Difference between revisions of "Aufgaben:Exercise 4.10Z: Signal Space Constellation of the 16-QAM"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Quadratur–Amplitudenmodulation }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice…“)
 
 
(27 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID1719__Mod_Z_4_9.png|right|frame|Signal space constellation]]
 +
We now consider the 16-QAM method according to the block diagram given in the theory section.&nbsp;  The diagram shows the possible complex amplitude coefficients &nbsp;$a = a_{\rm I} + {\rm j} · a_{\rm Q}$.
  
 +
As in&nbsp; [[Aufgaben:Exercise_4.10:_Signal_Waveforms_of_the_16-QAM|Exercise 4.10]],&nbsp; the following should be assumed:
 +
* The possible amplitude coefficients &nbsp;$a_{\rm I}$&nbsp; and &nbsp;$a_{\rm Q}$&nbsp; of the two component signals are&nbsp;$ ±1$&nbsp; and &nbsp;$±1/3$, respectively.
 +
* The basic transmission pulse &nbsp;$g_s(t)$&nbsp; is rectangular with amplitude &nbsp;$g_0 = 1\ \rm  V$&nbsp; and duration &nbsp;$T = 1 \ \rm &micro; s$.
 +
*  The source signal &nbsp;$q(t)$&nbsp; before the serial-to-parallel converter is binary and redundancy-free.
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter &nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation|"Quadrature Amplitude Modulation"]].
 +
*The page&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation#Quadratic_QAM_signal_space_constellations|"Quadratic QAM signal space constellations"]]&nbsp; is helpful for completing this exercise.
 +
*The signals belonging to the colored points are shown in the same colors as in&nbsp; [[Aufgaben:Exercise_4.10:_Signal_Waveforms_of_the_16-QAM|Exercise 4.10]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What is the bit rate &nbsp;$R_{\rm B}$&nbsp; of the binary source signal &nbsp;$q(t)$?
|type="[]"}
+
|type="{}"}
- Falsch
+
$R_{\rm B}\ = \ $  { 4 3% } $\ \rm Mbit/s$
+ Richtig
+
 
  
 +
{Give the magnitude and the phase&nbsp; $($between &nbsp;$±180^\circ)$&nbsp; for the red symbol &nbsp; &rArr; &nbsp; $a = 1 +{\rm j}$.
 +
|type="{}"}
 +
$|a| \ = \ $ { 1.414 3% }
 +
${\rm arc} \ a \ = \ $ { 45 3% } $\ \rm degrees$
  
{Input-Box Frage
+
{Give the magnitude and the phase for the blue symbol &nbsp; &rArr; &nbsp; $a = 1/3 +{\rm j}/3$.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$|a| \ = \ $ { 0.471 3% }
 +
${\rm arc} \ a \ = \ $ { 45 3% } $\ \rm degrees$
  
 +
{Give the magnitude and the phase for the green symbol&nbsp; &rArr; &nbsp; $a = -1 +{\rm j}/3$.
 +
|type="{}"}
 +
$|a| \ = \ $ { 1.054 3% }
 +
${\rm arc} \ a \ = \ $ { 161.57 } $\ \rm degrees$
  
 +
{Give the magnitude and the phase for the purple symbol&nbsp; &rArr; &nbsp; $a = -1 -{\rm j}/3$.
 +
|type="{}"}
 +
$|a| \ = \ $ { 1.054 3% }
 +
${\rm arc} \ a \ = \ ${ -166.57--156.57 } $\ \rm degrees$
  
 +
{How many different magnitudes &nbsp; &rArr; &nbsp; $N_{|a|}$&nbsp; and phase positions &nbsp; &rArr; &nbsp; $N_{arc}$ are possible?
 +
|type="{}"}
 +
$N_{|a|}\ = \ $ { 3 }
 +
$N_{\rm arc}\ = \ $ { 12 }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; Each&nbsp; $\log_2 \ 16 = 4$&nbsp; bits of the source signal are represented by one symbol,&nbsp;  two bits by the four-level coefficient&nbsp; $a_{\rm I}$&nbsp; and two more by&nbsp; $a_{\rm Q}$.
'''2.'''
+
*Thus,&nbsp; the bit duration is&nbsp; $T_{\rm B} = T/4 = 0.25 \ \rm &micro; s$.
'''3.'''
+
*And the bit rate is&nbsp; $R_{\rm B} = 1/T_{\rm B}\hspace{0.15cm}\underline { = 4 \ \rm  Mbit/s}$.
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
 
'''7.'''
+
'''(2)'''&nbsp; From geometry,&nbsp; for &nbsp; $a = 1 + {\rm j}$&nbsp; it follows:
 +
:$$a| = \sqrt{1^2 + 1^2}= \sqrt{2}\hspace{0.15cm}\underline { =1.414}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a = \arctan \left ({1}/{1} \right ) \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The angle is obtained as in subtask&nbsp; '''(2)''',&nbsp; the magnitude is smaller by a factor of &nbsp; $3$:
 +
:$$|a| = \sqrt{(1/3)^2 + (1/3)^2}= \sqrt{2}\hspace{0.15cm}\underline { =0.471}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a  \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; For the complex amplitude coefficient&nbsp; $a = -1 + {\rm j}/3$,&nbsp; geometry gives us:
 +
:$$|a|  =  \sqrt{1^2 + (1/3)^2}\hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm}
 +
{\rm arc}\hspace{0.15cm} a  =  180^{\circ} - \arctan \left ( {1}/{3} \right ) = 180^{\circ} - 18.43^{\circ} \hspace{0.15cm}\underline {= 161.57^{\circ}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; The purple symbol&nbsp; $a = -1 - {\rm j}/3$&nbsp; has the same magnitude as the green symbol according to subtask&nbsp; '''(4)''',&nbsp; while the phase angle changes sign:
 +
:$$|a|  \hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm}
 +
{\rm arc}\hspace{0.15cm} a  \hspace{0.15cm}\underline {= -161.57^{\circ}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(6)'''&nbsp; For the magnitude: &nbsp; $N_{|a|}\hspace{0.15cm}\underline { = 3}$&nbsp; different results are possible: &nbsp;$1.414$, &nbsp;$1.054$&nbsp; and &nbsp;$0.471$.
 +
 
 +
*In contrast,&nbsp; there are &nbsp; $N_{\rm arc}\hspace{0.15cm}\underline { = 12}$&nbsp; possible phase positions,&nbsp; namely:
 +
:$$ \pm \arctan (1/3) = \pm 18.43^{\circ}, \hspace{0.2cm}\pm \arctan (1) = \pm 45^{\circ}, \hspace{0.2cm}\pm \arctan (3) = \pm 71.57^{\circ}\hspace{0.05cm},$$
 +
:$$\pm (180^{\circ}-71.57^{\circ}) = \pm 108.43^{\circ}, \hspace{0.2cm}\pm (180^{\circ}-45^{\circ}) = \pm 135^{\circ}, \hspace{0.2cm}\pm 161.57^{\circ} \hspace{0.05cm}.$$
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.3 Quadratur–Amplitudenmodulation^]]
+
[[Category:Modulation Methods: Exercises|^4.3 Quadrature Amplitude Modulation^]]

Latest revision as of 17:10, 16 April 2022

Signal space constellation

We now consider the 16-QAM method according to the block diagram given in the theory section.  The diagram shows the possible complex amplitude coefficients  $a = a_{\rm I} + {\rm j} · a_{\rm Q}$.

As in  Exercise 4.10,  the following should be assumed:

  • The possible amplitude coefficients  $a_{\rm I}$  and  $a_{\rm Q}$  of the two component signals are $ ±1$  and  $±1/3$, respectively.
  • The basic transmission pulse  $g_s(t)$  is rectangular with amplitude  $g_0 = 1\ \rm V$  and duration  $T = 1 \ \rm µ s$.
  • The source signal  $q(t)$  before the serial-to-parallel converter is binary and redundancy-free.



Hints:


Questions

1

What is the bit rate  $R_{\rm B}$  of the binary source signal  $q(t)$?

$R_{\rm B}\ = \ $

$\ \rm Mbit/s$

2

Give the magnitude and the phase  $($between  $±180^\circ)$  for the red symbol   ⇒   $a = 1 +{\rm j}$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm degrees$

3

Give the magnitude and the phase for the blue symbol   ⇒   $a = 1/3 +{\rm j}/3$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm degrees$

4

Give the magnitude and the phase for the green symbol  ⇒   $a = -1 +{\rm j}/3$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm degrees$

5

Give the magnitude and the phase for the purple symbol  ⇒   $a = -1 -{\rm j}/3$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm degrees$

6

How many different magnitudes   ⇒   $N_{|a|}$  and phase positions   ⇒   $N_{arc}$ are possible?

$N_{|a|}\ = \ $

$N_{\rm arc}\ = \ $


Solution

(1)  Each  $\log_2 \ 16 = 4$  bits of the source signal are represented by one symbol,  two bits by the four-level coefficient  $a_{\rm I}$  and two more by  $a_{\rm Q}$.

  • Thus,  the bit duration is  $T_{\rm B} = T/4 = 0.25 \ \rm µ s$.
  • And the bit rate is  $R_{\rm B} = 1/T_{\rm B}\hspace{0.15cm}\underline { = 4 \ \rm Mbit/s}$.


(2)  From geometry,  for   $a = 1 + {\rm j}$  it follows:

$$a| = \sqrt{1^2 + 1^2}= \sqrt{2}\hspace{0.15cm}\underline { =1.414}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a = \arctan \left ({1}/{1} \right ) \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$


(3)  The angle is obtained as in subtask  (2),  the magnitude is smaller by a factor of   $3$:

$$|a| = \sqrt{(1/3)^2 + (1/3)^2}= \sqrt{2}\hspace{0.15cm}\underline { =0.471}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$


(4)  For the complex amplitude coefficient  $a = -1 + {\rm j}/3$,  geometry gives us:

$$|a| = \sqrt{1^2 + (1/3)^2}\hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm} {\rm arc}\hspace{0.15cm} a = 180^{\circ} - \arctan \left ( {1}/{3} \right ) = 180^{\circ} - 18.43^{\circ} \hspace{0.15cm}\underline {= 161.57^{\circ}}\hspace{0.05cm}.$$


(5)  The purple symbol  $a = -1 - {\rm j}/3$  has the same magnitude as the green symbol according to subtask  (4),  while the phase angle changes sign:

$$|a| \hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm} {\rm arc}\hspace{0.15cm} a \hspace{0.15cm}\underline {= -161.57^{\circ}}\hspace{0.05cm}.$$


(6)  For the magnitude:   $N_{|a|}\hspace{0.15cm}\underline { = 3}$  different results are possible:  $1.414$,  $1.054$  and  $0.471$.

  • In contrast,  there are   $N_{\rm arc}\hspace{0.15cm}\underline { = 12}$  possible phase positions,  namely:
$$ \pm \arctan (1/3) = \pm 18.43^{\circ}, \hspace{0.2cm}\pm \arctan (1) = \pm 45^{\circ}, \hspace{0.2cm}\pm \arctan (3) = \pm 71.57^{\circ}\hspace{0.05cm},$$
$$\pm (180^{\circ}-71.57^{\circ}) = \pm 108.43^{\circ}, \hspace{0.2cm}\pm (180^{\circ}-45^{\circ}) = \pm 135^{\circ}, \hspace{0.2cm}\pm 161.57^{\circ} \hspace{0.05cm}.$$