Difference between revisions of "Aufgaben:Exercise 4.12Z: 4-QAM Systems again"

From LNTwww
 
(31 intermediate revisions by 4 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1724__Mod_Z_4_11.png|right|]]
+
[[File:P_ID1724__Mod_Z_4_11.png|right|frame|Phase diagrams for 4–QAM, ideal and with degradations]]
  
Die Grafik (A) zeigt das Phasendiagramm der 4–QAM nach dem Matched–Filter, wobei eine bei AWGN–Rauschen optimale Realisierungsform gewählt wurde:
+
Graph  $\rm (A)$  shows the phase diagram of the 4-QAM after the matched filter,  where an optimal realization form was chosen in the case of AWGN noise under the constraint of  "peak limiting":
:* rechteckförmiger Sendegrundimpuls der Symboldauer T,
+
* rectangular basic transmision pulse of symbol duration  $T$,
:* rechteckförmige MF–Impulsantwort gleicher Breite T.
+
* rectangular impulse response of the matched filter of the same width  $T$.
  
Dieses Phasendiagramm (A) bezieht sich ebenso wie die beiden anderen (B), (C) ausschließlich auf die Detektionszeitpunkte. Die Übergänge zwischen den einzelnen zeitdiskreten Punkten sind in diesem Phasendiagrammen dagegen nicht eingezeichnet.
 
  
 +
All phase diagrams presented here –  $\rm (A)$  and   $\rm (B)$  and  $\rm (C)$  – refer to the detection time points only.  Thus,  the transitions between the individual discrete-time points are not plotted in this phase diagram.
  
Es liegt hier ein AWGN–Kanal mit $10 · lg E_B/N_0 = 9 dB$ vor. Entsprechend gilt für die Bitfehlerwahrscheinlichkeit des zunächst betrachteten Systems (A):
+
*An AWGN channel with   $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$   is present.
$$p_{\rm B} = \frac{1}{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )\hspace{0.05cm}.$$
+
*Accordingly,  for the bit error probability of the first system considered  $\rm (A)$ :
 +
:$$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )\hspace{0.05cm}.$$
  
Die Phasendiagramme (B) und (C) gehören zu zwei Systemen, bei denen die 4–QAM nicht optimal realisiert wurde. Auch hier ist AWGN–Rauschen mit $10 · lg E_B/N_0 = 9 dB$ vorausgesetzt.
+
The phase diagrams  $\rm (B)$  and  $\rm (C)$   belong to two systems where the 4-QAM was not optimally realized.  AWGN noise with  $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$  is also assumed in each of these.
  
'''Hinweis:''' Die Aufgabe bezieht sich auf das Themengebiet von [http://en.lntwww.de/Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation Kapitel 4.3]. Die Kreuze in den Grafiken markieren mögliche Punkte in den Phasendiagrammen, wenn kein AWGN–Rauschen vorhanden wäre. Als eine hinreichend gute Näherung für das komplementäre Gaußsche Fehlerintegral können Sie verwenden:
 
$${\rm erfc}(x) \approx \frac{1}{\sqrt{\pi}\cdot x} \cdot {\rm e}^{-x^2}.$$
 
  
  
  
===Fragebogen===
+
Hints:
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Quadrature_Amplitude_Modulation|"Quadrature Amplitude Modulation"]].
 +
*Reference is also made to the page  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Phase_offset_between_transmitter_and_receiver|"Phase offset between transmitter and receiver"]] in the book  "Digital Signal Transmission".
 +
*Causes and Effects of intersymbol interference are explained in the  [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|section with the same name]]  of the book  "Digital Signal Transmission".
 +
*The crosses in the graphs mark possible points in the phase diagrams if no AWGN noise were present.
 +
*The point clouds due to the AWGN noise all have the same diameter.  The red cloud appears slightly smaller than the others only because  "red"  is harder to see on a black background.
 +
*As a sufficiently good approximation for the complementary Gaussian error integral,  you can use:
 +
:$${\rm erfc}(x) \approx \frac{1}{\sqrt{\pi}\cdot x} \cdot {\rm e}^{-x^2}.$$
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie mit der angegebenen Näherung die Fehlerwahrscheinlichkeit von System (A).
+
{Using the given approximation,&nbsp; calculate the bit error probability of system &nbsp;$\rm (A)$.
 
|type="{}"}
 
|type="{}"}
$System (A):   p_B$ = { 0.33 3% } $10^{-4}$  
+
System &nbsp;$\rm (A):\ \ p_{\rm B} \ = \ $ { 3.5 3% } $\ \cdot 10^{-5}$  
  
  
  
{Welche Eigenschaften weist das System (B) auf?
+
{What are the properties of system &nbsp;$\rm (B)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Es besteht ein Phasenversatz zwischen Sender und Empfänger.
+
+ There is a phase offset between transmitter and receiver.
- Das Empfangsfilter führt zu Impulsinterferenzen.
+
- The receiver filter results in intersymbol interference.
- Es ergibt sich keine Degradation gegenüber System (A).
+
- There is no degradation compared to system &nbsp;$\rm (A)$.
  
{ Welche Eigenschaften weist das System (C) auf?
+
{ What are the properties of system &nbsp;$\rm (C)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Es besteht ein Phasenversatz zwischen Sender und Empfänger.
+
- There is a phase offset between transmitter and receiver.
+ Das Empfangsfilter führt zu Impulsinterferenzen.
+
+ The receiver filter results in intersymbol interference.
- Es ergibt sich keine Degradation gegenüber System (A).
+
- There is no degradation compared to system &nbsp;$\rm (A)$.
  
{ Welche Aussagen sind bezüglich den Fehlerwahrscheinlichkeiten richtig?
+
{ Which statements about the error probabilities are correct ?
 
|type="[]"}
 
|type="[]"}
- (A), (B) und (C) haben gleiche Fehlerwahrscheinlichkeit.
+
- All three systems have the same bit error probability.
+ Die Fehlerwahrscheinlichkeit von System (A) ist am kleinsten.
+
+ The error probability of system &nbsp;$\rm (A)$&nbsp; is the smallest.  
+ (B) besitzt eine größere Fehlerwahrscheinlichkeit als System (C).
+
+ System &nbsp;$\rm (B)$&nbsp; has a larger bit error probability than system&nbsp; $\rm (C)$.
  
  
Line 53: Line 63:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Aus der Angabe $10 · lg E_B/N_0 = 9 dB$ folgt:
+
'''(1)'''&nbsp; From &nbsp; $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$ &nbsp; &rArr;  &nbsp; ${E_{\rm B}}/{N_0} = 10^{0.9}\approx 7.95 \hspace{0.05cm}$&nbsp; follows:$&nbsp;
$${E_{\rm B}}/{N_0} = 10^{0.9}\approx 7.95 \hspace{0.05cm}.$$
+
*With the given approximation,&nbsp; it further holds:
Mit der angegebenen Näherung gilt weiter:
+
:$$p_{\rm B}  =  {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \approx \frac{1}{2 \cdot\sqrt{\pi \cdot{E_{\rm B}}/{N_0}} } \cdot {\rm e}^{-{E_{\rm B}}/{N_0}} =  {1}/{2 \cdot\sqrt{7.95 \cdot \pi }} \cdot {\rm e}^{-7.95}\approx \hspace{0.15cm}\underline {3.5 \cdot 10^{-5}\hspace{0.05cm}}.$$
$$p_{\rm B}  =  \frac{1}{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \approx \frac{1}{2 \cdot\sqrt{\pi \cdot{E_{\rm B}}/{N_0}} } \cdot {\rm e}^{-{E_{\rm B}}/{N_0}} =$$
+
*The exact value&nbsp; $p_{\rm B}\hspace{0.15cm}\underline { = 3.3 · 10^{–5}}$&nbsp; is only slightly smaller.
$$ =  {1}/{2 \cdot\sqrt{7.95 \cdot \pi }} \cdot {\rm e}^{-7.95}\approx \hspace{0.15cm}\underline {0.35 \cdot 10^{-4}\hspace{0.05cm}}.$$
+
 
Der exakte Wert $p_B = 0.33 · 10^{–4}$ ist nur geringfügig kleiner.
+
 
 +
 
 +
'''(2)'''&nbsp;  <u>Answer 1</u>&nbsp; is correct:
 +
*Due to a phase shift of &nbsp; $Δϕ_{\rm T} = 30^\circ$,&nbsp; the phase diagram was rotated,&nbsp; resulting in degradation.
 +
*The two components &nbsp; $\rm I$&nbsp; and&nbsp; $\rm Q$&nbsp; influence each other,&nbsp; but there is no intersymbol interference as in system &nbsp;$\rm (C)$.&nbsp;
 +
*A&nbsp; "Nyquist system"&nbsp; never leads to intersymbol interference.
 +
 
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp;  <u>Answer 2</u>&nbsp; is correct:
 +
*In particular,&nbsp; the nine crosses in each quadrant of the phase diagram &nbsp;$\rm (C)$,&nbsp; which mark the noise-free case,&nbsp; show the influence of intersymbol interference.
 +
*Instead of the optimal receiver filter for a rectangular basic transmission pulse&nbsp; $g_s(t)$ &nbsp; &rArr; &nbsp; rectangular impulse response &nbsp; $h_{\rm E}(t)$&nbsp;, a &nbsp; [[Signal_Representation/Special_Cases_of_Pulses#Gaussian_pulse|Gaussian low-pass filter]]&nbsp; with (normalized) cutoff frequency &nbsp; $f_{\rm G} · T = 0.6$&nbsp; was used here.
 +
*This causes intersymbol interference.&nbsp;  Even without noise,&nbsp; there are nine crosses in each quadrant indicating one leader and one follower per component.
 +
 
 +
 
 +
 
  
'''2.''' Richtig ist der Lösungsvorschlag 1. Aufgrund eines Phasenversatzes um $Δϕ_T = 30°$ wurde das Phasendiagramm gedreht.
+
'''(4)'''&nbsp;  <u>Answers 2 and 3</u>&nbsp; are correct:
 +
*Systems &nbsp;$\rm (B)$&nbsp; and &nbsp;$\rm (C)$&nbsp; are not optimal.&nbsp; This already shows that statement 1 is not correct.
 +
* In contrast,&nbsp; Answer 2 is right.&nbsp; Every 4-QAM system,&nbsp; which follows the matched filter principle and additionally fulfills the first Nyquist criterion,&nbsp; has the error probability given above:
 +
:$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).$$
 +
*Thus,&nbsp; the so-called&nbsp; "root-Nyquist configuration",&nbsp; which was treated for example in Exercise 4.12,&nbsp; has exactly the same error probability as system &nbsp;$\rm (A)$&nbsp; and also the same phase diagram at the detection times.&nbsp;  The transitions between the individual points are nevertheless different.
 +
*The third statement is also true.&nbsp;  One can already recognize incorrect decisions from the phase diagram of system &nbsp;$\rm (B)$,&nbsp; and this will always be the case when the points do not match the quadrants in terms of color.
  
'''3.''' Insbesondere an den Kreuzen im Phasendiagramm (C), die den rauschfreien Fall markieren, erkennt man den Einfluss von Impulsinterferenzen. Anstelle des optimalen Empfangsfilters mit rechteckförmiger Impulsantwort wurde hier ein Gaußtiefpass mit der (normierten) Grenzfrequenz $f_G · T = 0.6$ verwendet, der Impulsinterferenzen bewirkt. Richtig ist hier der Lösungsvorschlag 2.
 
  
'''4.'''  Die Systeme (B) und (C) sind nicht optimal. Daraus ist bereits ersichtlich, dass die Aussage 1 nicht zutrifft, sondern die Aussage 2. Jedes 4–QAM–System, das
+
The error probabilities of system &nbsp;$\rm (B)$&nbsp; and system &nbsp;$\rm (C)$&nbsp; are derived in the book "Digital Signal Transmission". The results of a system simulation confirm the above statements:  
:* dem Matched–Filter–Prinzip folgt und
+
* System &nbsp;$\rm (A)$: &nbsp; &nbsp; $p_{\rm B} ≈ 3.3 · 10^{–5}$ (see Question 1),
:* zusätzlich die erste Nyquistbedingung erfüllt,
+
* System &nbsp;$\rm (B)$: &nbsp; &nbsp; $p_{\rm B} ≈ 3.5 · 10^{–2}$,
besitzt die vorne angegebene Fehlerwahrscheinlichkeit
+
* System &nbsp;$\rm (C)$: &nbsp; &nbsp; $p_{\rm B} ≈ 2.4 · 10^{–4}$.
$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).$$
 
Die so genannte „Wurzel–Nyquist–Konfiguration”, die zum Beispiel in der Aufgabe A4.11 behandelt wurde, hat somit die genau gleiche Fehlerwahrscheinlichkeit wie das System (A) und auch das gleiche Phasendiagramm zu den Detektionszeitpunkten. Die Übergänge zwischen den einzelnen Punkten sind jedoch unterschiedlich.
 
  
Auch die dritte Aussage ist zutreffend. Man erkennt bereits aus dem Phasendiagramm von System (B) Fehlentscheidungen und zwar immer dann, wenn Punkte farblich nicht zu den Quadranten passen. Die Ergebnisse einer Systemsimulation bestätigen diese Aussage:
 
:* $System (A): p_B ≈ 0.33 · 10^{–4}$ (siehe Teilaufgabe a),
 
:* $System (B): p_B ≈ 0.35 · 10^{–1},$
 
:* $System (C): p_B ≈ 0.24 · 10{–3}.$
 
  
  
Die Fehlerwahrscheinlichkeiten von System (B) und System (C) werden im Kapitel 1.5 des Buches „Digitalsignalübertragung” hergeleitet.
 
  
  
Line 87: Line 110:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.3 Quadratur–Amplitudenmodulation^]]
+
[[Category:Modulation Methods: Exercises|^4.3 Quadrature Amplitude Modulation^]]

Latest revision as of 16:53, 19 April 2022

Phase diagrams for 4–QAM, ideal and with degradations

Graph  $\rm (A)$  shows the phase diagram of the 4-QAM after the matched filter,  where an optimal realization form was chosen in the case of AWGN noise under the constraint of  "peak limiting":

  • rectangular basic transmision pulse of symbol duration  $T$,
  • rectangular impulse response of the matched filter of the same width  $T$.


All phase diagrams presented here –  $\rm (A)$  and  $\rm (B)$  and  $\rm (C)$  – refer to the detection time points only.  Thus,  the transitions between the individual discrete-time points are not plotted in this phase diagram.

  • An AWGN channel with   $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$   is present.
  • Accordingly,  for the bit error probability of the first system considered  $\rm (A)$ :
$$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )\hspace{0.05cm}.$$

The phase diagrams  $\rm (B)$  and  $\rm (C)$  belong to two systems where the 4-QAM was not optimally realized.  AWGN noise with  $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$  is also assumed in each of these.



Hints:

  • This exercise belongs to the chapter  "Quadrature Amplitude Modulation".
  • Reference is also made to the page  "Phase offset between transmitter and receiver" in the book  "Digital Signal Transmission".
  • Causes and Effects of intersymbol interference are explained in the  section with the same name  of the book  "Digital Signal Transmission".
  • The crosses in the graphs mark possible points in the phase diagrams if no AWGN noise were present.
  • The point clouds due to the AWGN noise all have the same diameter.  The red cloud appears slightly smaller than the others only because  "red"  is harder to see on a black background.
  • As a sufficiently good approximation for the complementary Gaussian error integral,  you can use:
$${\rm erfc}(x) \approx \frac{1}{\sqrt{\pi}\cdot x} \cdot {\rm e}^{-x^2}.$$


Questions

1

Using the given approximation,  calculate the bit error probability of system  $\rm (A)$.

System  $\rm (A):\ \ p_{\rm B} \ = \ $

$\ \cdot 10^{-5}$

2

What are the properties of system  $\rm (B)$ ?

There is a phase offset between transmitter and receiver.
The receiver filter results in intersymbol interference.
There is no degradation compared to system  $\rm (A)$.

3

What are the properties of system  $\rm (C)$ ?

There is a phase offset between transmitter and receiver.
The receiver filter results in intersymbol interference.
There is no degradation compared to system  $\rm (A)$.

4

Which statements about the error probabilities are correct ?

All three systems have the same bit error probability.
The error probability of system  $\rm (A)$  is the smallest.
System  $\rm (B)$  has a larger bit error probability than system  $\rm (C)$.


Solution

(1)  From   $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$   ⇒   ${E_{\rm B}}/{N_0} = 10^{0.9}\approx 7.95 \hspace{0.05cm}$  follows:$ 

  • With the given approximation,  it further holds:
$$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \approx \frac{1}{2 \cdot\sqrt{\pi \cdot{E_{\rm B}}/{N_0}} } \cdot {\rm e}^{-{E_{\rm B}}/{N_0}} = {1}/{2 \cdot\sqrt{7.95 \cdot \pi }} \cdot {\rm e}^{-7.95}\approx \hspace{0.15cm}\underline {3.5 \cdot 10^{-5}\hspace{0.05cm}}.$$
  • The exact value  $p_{\rm B}\hspace{0.15cm}\underline { = 3.3 · 10^{–5}}$  is only slightly smaller.


(2)  Answer 1  is correct:

  • Due to a phase shift of   $Δϕ_{\rm T} = 30^\circ$,  the phase diagram was rotated,  resulting in degradation.
  • The two components   $\rm I$  and  $\rm Q$  influence each other,  but there is no intersymbol interference as in system  $\rm (C)$. 
  • A  "Nyquist system"  never leads to intersymbol interference.



(3)  Answer 2  is correct:

  • In particular,  the nine crosses in each quadrant of the phase diagram  $\rm (C)$,  which mark the noise-free case,  show the influence of intersymbol interference.
  • Instead of the optimal receiver filter for a rectangular basic transmission pulse  $g_s(t)$   ⇒   rectangular impulse response   $h_{\rm E}(t)$ , a   Gaussian low-pass filter  with (normalized) cutoff frequency   $f_{\rm G} · T = 0.6$  was used here.
  • This causes intersymbol interference.  Even without noise,  there are nine crosses in each quadrant indicating one leader and one follower per component.



(4)  Answers 2 and 3  are correct:

  • Systems  $\rm (B)$  and  $\rm (C)$  are not optimal.  This already shows that statement 1 is not correct.
  • In contrast,  Answer 2 is right.  Every 4-QAM system,  which follows the matched filter principle and additionally fulfills the first Nyquist criterion,  has the error probability given above:
$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).$$
  • Thus,  the so-called  "root-Nyquist configuration",  which was treated for example in Exercise 4.12,  has exactly the same error probability as system  $\rm (A)$  and also the same phase diagram at the detection times.  The transitions between the individual points are nevertheless different.
  • The third statement is also true.  One can already recognize incorrect decisions from the phase diagram of system  $\rm (B)$,  and this will always be the case when the points do not match the quadrants in terms of color.


The error probabilities of system  $\rm (B)$  and system  $\rm (C)$  are derived in the book "Digital Signal Transmission". The results of a system simulation confirm the above statements:

  • System  $\rm (A)$:     $p_{\rm B} ≈ 3.3 · 10^{–5}$ (see Question 1),
  • System  $\rm (B)$:     $p_{\rm B} ≈ 3.5 · 10^{–2}$,
  • System  $\rm (C)$:     $p_{\rm B} ≈ 2.4 · 10^{–4}$.