Difference between revisions of "Aufgaben:Exercise 4.10Z: Signal Space Constellation of the 16-QAM"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Modulationsverfahren" to "Category:Modulation Methods: Exercises")
 
(9 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1719__Mod_Z_4_9.png|right|frame|Signalraumkonstellation]]
+
[[File:P_ID1719__Mod_Z_4_9.png|right|frame|Signal space constellation]]
Wir betrachten weiter das 16–QAM–Verfahren entsprechend dem im Theorieteil angegebenen Blockschaltbild.  Die Grafik zeigt die möglichen komplexen Amplitudenkoeffizienten  $a = a_{\rm I} + {\rm j} · a_{\rm Q}$.
+
We now consider the 16-QAM method according to the block diagram given in the theory section.  The diagram shows the possible complex amplitude coefficients  $a = a_{\rm I} + {\rm j} · a_{\rm Q}$.
  
Für diese Aufgabe soll ebenso wie für die  [[Aufgaben:4.10_Signalverläufe_der_16–QAM|Aufgabe 4.10]]  vorausgesetzt werden:
+
As in  [[Aufgaben:Exercise_4.10:_Signal_Waveforms_of_the_16-QAM|Exercise 4.10]],  the following should be assumed:
* Die möglichen Amplitudenkoeffizienten  $a_{\rm I}$  und  $a_{\rm Q}$  der beiden Komponentensignale sind  $ ±1$  und  $±1/3$.
+
* The possible amplitude coefficients  $a_{\rm I}$  and  $a_{\rm Q}$  of the two component signals are $ ±1$  and  $±1/3$, respectively.  
* Der Sendegrundimpuls  $g_s(t)$  ist rechteckförmig mit Amplitude  $g_0 = 1\ \rm  V$  und Dauer  $T = 1 \ \rm µ s$.
+
* The basic transmission pulse  $g_s(t)$  is rectangular with amplitude  $g_0 = 1\ \rm  V$  and duration  $T = 1 \ \rm µ s$.
Das Quellensignal  $q(t)$  vor dem Seriell–Parallel–Wandler ist binär und redundanzfrei.
+
The source signal  $q(t)$  before the serial-to-parallel converter is binary and redundancy-free.
  
  
Line 15: Line 15:
  
  
 
+
Hints:  
 
+
*This exercise belongs to the chapter   [[Modulation_Methods/Quadrature_Amplitude_Modulation|"Quadrature Amplitude Modulation"]].
 
+
*The page  [[Modulation_Methods/Quadrature_Amplitude_Modulation#Quadratic_QAM_signal_space_constellations|"Quadratic QAM signal space constellations"]]  is helpful for completing this exercise.  
 
+
*The signals belonging to the colored points are shown in the same colors as in  [[Aufgaben:Exercise_4.10:_Signal_Waveforms_of_the_16-QAM|Exercise 4.10]].
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel  [[Modulation_Methods/Quadratur%E2%80%93Amplitudenmodulation|Quadratur–Amplitudenmodulation]].
 
*Zur Lösung der Aufgabe ist die Seite  [[Modulation_Methods/Quadratur–Amplitudenmodulation#Quadratische_QAM.E2.80.93Signalraumkonstellationen|Quadratische QAM–Signalraumkonstellationen]] hilfreich.  
 
*Die zu den farbigen Punkten gehörigen Signale sind in der  [[Aufgaben:4.10_Signalverläufe_der_16–QAM|Aufgabe 4.10]]  in gleicher Farbe dargestellt.
 
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Bitrate &nbsp;$R_{\rm B}$&nbsp; des binären Quellensymbols &nbsp;$q(t)$?
+
{What is the bit rate &nbsp;$R_{\rm B}$&nbsp; of the binary source signal &nbsp;$q(t)$?
 
|type="{}"}
 
|type="{}"}
 
$R_{\rm B}\ = \ $  { 4 3% } $\ \rm Mbit/s$
 
$R_{\rm B}\ = \ $  { 4 3% } $\ \rm Mbit/s$
  
  
{Geben Sie den Betrag und die Phase&nbsp; $($zwischen &nbsp;$±180^\circ)$&nbsp; für das rote Symbol an &nbsp; &rArr; &nbsp; $a = 1 +{\rm j}$.
+
{Give the magnitude and the phase&nbsp; $($between &nbsp;$±180^\circ)$&nbsp; for the red symbol &nbsp; &rArr; &nbsp; $a = 1 +{\rm j}$.
 
|type="{}"}
 
|type="{}"}
 
$|a| \ = \ $ { 1.414 3% }
 
$|a| \ = \ $ { 1.414 3% }
${\rm arc} \ a \ = \ $ { 45 3% } $\ \rm Grad$
+
${\rm arc} \ a \ = \ $ { 45 3% } $\ \rm degrees$
  
{Geben Sie den Betrag und die Phase für das blaue Symbol  an &nbsp; &rArr; &nbsp; $a = 1/3 +{\rm j}/3$.
+
{Give the magnitude and the phase for the blue symbol &nbsp; &rArr; &nbsp; $a = 1/3 +{\rm j}/3$.
 
|type="{}"}
 
|type="{}"}
 
$|a| \ = \ $ { 0.471 3% }  
 
$|a| \ = \ $ { 0.471 3% }  
${\rm arc} \ a \ = \ $ { 45 3% } $\ \rm Grad$
+
${\rm arc} \ a \ = \ $ { 45 3% } $\ \rm degrees$
  
{Geben Sie den Betrag und die Phase für das grüne Symbol  an &nbsp; &rArr; &nbsp; $a = -1 +{\rm j}/3$.
+
{Give the magnitude and the phase for the green symbol&nbsp; &rArr; &nbsp; $a = -1 +{\rm j}/3$.
 
|type="{}"}
 
|type="{}"}
 
$|a| \ = \ $ { 1.054 3% }  
 
$|a| \ = \ $ { 1.054 3% }  
${\rm arc} \ a \ = \ $ { 161.57 } $\ \rm Grad$
+
${\rm arc} \ a \ = \ $ { 161.57 } $\ \rm degrees$
  
{Geben Sie den Betrag und die Phase für das violette Symbol an &nbsp; &rArr; &nbsp; $a = -1 -{\rm j}/3$.
+
{Give the magnitude and the phase for the purple symbol&nbsp; &rArr; &nbsp; $a = -1 -{\rm j}/3$.
 
|type="{}"}
 
|type="{}"}
 
$|a| \ = \ $ { 1.054 3% }  
 
$|a| \ = \ $ { 1.054 3% }  
${\rm arc} \ a \ = \ ${ -166.57--156.57 } $\ \rm Grad$
+
${\rm arc} \ a \ = \ ${ -166.57--156.57 } $\ \rm degrees$
  
{Wieviele unterschiedliche Beträge &nbsp; &rArr; &nbsp; $N_{|a|}$&nbsp; und Phasenlagen &nbsp; &rArr; &nbsp; $N_{arc}$ sind möglich?
+
{How many different magnitudes &nbsp; &rArr; &nbsp; $N_{|a|}$&nbsp; and phase positions &nbsp; &rArr; &nbsp; $N_{arc}$ are possible?
 
|type="{}"}
 
|type="{}"}
 
$N_{|a|}\ = \ $ { 3 }  
 
$N_{|a|}\ = \ $ { 3 }  
Line 60: Line 56:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Durch ein Symbol werden jeweils&nbsp; $\log_2 \ 16 = 4$&nbsp; Bit des Quellensignals dargestellt, zwei Bit durch den vierstufigen Koeffizienten&nbsp; $a_{\rm I}$&nbsp; und zwei weitere durch&nbsp; $a_{\rm Q}$.  
+
'''(1)'''&nbsp; Each&nbsp; $\log_2 \ 16 = 4$&nbsp; bits of the source signal are represented by one symbol,&nbsp;  two bits by the four-level coefficient&nbsp; $a_{\rm I}$&nbsp; and two more by&nbsp; $a_{\rm Q}$.  
*Die Bitdauer beträgt somit&nbsp; $T_{\rm B} = T/4 = 0.25 \ \rm &micro; s$.  
+
*Thus,&nbsp; the bit duration is&nbsp; $T_{\rm B} = T/4 = 0.25 \ \rm &micro; s$.  
*Damit ist die Bitrate&nbsp; $R_{\rm B} = 1/T_{\rm B}\hspace{0.15cm}\underline { = 4 \ \rm  Mbit/s}$.
+
*And the bit rate is&nbsp; $R_{\rm B} = 1/T_{\rm B}\hspace{0.15cm}\underline { = 4 \ \rm  Mbit/s}$.
  
  
  
'''(2)'''&nbsp; Aus der Geometrie folgt für&nbsp; $a = 1 + {\rm j}$:
+
'''(2)'''&nbsp; From geometry,&nbsp; for &nbsp; $a = 1 + {\rm j}$&nbsp; it follows:
 
:$$a| = \sqrt{1^2 + 1^2}= \sqrt{2}\hspace{0.15cm}\underline { =1.414}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a = \arctan \left ({1}/{1} \right ) \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$
 
:$$a| = \sqrt{1^2 + 1^2}= \sqrt{2}\hspace{0.15cm}\underline { =1.414}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a = \arctan \left ({1}/{1} \right ) \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$
  
  
  
'''(3)'''&nbsp; Der Winkel ergibt sich wie bei der Teilaufgabe&nbsp; '''(2)''', der Betrag ist um den Faktor&nbsp; $3$&nbsp; kleiner:  
+
'''(3)'''&nbsp; The angle is obtained as in subtask&nbsp; '''(2)''',&nbsp; the magnitude is smaller by a factor of &nbsp; $3$:  
 
:$$|a| = \sqrt{(1/3)^2 + (1/3)^2}= \sqrt{2}\hspace{0.15cm}\underline { =0.471}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a  \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$
 
:$$|a| = \sqrt{(1/3)^2 + (1/3)^2}= \sqrt{2}\hspace{0.15cm}\underline { =0.471}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a  \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; Für den komplexen Amplitudenkoeffizienten&nbsp; $a = -1 + {\rm j}/3$&nbsp; erhält man aus der Geometrie:
+
'''(4)'''&nbsp; For the complex amplitude coefficient&nbsp; $a = -1 + {\rm j}/3$,&nbsp; geometry gives us:
 
:$$|a|  =  \sqrt{1^2 + (1/3)^2}\hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm}
 
:$$|a|  =  \sqrt{1^2 + (1/3)^2}\hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm}
 
{\rm arc}\hspace{0.15cm} a  =  180^{\circ} - \arctan \left ( {1}/{3} \right ) = 180^{\circ} - 18.43^{\circ} \hspace{0.15cm}\underline {= 161.57^{\circ}}\hspace{0.05cm}.$$
 
{\rm arc}\hspace{0.15cm} a  =  180^{\circ} - \arctan \left ( {1}/{3} \right ) = 180^{\circ} - 18.43^{\circ} \hspace{0.15cm}\underline {= 161.57^{\circ}}\hspace{0.05cm}.$$
Line 84: Line 80:
  
  
'''(5)'''&nbsp; Das violette Symbol&nbsp; $a = -1 - {\rm j}/3$&nbsp; hat den gleichen Betrag wie das grüne Symbol nach Teilaufgabe&nbsp; '''(4)''', während der Phasenwinkel das Vorzeichen ändert:
+
'''(5)'''&nbsp; The purple symbol&nbsp; $a = -1 - {\rm j}/3$&nbsp; has the same magnitude as the green symbol according to subtask&nbsp; '''(4)''',&nbsp; while the phase angle changes sign:
 
:$$|a|  \hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm}
 
:$$|a|  \hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm}
 
{\rm arc}\hspace{0.15cm} a  \hspace{0.15cm}\underline {= -161.57^{\circ}}\hspace{0.05cm}.$$
 
{\rm arc}\hspace{0.15cm} a  \hspace{0.15cm}\underline {= -161.57^{\circ}}\hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; Für den Betrag sind&nbsp; $N_{|a|}\hspace{0.15cm}\underline { = 3}$&nbsp; verschiedene Ergebnisse möglich: &nbsp;$1.414$, &nbsp;$1.054$&nbsp; und &nbsp;$0.471$.
+
'''(6)'''&nbsp; For the magnitude: &nbsp; $N_{|a|}\hspace{0.15cm}\underline { = 3}$&nbsp; different results are possible: &nbsp;$1.414$, &nbsp;$1.054$&nbsp; and &nbsp;$0.471$.
  
*Dagegen gibt es&nbsp; $N_{\rm arc}\hspace{0.15cm}\underline { = 12}$&nbsp; mögliche Phasenlagen, nämlich:
+
*In contrast,&nbsp; there are &nbsp; $N_{\rm arc}\hspace{0.15cm}\underline { = 12}$&nbsp; possible phase positions,&nbsp; namely:
 
:$$ \pm \arctan (1/3) = \pm 18.43^{\circ}, \hspace{0.2cm}\pm \arctan (1) = \pm 45^{\circ}, \hspace{0.2cm}\pm \arctan (3) = \pm 71.57^{\circ}\hspace{0.05cm},$$
 
:$$ \pm \arctan (1/3) = \pm 18.43^{\circ}, \hspace{0.2cm}\pm \arctan (1) = \pm 45^{\circ}, \hspace{0.2cm}\pm \arctan (3) = \pm 71.57^{\circ}\hspace{0.05cm},$$
 
:$$\pm (180^{\circ}-71.57^{\circ}) = \pm 108.43^{\circ}, \hspace{0.2cm}\pm (180^{\circ}-45^{\circ}) = \pm 135^{\circ}, \hspace{0.2cm}\pm 161.57^{\circ} \hspace{0.05cm}.$$
 
:$$\pm (180^{\circ}-71.57^{\circ}) = \pm 108.43^{\circ}, \hspace{0.2cm}\pm (180^{\circ}-45^{\circ}) = \pm 135^{\circ}, \hspace{0.2cm}\pm 161.57^{\circ} \hspace{0.05cm}.$$
Line 99: Line 95:
  
  
[[Category:Modulation Methods: Exercises|^4.3 Quadratur–Amplitudenmodulation^]]
+
[[Category:Modulation Methods: Exercises|^4.3 Quadrature Amplitude Modulation^]]

Latest revision as of 17:10, 16 April 2022

Signal space constellation

We now consider the 16-QAM method according to the block diagram given in the theory section.  The diagram shows the possible complex amplitude coefficients  $a = a_{\rm I} + {\rm j} · a_{\rm Q}$.

As in  Exercise 4.10,  the following should be assumed:

  • The possible amplitude coefficients  $a_{\rm I}$  and  $a_{\rm Q}$  of the two component signals are $ ±1$  and  $±1/3$, respectively.
  • The basic transmission pulse  $g_s(t)$  is rectangular with amplitude  $g_0 = 1\ \rm V$  and duration  $T = 1 \ \rm µ s$.
  • The source signal  $q(t)$  before the serial-to-parallel converter is binary and redundancy-free.



Hints:


Questions

1

What is the bit rate  $R_{\rm B}$  of the binary source signal  $q(t)$?

$R_{\rm B}\ = \ $

$\ \rm Mbit/s$

2

Give the magnitude and the phase  $($between  $±180^\circ)$  for the red symbol   ⇒   $a = 1 +{\rm j}$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm degrees$

3

Give the magnitude and the phase for the blue symbol   ⇒   $a = 1/3 +{\rm j}/3$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm degrees$

4

Give the magnitude and the phase for the green symbol  ⇒   $a = -1 +{\rm j}/3$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm degrees$

5

Give the magnitude and the phase for the purple symbol  ⇒   $a = -1 -{\rm j}/3$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm degrees$

6

How many different magnitudes   ⇒   $N_{|a|}$  and phase positions   ⇒   $N_{arc}$ are possible?

$N_{|a|}\ = \ $

$N_{\rm arc}\ = \ $


Solution

(1)  Each  $\log_2 \ 16 = 4$  bits of the source signal are represented by one symbol,  two bits by the four-level coefficient  $a_{\rm I}$  and two more by  $a_{\rm Q}$.

  • Thus,  the bit duration is  $T_{\rm B} = T/4 = 0.25 \ \rm µ s$.
  • And the bit rate is  $R_{\rm B} = 1/T_{\rm B}\hspace{0.15cm}\underline { = 4 \ \rm Mbit/s}$.


(2)  From geometry,  for   $a = 1 + {\rm j}$  it follows:

$$a| = \sqrt{1^2 + 1^2}= \sqrt{2}\hspace{0.15cm}\underline { =1.414}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a = \arctan \left ({1}/{1} \right ) \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$


(3)  The angle is obtained as in subtask  (2),  the magnitude is smaller by a factor of   $3$:

$$|a| = \sqrt{(1/3)^2 + (1/3)^2}= \sqrt{2}\hspace{0.15cm}\underline { =0.471}\hspace{0.05cm}, \hspace{0.5cm} {\rm arc}\hspace{0.15cm} a \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$


(4)  For the complex amplitude coefficient  $a = -1 + {\rm j}/3$,  geometry gives us:

$$|a| = \sqrt{1^2 + (1/3)^2}\hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm} {\rm arc}\hspace{0.15cm} a = 180^{\circ} - \arctan \left ( {1}/{3} \right ) = 180^{\circ} - 18.43^{\circ} \hspace{0.15cm}\underline {= 161.57^{\circ}}\hspace{0.05cm}.$$


(5)  The purple symbol  $a = -1 - {\rm j}/3$  has the same magnitude as the green symbol according to subtask  (4),  while the phase angle changes sign:

$$|a| \hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},\hspace{0.5cm} {\rm arc}\hspace{0.15cm} a \hspace{0.15cm}\underline {= -161.57^{\circ}}\hspace{0.05cm}.$$


(6)  For the magnitude:   $N_{|a|}\hspace{0.15cm}\underline { = 3}$  different results are possible:  $1.414$,  $1.054$  and  $0.471$.

  • In contrast,  there are   $N_{\rm arc}\hspace{0.15cm}\underline { = 12}$  possible phase positions,  namely:
$$ \pm \arctan (1/3) = \pm 18.43^{\circ}, \hspace{0.2cm}\pm \arctan (1) = \pm 45^{\circ}, \hspace{0.2cm}\pm \arctan (3) = \pm 71.57^{\circ}\hspace{0.05cm},$$
$$\pm (180^{\circ}-71.57^{\circ}) = \pm 108.43^{\circ}, \hspace{0.2cm}\pm (180^{\circ}-45^{\circ}) = \pm 135^{\circ}, \hspace{0.2cm}\pm 161.57^{\circ} \hspace{0.05cm}.$$