Difference between revisions of "Aufgaben:Exercise 4.08Z: Error Probability with Three Symbols"

From LNTwww
m (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Approximation_of_the_Error_Probability}}
  
[[File:P_ID2037__Dig_Z_4_8.png|right|frame|Entscheidungsregionen bei $M = 3$ Symbolen]]
+
[[File:P_ID2037__Dig_Z_4_8.png|right|frame|Decision regions with  $M = 3$]]
Die Grafik zeigt die genau gleiche Signalraumkonstellation wie in der [[Aufgaben:4.8_Entscheidungsregionen| Aufgabe 4.8]]:
+
The diagram shows exactly the same signal space constellation as in  [[Aufgaben:Exercise_4.08:_Decision_Regions_at_Three_Symbols|"Exercise 4.8"]]:
* die $M = 3$ möglichen Sendesignale, nämlich
+
* the  $M = 3$  possible transmitted signals,  viz.
 
:$$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm}  
 
:$$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm}  
 
   \boldsymbol{ s }_1 = (1, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm}
 
   \boldsymbol{ s }_1 = (1, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm}
 
   \boldsymbol{ s }_2 = (2, \hspace{0.1cm}-1)\hspace{0.05cm}.$$
 
   \boldsymbol{ s }_2 = (2, \hspace{0.1cm}-1)\hspace{0.05cm}.$$
  
* die $M = 3$ Entscheidungsgrenzen
+
* the  $M = 3$  decision boundaries
 
:$$G_{01}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
 
:$$G_{01}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
 
:$$G_{02}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
 
:$$G_{02}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
Line 15: Line 15:
  
  
Die beiden Achsen des 2D–Signalraums sind hier vereinfachend mit $x$ und $y$ bezeichnet; eigentlich müsste hierfür $\varphi_1(t)/\sqrt {E}$ bzw. $\varphi_2(t)/\sqrt {E}$ geschrieben werden.
+
The two axes of the two-dimensional signal space are simplistically denoted here as  $x$  and  $y$;  actually,   $\varphi_1(t)/\sqrt {E}$  and  $\varphi_2(t)/\sqrt {E}$  should be written for these, respectively.
  
Diese Entscheidungsgrenzen sind optimal unter den Voraussetzungen
+
These decision boundaries are optimal under the two conditions:
* gleichwahrscheinliche Symbolwahrscheinlichkeiten
+
* equal probability symbol probabilities,
* zirkulär–symmetrische WDF des Rauschens (z.B. AWGN).
 
  
 +
* circularly–symmetric PDF of the noise  (e.g. AWGN).
  
In dieser Aufgabe betrachten wir dagegen für die Rausch–WDF eine zweidimensionale Gleichverteilung:
+
 
 +
In contrast,  in this exercise we consider a two–dimensional uniform distribution for the noise PDF:
 
:$$\boldsymbol{ p }_{\boldsymbol{ n }}  (x,\hspace{0.15cm} y) =
 
:$$\boldsymbol{ p }_{\boldsymbol{ n }}  (x,\hspace{0.15cm} y) =
 
  \left\{ \begin{array}{c} K\\
 
  \left\{ \begin{array}{c} K\\
 
   0 \end{array} \right.\quad
 
   0 \end{array} \right.\quad
  \begin{array}{*{1}c}{\rm  f\ddot{u}r} \hspace{0.15cm}|x| <A, \hspace{0.15cm} |y| <A \hspace{0.05cm},
+
  \begin{array}{*{1}c}{\rm  for} \hspace{0.15cm}|x| <A, \hspace{0.15cm} |y| <A \hspace{0.05cm},
\\  {\rm sonst}  \hspace{0.05cm}.\\ \end{array}$$
+
\\  {\rm else}  \hspace{0.05cm}.\\ \end{array}$$
 +
 
 +
*Such an amplitude-limited noise is admittedly without any practical meaning.
 +
 
 +
*However,&nbsp; it allows an error probability calculation without extensive integrals,&nbsp; from which the principle of the procedure can be seen.
  
Ein solches amplitudenbegrenztes Rauschen ist zwar ohne jede praktische Bedeutung. Es ermöglicht jedoch eine Fehlerwahrscheinlichkeitsberechnung ohne umfangreiche Integrale, aus der das Prinzip der Vorgehensweise erkennbar wird.
 
  
  
  
''Hinweise:''
+
Notes:
* Die Aufgabe gehört zum  Kapitel [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit| Approximation der Fehlerwahrscheinlichkeit]].  
+
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability|"Approximation of the Error Probability"]].  
 
   
 
   
* Zur Vereinfachung der Schreibweise wird nachfolgend verwendet:
+
* To simplify the notation, the following is used:
 
:$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm}  
 
:$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm}  
 
   y = {\varphi_2(t)}/{\sqrt{E}}\hspace{0.05cm}.$$
 
   y = {\varphi_2(t)}/{\sqrt{E}}\hspace{0.05cm}.$$
Line 42: Line 46:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welchen Wert besitzt die Konstante $K$ für $A = 0.75$?
+
{What is the value of the constant&nbsp; $K$&nbsp; for &nbsp;$A = 0.75$?
 
|type="{}"}
 
|type="{}"}
 
$\boldsymbol{K} \ = \ $ { 0.444 3% }
 
$\boldsymbol{K} \ = \ $ { 0.444 3% }
  
{Welche Symbolfehlerwahrscheinlichkeit ergibt sich mit $A = 0.75$?
+
{What is the symbol error probability with&nbsp; $A = 0.75$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \ = \ $ { 0. } $\ \%$
 
$p_{\rm S} \ = \ $ { 0. } $\ \%$
  
{Welche Aussagen sind für $A = 1$ zutreffend?
+
{Which statements are true for&nbsp; $A = 1$?&nbsp;
 
|type="[]"}
 
|type="[]"}
- Alle Nachrichten $m_i$ werden in gleicher Weise verfälscht.
+
- All messages&nbsp; $m_i$&nbsp; are falsified in the same way.
+ Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_0) = 1/64$.
+
+ Conditional error probability&nbsp; ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_0) = 1/64$.
- Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_1) = 0$.
+
- Conditional error probability&nbsp; ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_1) = 0$.
+ Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_2) = 0$.
+
+ Conditional error probability&nbsp; ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_2) = 0$.
  
{Welche Fehlerwahrscheinlichkeit ergibt sich mit $A=1$ und ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$?
+
{What is the error probability with&nbsp; $A=1$&nbsp; and&nbsp; ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \ = \ $ { 1.04 3% } $\ \%$
 
$p_{\rm S} \ = \ $ { 1.04 3% } $\ \%$
  
{Welche Fehlerwahrscheinlichkeit ergibt sich mit $A=1$ und ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 1/4, {\rm Pr}(m_2) = 1/2$?
+
{What is the error probability with&nbsp; $A=1$&nbsp; and &nbsp;${\rm Pr}(m_0) = {\rm Pr}(m_1) = 1/4$ &nbsp;and&nbsp; ${\rm Pr}(m_2) = 1/2$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \ = \ $ { 0.78 3% } $\ \%$
 
$p_{\rm S} \ = \ $ { 0.78 3% } $\ \%$
  
{Könnte man durch Festlegung anderer Regionen ein besseres Ergebnis erzielen?
+
{Could a better result be obtained by specifying other regions?
 
|type="()"}
 
|type="()"}
+ Ja.
+
+ Yes.
- Nein.
+
- No.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Volumen der 2D&ndash;WDF muss $p_n(x, y) =1$ ergeben, das heißt:
+
[[File:P_ID2039__Dig_Z_4_8b.png|right|frame|Noise regions with&nbsp; $A = 0.75$]]
 +
'''(1)'''&nbsp; The volume of the two-dimensional PDF must give&nbsp; $p_n(x, y) =1$,&nbsp; that is:
 
:$$2A \cdot 2A  \cdot K = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = \frac{1}{4A^2}\hspace{0.05cm}.$$
 
:$$2A \cdot 2A  \cdot K = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = \frac{1}{4A^2}\hspace{0.05cm}.$$
  
Mit $A = 0.75$ &nbsp; &#8658; &nbsp;  $2A = 3/2$ erhält man $K = 4/9 \ \underline {=0.444}$.
+
*With&nbsp; $A = 0.75$ &nbsp; &#8658; &nbsp;  $2A = 3/2$,&nbsp; we get $K = 4/9 \ \underline {=0.444}$.
 +
 
  
  
[[File:P_ID2039__Dig_Z_4_8b.png|right|frame|Rauschgebiete mit <i>A</i> = 0.75]]
+
'''(2)'''&nbsp; In the accompanying graph,&nbsp; the noise component&nbsp; $\boldsymbol{n}$ is plotted by the squares of edge length&nbsp; $1.5$&nbsp; around the signal space points&nbsp; $\boldsymbol{s}_i$.  
'''(2)'''&nbsp; In nebenstehender Grafik ist die Rauschkomponente $\boldsymbol{n}$ durch die Quadrate der Kantenlänge $1.5$ um die 2D&ndash;Signalraumpunkte $\boldsymbol{s}_i$ eingezeichnet. Man erkennt, dass keine Entscheidungsgrenze durch Rauschkomponenten überschritten wird. Daraus folgt: Die Symbolfehlerwahrscheinlichkeit ist unter den hier gegebenen Voraussetzungen $p_{\rm S}\ \underline { \equiv  0}$.
+
*It can be seen that no decision boundary is exceeded by noise components.
  
 +
*It follows: &nbsp;The symbol error probability is&nbsp; $p_{\rm S}\ \underline { \equiv  0}$&nbsp; under the conditions given here.
 +
<br clear=all>
 +
[[File:P_ID2040__Dig_Z_4_8c.png|right|frame|Noise regions with&nbsp; $A = 1$]]
 +
'''(3)'''&nbsp; <u>Statements 2 and 4</u>&nbsp; are correct,&nbsp; as can be seen from the second graph:
 +
* The message&nbsp;  $m_2$&nbsp; cannot be falsified because the square around&nbsp; $\boldsymbol{s}_2$&nbsp; lies entirely in the lower right quadrant and thus in the decision region&nbsp; $I_2$.
  
'''(3)'''&nbsp; Richtig sind die <u>Aussagen 2 und 4</u>, wie aus der unteren Grafik abgelesen werden kann:
+
* Likewise,&nbsp; $m_2$&nbsp; was sent with certainty if the received value lies in decision region&nbsp; $I_2$. <br>The reason:&nbsp; None of the squares around&nbsp; $\boldsymbol{s}_0$&nbsp; and&nbsp; $\boldsymbol{s}_1$&nbsp; extends into the region&nbsp; $I_2$.
* Die Nachricht $m_2$ kann nicht verfälscht werden, da das Quadrat um $\boldsymbol{s}_2$ vollständig im rechten unteren Quadranten und damit im Entscheidungsgebiet $I_2$ liegt.
+
 
* Ebenso wurde mit Sicherheit $m_2$ gesendet, wenn der Empfangswert im Entscheidungsgebiet $I_2$ liegt. Der Grund: Keines der Quadrate um $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ reicht bis in das Gebiet $I_2$ hinein.
+
* $m_0$&nbsp; can only be falsified to $m_1$.&nbsp; The&nbsp; (conditional)&nbsp; falsification probability is equal to the ratio of the areas of the small yellow triangle&nbsp; $($area $1/16)$&nbsp; and the square&nbsp; $($area&nbsp; $4)$:
* $m_0$ kann nur zu $m_1$ verfälscht werden. Die (bedingte) Verfälschungswahrscheinlichkeit ist gleich dem Verhältnis der Flächen des gelben Dreiecks (Fläche $1/16$) und des Quadrats (Fläche 4):
 
  
[[File:P_ID2040__Dig_Z_4_8c.png|right|frame|Rauschgebiete mit <i>A</i> = 1]]
 
 
:$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) = \frac{1/2 \cdot 1/2 \cdot 1/4}{4}= {1}/{64}
 
:$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) = \frac{1/2 \cdot 1/2 \cdot 1/4}{4}= {1}/{64}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
* Aus Symmetriegründen gilt gleichermaßen:
+
* For symmetry reasons,&nbsp; equally:
 
:$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) = {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={1}/{64}
 
:$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) = {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={1}/{64}
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
  
  
'''(4)'''&nbsp; Bei gleichwahrscheinlichen Symbolen erhält man für die (mittlere) Fehlerwahrscheinlichkeit:
+
'''(4)'''&nbsp; For equal probability symbols,&nbsp; we obtain for the&nbsp; (average)&nbsp; error probability:
:$$p_{\rm S}  = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \left [{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) +  {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 )+{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\right ]$$
+
:$$p_{\rm S}  = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \big [{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) +  {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 )+{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\big ]$$
 
:$$ \Rightarrow \hspace{0.3cm} p_{\rm S}  = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \left [{1}/{64} +  {1}/{64} + 0 )\right ]= \frac{2}{3 \cdot 64} = {1}/{96}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 1.04 \%} \hspace{0.05cm}.$$
 
:$$ \Rightarrow \hspace{0.3cm} p_{\rm S}  = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \left [{1}/{64} +  {1}/{64} + 0 )\right ]= \frac{2}{3 \cdot 64} = {1}/{96}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 1.04 \%} \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Nun ergibt sich eine kleinere mittlere Fehlerwahrscheinlichkeit, nämlich
+
'''(5)'''&nbsp; Now we obtain a smaller&nbsp; average error probability, viz.
 
:$$p_{\rm S}  = {\rm Pr}({ \cal E} )  = {1}/{4} \cdot {1}/{64} +  {1}/{4} \cdot {1}/{64}+ {1}/{2} \cdot0 = {1}/{128}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 0.78 \% } \hspace{0.05cm}. $$
 
:$$p_{\rm S}  = {\rm Pr}({ \cal E} )  = {1}/{4} \cdot {1}/{64} +  {1}/{4} \cdot {1}/{64}+ {1}/{2} \cdot0 = {1}/{128}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 0.78 \% } \hspace{0.05cm}. $$
  
  
'''(6)'''&nbsp; <u>Richtig ist JA</u>:  
+
'''(6)'''&nbsp; <u>Correct is YES</u>:  
*Beispielsweise ergäbe sich durch $I_1$: erster Quadrant, $I_0$: zweiter Quadrant, $I_2 \text{:} \ y < 0$ die Fehlerwahrscheinlichkeit Null.  
+
*For example, &nbsp; &nbsp; $I_1$: first quadrant, &nbsp; &nbsp;  $I_0$: second quadrant, &nbsp; &nbsp;  $I_2 \text{:} \ y < 0$ &nbsp; &nbsp; would give zero error probability.
*Das bedeutet, dass die vorgegebenen Grenzen nur bei zirkulär symmetrischer WDF des Rauschens optimal sind, zum Beispiel beim AWGN&ndash;Kanal.
+
 
 +
*This means that the given bounds are optimal only in the case of circularly symmetric PDF of the noise,&nbsp; for example, the AWGN model.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.3 BER-Approximation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.3 BER Approximation^]]

Latest revision as of 18:16, 28 July 2022

Decision regions with  $M = 3$

The diagram shows exactly the same signal space constellation as in  "Exercise 4.8":

  • the  $M = 3$  possible transmitted signals,  viz.
$$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_1 = (1, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_2 = (2, \hspace{0.1cm}-1)\hspace{0.05cm}.$$
  • the  $M = 3$  decision boundaries
$$G_{01}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
$$G_{02}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
$$G_{12}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} x/3\hspace{0.05cm}.$$


The two axes of the two-dimensional signal space are simplistically denoted here as  $x$  and  $y$;  actually,   $\varphi_1(t)/\sqrt {E}$  and  $\varphi_2(t)/\sqrt {E}$  should be written for these, respectively.

These decision boundaries are optimal under the two conditions:

  • equal probability symbol probabilities,
  • circularly–symmetric PDF of the noise  (e.g. AWGN).


In contrast,  in this exercise we consider a two–dimensional uniform distribution for the noise PDF:

$$\boldsymbol{ p }_{\boldsymbol{ n }} (x,\hspace{0.15cm} y) = \left\{ \begin{array}{c} K\\ 0 \end{array} \right.\quad \begin{array}{*{1}c}{\rm for} \hspace{0.15cm}|x| <A, \hspace{0.15cm} |y| <A \hspace{0.05cm}, \\ {\rm else} \hspace{0.05cm}.\\ \end{array}$$
  • Such an amplitude-limited noise is admittedly without any practical meaning.
  • However,  it allows an error probability calculation without extensive integrals,  from which the principle of the procedure can be seen.



Notes:

  • To simplify the notation, the following is used:
$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm} y = {\varphi_2(t)}/{\sqrt{E}}\hspace{0.05cm}.$$


Questions

1

What is the value of the constant  $K$  for  $A = 0.75$?

$\boldsymbol{K} \ = \ $

2

What is the symbol error probability with  $A = 0.75$?

$p_{\rm S} \ = \ $

$\ \%$

3

Which statements are true for  $A = 1$? 

All messages  $m_i$  are falsified in the same way.
Conditional error probability  ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm} {\it m}_0) = 1/64$.
Conditional error probability  ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm} {\it m}_1) = 0$.
Conditional error probability  ${\rm Pr({ \cal E}} \hspace{0.05cm} | \hspace{0.05cm} {\it m}_2) = 0$.

4

What is the error probability with  $A=1$  and  ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$?

$p_{\rm S} \ = \ $

$\ \%$

5

What is the error probability with  $A=1$  and  ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 1/4$  and  ${\rm Pr}(m_2) = 1/2$?

$p_{\rm S} \ = \ $

$\ \%$

6

Could a better result be obtained by specifying other regions?

Yes.
No.


Solution

Noise regions with  $A = 0.75$

(1)  The volume of the two-dimensional PDF must give  $p_n(x, y) =1$,  that is:

$$2A \cdot 2A \cdot K = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = \frac{1}{4A^2}\hspace{0.05cm}.$$
  • With  $A = 0.75$   ⇒   $2A = 3/2$,  we get $K = 4/9 \ \underline {=0.444}$.


(2)  In the accompanying graph,  the noise component  $\boldsymbol{n}$ is plotted by the squares of edge length  $1.5$  around the signal space points  $\boldsymbol{s}_i$.

  • It can be seen that no decision boundary is exceeded by noise components.
  • It follows:  The symbol error probability is  $p_{\rm S}\ \underline { \equiv 0}$  under the conditions given here.


Noise regions with  $A = 1$

(3)  Statements 2 and 4  are correct,  as can be seen from the second graph:

  • The message  $m_2$  cannot be falsified because the square around  $\boldsymbol{s}_2$  lies entirely in the lower right quadrant and thus in the decision region  $I_2$.
  • Likewise,  $m_2$  was sent with certainty if the received value lies in decision region  $I_2$.
    The reason:  None of the squares around  $\boldsymbol{s}_0$  and  $\boldsymbol{s}_1$  extends into the region  $I_2$.
  • $m_0$  can only be falsified to $m_1$.  The  (conditional)  falsification probability is equal to the ratio of the areas of the small yellow triangle  $($area $1/16)$  and the square  $($area  $4)$:
$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) = \frac{1/2 \cdot 1/2 \cdot 1/4}{4}= {1}/{64} \hspace{0.05cm}.$$
  • For symmetry reasons,  equally:
$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) = {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={1}/{64} \hspace{0.05cm}. $$


(4)  For equal probability symbols,  we obtain for the  (average)  error probability:

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \big [{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) + {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 )+{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\big ]$$
$$ \Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({ \cal E} ) = {1}/{3} \cdot \left [{1}/{64} + {1}/{64} + 0 )\right ]= \frac{2}{3 \cdot 64} = {1}/{96}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 1.04 \%} \hspace{0.05cm}.$$


(5)  Now we obtain a smaller  average error probability, viz.

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {1}/{4} \cdot {1}/{64} + {1}/{4} \cdot {1}/{64}+ {1}/{2} \cdot0 = {1}/{128}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 0.78 \% } \hspace{0.05cm}. $$


(6)  Correct is YES:

  • For example,     $I_1$: first quadrant,     $I_0$: second quadrant,     $I_2 \text{:} \ y < 0$     would give zero error probability.
  • This means that the given bounds are optimal only in the case of circularly symmetric PDF of the noise,  for example, the AWGN model.