0) \ = \ $ { 0.291 3% }
  
 +
{How must the coefficients of the delay filter be set for this?
 +
|type="{}"}
 +
$k_1\ = \ $ { 0.366 3% }
 +
$k_2\ = \ $ { 0.08 3% }
 +
$k_3\ = \ $ { 0.004 3% }
  
 +
{How large is the (half) eye opening with &nbsp;$T_{\rm D, \ opt}$,&nbsp; if the DFE compensates the trailers only &nbsp;$50 \%$?&nbsp; Interpret the result.
 +
|type="{}"}
 +
$50\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_\text{D, opt})/(2s_0)\ = \ $ { 0.066 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; For detection time&nbsp; $T_{\rm D} = 0$,&nbsp; the following holds&nbsp; (already calculated in Exercise 3.8):
'''(2)'''&nbsp;
+
:$$\frac{\ddot{o}(T_{\rm D})}{
'''(3)'''&nbsp;
+
2} = g_d(0) - g_d(-T)- g_d(-2T)- g_d(-3T)$$
'''(4)'''&nbsp;
+
:$$ \Rightarrow \hspace{0.3cm} \frac{\ddot{o}(T_{\rm D})}{
'''(5)'''&nbsp;
+
2 \cdot s_0} = 0.470 - 0.235 - 0.029 -0.001 \hspace{0.15cm}\underline {= 0.205}
'''(6)'''&nbsp;
+
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; The coefficients should be chosen such that&nbsp; $g_k(t)$&nbsp; fully compensates for the trailer of&nbsp; $g_d(t)$:
 +
:$$k_1 = g_d( T)\hspace{0.15cm}\underline {= 0.235},\hspace{0.2cm}k_2 = g_d(2T)\hspace{0.15cm}\underline {= 0.029},\hspace{0.2cm}k_3 =
 +
  g_d(3T)\hspace{0.15cm}\underline {= 0.001}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; Based on the result of subtask&nbsp; '''(1)''',&nbsp; we obtain:
 +
:$$\frac{\ddot{o}(T_{\rm D})}{
 +
2 \cdot s_0} = 0.205 - 0.5 \cdot (0.235 + 0.029 + 0.001)\hspace{0.15cm}\underline { = 0.072}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; Optimizing&nbsp; $T_{\rm D}$&nbsp; according to the entries in the table yields:
 +
:$$T_{\rm D}/T = 0: \hspace{0.5cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.470 &ndash; 0.235 &ndash; 0.029 &ndash; 0.001 = 0.205,$$
 +
:$$T_{\rm D}/T = \ &ndash;0.1: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.466 \ &ndash; \ 0.204 \ &ndash; \ 0.022 \ &ndash; \ 0.001 = 0.240,$$
 +
:$$T_{\rm D}/T = \ &ndash;0.2: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.456 \ &ndash; \ 0.174 \ &ndash; \ 0.016 \ &ndash; \ 0.001 = 0.266,$$
 +
:$$T_{\rm D}/T = \ &ndash;0.3: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.441 \ &ndash; \ 0.146 \ &ndash; \ 0.012 \ &ndash; \ 0.001 = 0.283,$$
 +
:$${\bf {\it T}_{\rm D}/{\it T} = \ &ndash;0.4: \hspace{0.2cm} \ddot{o}({\it T}_{\rm D})/(2 \, {\it s}_0) = 0.420 \ &ndash; \ 0.121 \ &ndash; \ 0.008 \ &ndash; \ 0.001 = 0.291,}$$
 +
:$$T_{\rm D}/T = \ &ndash;0.5: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.395 \ &ndash; \ 0.099 \ &ndash; \ 0.006 \ &ndash; \ 0.001 = 0.290,$$
 +
:$$T_{\rm D}/T = \ &ndash;0.6: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.366 \ &ndash; \ 0.080 \ &ndash; \ 0.004 \ &ndash; \ 0.001 = 0.282,$$
 +
*Thus,&nbsp; the optimal detection time is&nbsp; $T_{\rm D, \ opt} \ \underline {= \ &ndash;0.4T}$&nbsp; (probably slightly larger).
 +
 
 +
* For this,&nbsp; the maximum value $(\underline{0.291})$&nbsp; was determined for the half eye opening.
 +
 
 +
 
 +
'''(5)'''&nbsp; With&nbsp; $T_{\rm D} = \ &ndash;0.4 \ T$,&nbsp; the filter coefficients are:
 +
:$$k_1 = g_d(0.6 T)\hspace{0.15cm}\underline {= 0.366},\hspace{0.2cm}k_2 = g_d(1.6T)\hspace{0.15cm}\underline {= 0.080},\hspace{0.2cm}k_3 =
 +
  g_d(2.6T)\hspace{0.15cm}\underline {= 0.004}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(6)'''&nbsp; Using the same procedure as in subtask&nbsp; '''(3)''',&nbsp; we obtain here:
 +
:$$\frac{\ddot{o}(T_{\rm D,\hspace{0.05cm} opt})}{
 +
2 \cdot s_0} = 0.291 - 0.5 \cdot (0.366 + 0.080 + 0.004) \hspace{0.15cm}\underline {= 0.066}
 +
\hspace{0.05cm}.$$
  
 +
The results of this exercise can be summarized as follows:
 +
# Optimizing the detection timing ideally increases the eye opening by a factor of&nbsp; $0.291/0.205 = 1.42$,&nbsp; which corresponds to the signal-to-noise ratio gain of&nbsp; $20 \cdot {\rm lg} \, 1.42 \approx 3 \ \rm dB$.
 +
# However,&nbsp; if the DFE functions only&nbsp; $50\%$&nbsp; due to realization inaccuracies,&nbsp; then with&nbsp; $T_{\rm D} = \ &ndash;0.4T$&nbsp; there is a degradation by the amplitude factor&nbsp; $0.291/0.066 \approx 4.4$&nbsp; compared to the ideal DFE.&nbsp; For&nbsp; $T_{\rm D} = 0$,&nbsp; this factor is much smaller with&nbsp; $2.05/0.072 \approx 3$.
 +
# In fact,&nbsp; the actually worse system&nbsp; $($with&nbsp; $T_{\rm D} = 0)$&nbsp; is superior to the actually better system&nbsp; $($with&nbsp; $T_{\rm D} = \ &ndash;0.4T)$,&nbsp; if the decision feedback works only&nbsp; $50\%$.&nbsp; Then there is a SNR loss of&nbsp; $20 \cdot {\rm lg} \, (0.072/0.066) \approx 0.75 \ \rm dB$.
 +
# One can generalize these statements: &nbsp; '''The larger the improvement by system optimization'''&nbsp; (here:&nbsp; the optimization of the detection time)&nbsp;''' is in the ideal case,&nbsp; the larger is also the degradation at non-ideal conditions''',&nbsp; e.g.,&nbsp; at tolerance-bounded realization.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.6 Entscheidungsrückkopplung^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.6 Decision Feedback Equalization^]]

Latest revision as of 16:29, 27 June 2022

Table of  $g_d(t)$  samples  (normalized)

As in  "Exercise 3.8",  we consider the bipolar binary system with decision feedback equalization  $\rm (DFE)$.

The pre-equalized basic pulse  $g_d(t)$  at the input of the DFE corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency $f_{\rm G} \cdot T = 0.25$.

In the ideal DFE,  a compensation pulse  $g_w(t)$  is formed which is exactly equal to the input pulse  $g_d(t)$  for all times  $t ≥ T_{\rm D} + T_{\rm V}$,  so that the following applies to the corrected basic pulse:

$$g_k(t) \ = \ g_d(t) - g_w(t) = \ \left\{ \begin{array}{c} g_d(t) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}}\\ {\rm{for}} \\ \end{array} \begin{array}{*{20}c} t < T_{\rm D} + T_{\rm V}, \\ t \ge T_{\rm D} + T_{\rm V}, \\ \end{array}$$

Here  $T_{\rm D}$  denotes the detection time,  which is a system variable that can be optimized.  $T_{\rm D} = 0$  denotes symbol detection at the pulse midpoint.

  • However,  for a system with DFE,  $g_k(t)$  is strongly asymmetric,  so a detection time  $T_{\rm D} < 0$  is more favorable.
  • The delay time  $T_{\rm V} = T/2$  indicates that the DFE does not take effect until half a symbol duration after detection.
  • However,  $T_{\rm V}$  is not relevant for solving this exercise.


A low-effort realization of the DFE is possible with a delay filter,  where the filter order must be at least  $N = 3$  for the given basic pulse.  The filter coefficients are to be selected as follows:

$$k_1 = g_d(T_{\rm D} + T),\hspace{0.2cm}k_2 = g_d(T_{\rm D} + 2T),\hspace{0.2cm}k_3 = g_d(T_{\rm D} + 3T) \hspace{0.05cm}.$$


Notes:

  • Note also that decision feedback is not associated with an increase in noise power,  so that an increase in  (half)  eye opening by a factor of  $K$  simultaneously results in a signal-to-noise ratio gain of  $20 \cdot {\rm lg} \, K$. 
  • The pre-equalized basic pulse  $g_d(t)$  at the DFE input corresponds to the rectangular response of a Gaussian low-pass filter with the cutoff frequency  $f_{\rm G} = 0.25/T$.
  • The table shows the sample values of  $g_d(t)$  normalized to  $s_0$.  The information section for  "Exercise 3.8"  shows a sketch of  $g_d(t)$. 


Questions

1

Calculate the half eye opening for  $T_{\rm D} = 0$  and ideal DFE.

$100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0) \ = \ $

2

How must the coefficients of the delay filter be set for this?

$k_1\ = \ $

$k_2\ = \ $

$k_3\ = \ $

3

Let  $T_{\rm D} = 0$. What (half) eye opening results if the DFE compensates the trailers only  $50 \%$? 

$50\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0)\ = \ $

4

Determine the optimal detection time and eye opening with ideal DFE.

$T_{\rm D, \ opt}/T\ = \ $

$100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_\text{D, opt})/(2s_0) \ = \ $

5

How must the coefficients of the delay filter be set for this?

$k_1\ = \ $

$k_2\ = \ $

$k_3\ = \ $

6

How large is the (half) eye opening with  $T_{\rm D, \ opt}$,  if the DFE compensates the trailers only  $50 \%$?  Interpret the result.

$50\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_\text{D, opt})/(2s_0)\ = \ $


Solution

(1)  For detection time  $T_{\rm D} = 0$,  the following holds  (already calculated in Exercise 3.8):

$$\frac{\ddot{o}(T_{\rm D})}{ 2} = g_d(0) - g_d(-T)- g_d(-2T)- g_d(-3T)$$
$$ \Rightarrow \hspace{0.3cm} \frac{\ddot{o}(T_{\rm D})}{ 2 \cdot s_0} = 0.470 - 0.235 - 0.029 -0.001 \hspace{0.15cm}\underline {= 0.205} \hspace{0.05cm}.$$


(2)  The coefficients should be chosen such that  $g_k(t)$  fully compensates for the trailer of  $g_d(t)$:

$$k_1 = g_d( T)\hspace{0.15cm}\underline {= 0.235},\hspace{0.2cm}k_2 = g_d(2T)\hspace{0.15cm}\underline {= 0.029},\hspace{0.2cm}k_3 = g_d(3T)\hspace{0.15cm}\underline {= 0.001} \hspace{0.05cm}.$$


(3)  Based on the result of subtask  (1),  we obtain:

$$\frac{\ddot{o}(T_{\rm D})}{ 2 \cdot s_0} = 0.205 - 0.5 \cdot (0.235 + 0.029 + 0.001)\hspace{0.15cm}\underline { = 0.072} \hspace{0.05cm}.$$


(4)  Optimizing  $T_{\rm D}$  according to the entries in the table yields:

$$T_{\rm D}/T = 0: \hspace{0.5cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.470 – 0.235 – 0.029 – 0.001 = 0.205,$$
$$T_{\rm D}/T = \ –0.1: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.466 \ – \ 0.204 \ – \ 0.022 \ – \ 0.001 = 0.240,$$
$$T_{\rm D}/T = \ –0.2: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.456 \ – \ 0.174 \ – \ 0.016 \ – \ 0.001 = 0.266,$$
$$T_{\rm D}/T = \ –0.3: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.441 \ – \ 0.146 \ – \ 0.012 \ – \ 0.001 = 0.283,$$
$${\bf {\it T}_{\rm D}/{\it T} = \ –0.4: \hspace{0.2cm} \ddot{o}({\it T}_{\rm D})/(2 \, {\it s}_0) = 0.420 \ – \ 0.121 \ – \ 0.008 \ – \ 0.001 = 0.291,}$$
$$T_{\rm D}/T = \ –0.5: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.395 \ – \ 0.099 \ – \ 0.006 \ – \ 0.001 = 0.290,$$
$$T_{\rm D}/T = \ –0.6: \hspace{0.2cm} \ddot{o}(T_{\rm D})/(2 \, s_0) = 0.366 \ – \ 0.080 \ – \ 0.004 \ – \ 0.001 = 0.282,$$
  • Thus,  the optimal detection time is  $T_{\rm D, \ opt} \ \underline {= \ –0.4T}$  (probably slightly larger).
  • For this,  the maximum value $(\underline{0.291})$  was determined for the half eye opening.


(5)  With  $T_{\rm D} = \ –0.4 \ T$,  the filter coefficients are:

$$k_1 = g_d(0.6 T)\hspace{0.15cm}\underline {= 0.366},\hspace{0.2cm}k_2 = g_d(1.6T)\hspace{0.15cm}\underline {= 0.080},\hspace{0.2cm}k_3 = g_d(2.6T)\hspace{0.15cm}\underline {= 0.004} \hspace{0.05cm}.$$


(6)  Using the same procedure as in subtask  (3),  we obtain here:

$$\frac{\ddot{o}(T_{\rm D,\hspace{0.05cm} opt})}{ 2 \cdot s_0} = 0.291 - 0.5 \cdot (0.366 + 0.080 + 0.004) \hspace{0.15cm}\underline {= 0.066} \hspace{0.05cm}.$$

The results of this exercise can be summarized as follows:

  1. Optimizing the detection timing ideally increases the eye opening by a factor of  $0.291/0.205 = 1.42$,  which corresponds to the signal-to-noise ratio gain of  $20 \cdot {\rm lg} \, 1.42 \approx 3 \ \rm dB$.
  2. However,  if the DFE functions only  $50\%$  due to realization inaccuracies,  then with  $T_{\rm D} = \ –0.4T$  there is a degradation by the amplitude factor  $0.291/0.066 \approx 4.4$  compared to the ideal DFE.  For  $T_{\rm D} = 0$,  this factor is much smaller with  $2.05/0.072 \approx 3$.
  3. In fact,  the actually worse system  $($with  $T_{\rm D} = 0)$  is superior to the actually better system  $($with  $T_{\rm D} = \ –0.4T)$,  if the decision feedback works only  $50\%$.  Then there is a SNR loss of  $20 \cdot {\rm lg} \, (0.072/0.066) \approx 0.75 \ \rm dB$.
  4. One can generalize these statements:   The larger the improvement by system optimization  (here:  the optimization of the detection time)  is in the ideal case,  the larger is also the degradation at non-ideal conditions,  e.g.,  at tolerance-bounded realization.