Difference between revisions of "Aufgaben:Exercise 4.14: 8-PSK and 16-PSK"

From LNTwww
m (Text replacement - "„" to """)
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit kohärenter Demodulation}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation}}
  
[[File:P_ID2067__Dig_A_4_14.png|right|frame|Signalraumkonstellationen <br>der 8–PSK und 16–PSK]]
+
[[File:P_ID2067__Dig_A_4_14.png|right|frame|Signal space constellations <br>of the 8-PSK and 16-PSK]]
Betrachtet wird nun eine Signalmenge&nbsp; $\{s_i(t)\}$, die auf den Zeitbereich&nbsp; $0 &#8804; t &#8804; T$&nbsp; begrenzt ist. Der Index&nbsp; $i$&nbsp; durchläuft die Werte&nbsp; $0, \ \text{...} \ , M-1$:
+
Now a signal set&nbsp; $\{s_i(t)\}$&nbsp; is considered,&nbsp; which is limited to the time domain&nbsp; $0 &#8804; t &#8804; T$.&nbsp; The index&nbsp; $i$&nbsp; runs through the values&nbsp; $0, \ \text{...} \ , M-1$:
 
:$$s_i(t) = A \cdot \cos \left ( 2\pi f_{\rm T}t + { 2\pi }/{ M} \cdot i \right ) \hspace{0.05cm}.$$
 
:$$s_i(t) = A \cdot \cos \left ( 2\pi f_{\rm T}t + { 2\pi }/{ M} \cdot i \right ) \hspace{0.05cm}.$$
  
Es handelt sich hierbei um eine <i>Phasenmodulation</i>&nbsp; mit&nbsp; $M$&nbsp; Signalformen. Man nennt dieses Modulationsverfahren auch <b><i>M</i>&ndash;PSK</b>. $M$&nbsp; ist meist eine Zweierpotenz.
+
*This is a&nbsp; "phase modulation"&nbsp; with&nbsp; $M$&nbsp; signal shapes.&nbsp;  
  
Die Grafik zeigt die Signalraumkonstellation für $M = 8$ (oben) und $M = 16$ (unten). Alle Signalraumpunkte haben gleiche Energie $||\boldsymbol{s}_i||^2 = E_{\rm S}$ ("mittlere Symbolenergie").
+
*This modulation process is also called&nbsp; "$\rm M&ndash;PSK$".&nbsp; $M$&nbsp; is usually a power of two.
  
Die exakte Berechnung der Fehlerwahrscheinlichkeit ist für&nbsp; $M &ne; 2$&nbsp; schwierig. Angegeben werden kann dagegen stets die sogenannte <i>Union Bound</i>&nbsp; als obere Schranke für die Symbolfehlerwahrscheinlichkeit &nbsp;$(p_{\rm UB} &#8805; p_{\rm S})$:
+
 
 +
The graphic shows the signal space constellation for&nbsp; $M = 8$&nbsp; (top)&nbsp; and&nbsp; $M = 16$&nbsp; (bottom).&nbsp; All signal space points have equal energy&nbsp; $||\boldsymbol{s}_i||^2 = E_{\rm S}$&nbsp; ("average symbol energy").
 +
 
 +
The exact calculation of the symbol error probability is difficult for&nbsp; $M &ne; 2$.&nbsp; However,&nbsp; the so-called&nbsp; "Union Bound"&nbsp; can always be given as an upper bound for the symbol error probability &nbsp;$(p_{\rm UB} &#8805; p_{\rm S})$:
 
:$$  p_{\rm UB}  = 2 \cdot {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right ) = 2 \cdot {\rm Q} \left (\sqrt{ \frac{ d^2}{ 2 N_0}}\right ) \hspace{0.05cm}.$$
 
:$$  p_{\rm UB}  = 2 \cdot {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right ) = 2 \cdot {\rm Q} \left (\sqrt{ \frac{ d^2}{ 2 N_0}}\right ) \hspace{0.05cm}.$$
  
Hierbei sind folgende Größen verwendet:
+
The following quantities are used here:
* $d$&nbsp; ist der Abstand zwischen zwei benachbarten Punkten, zum Beispiel zwischen&nbsp; $\boldsymbol{s}_0$&nbsp; und&nbsp; $\boldsymbol{s}_1$. Verläuft die Entscheidungsgrenze senkrecht zur Verbindungslinie von&nbsp; $\boldsymbol{s}_0$&nbsp; und&nbsp; $\boldsymbol{s}_1$&nbsp; genau mittig, so ist&nbsp; $d/2$&nbsp; der Abstand von&nbsp; $\boldsymbol{s}_0$&nbsp; bzw.&nbsp; $\boldsymbol{s}_1$&nbsp; von dieser Entscheidungsgrenze.
+
* $d$&nbsp; is the distance between two neighboring points,&nbsp; for example between&nbsp; $\boldsymbol{s}_0$&nbsp; and&nbsp; $\boldsymbol{s}_1$.  
* Die Varianz des AWGN&ndash;Rauschens ist&nbsp; $\sigma_n^2 = N_0/2$.
+
 
* Der Faktor&nbsp; $2$&nbsp; in obiger Grenze berücksichtigt, dass für&nbsp; $M > 2$&nbsp; jeder Signalraumpunkt in zwei Richtungen verfälscht werden kann, zum Beispiel bei der 8&ndash;PSK das Symbol&nbsp; $\boldsymbol{s}_0$&nbsp; in das Symbol&nbsp; $\boldsymbol{s}_1$&nbsp; oder in das Symbol&nbsp; $\boldsymbol{s}_7$.
+
*If the decision boundary is exactly centered perpendicular to the line connecting&nbsp; $\boldsymbol{s}_0$&nbsp; and&nbsp; $\boldsymbol{s}_1$,&nbsp; then&nbsp; $d/2$&nbsp; is the distance of&nbsp; $\boldsymbol{s}_0$&nbsp; or&nbsp; $\boldsymbol{s}_1$&nbsp; from this decision boundary.
* ${\rm Q}(x)$&nbsp; ist die komplementäre Gaußsche Fehlerfunktion, für die folgende Näherung gilt:
+
 
 +
* The variance of the AWGN noise is&nbsp; $\sigma_n^2 = N_0/2$.
 +
 
 +
* The factor of&nbsp; $2$&nbsp; in the above limit takes into account that for&nbsp; $M > 2$&nbsp; each signal space point can be falsified in two directions,&nbsp; e.g. for the&nbsp; "8&ndash;PSK"&nbsp; the symbol&nbsp; $\boldsymbol{s}_0$&nbsp; into the symbol&nbsp; $\boldsymbol{s}_1$&nbsp; or into the symbol&nbsp; $\boldsymbol{s}_7$.
 +
 
 +
* ${\rm Q}(x)$&nbsp; is the complementary Gaussian error function for which the following approximation holds:
 
:$${\rm Q}(x)  \approx  \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2}
 
:$${\rm Q}(x)  \approx  \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
In der letzten Teilaufgabe geht es um die Bitfehlerwahrscheinlichkeit. Für diese wurde im&nbsp; [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Theorieteil]]&nbsp; unter der Voraussetzung eines <i>Graycodes</i>&nbsp; folgende Schranke angegeben:
+
The last subtask deals with the bit error probability.&nbsp; For this,&nbsp; the following bound was given in the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation| "theory section"]]&nbsp; under the assumption of a&nbsp; "Gray code":&nbsp;
 
:$$p_{\rm B}  \le \frac{2}{{\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{{\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right )   
 
:$$p_{\rm B}  \le \frac{2}{{\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{{\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right )   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Diese Gleichung ist allerdings nur für&nbsp; $M > 4$&nbsp; anzuwenden. Dagegen ergibt sich die exakte Lösung
+
However,&nbsp; this equation is only applicable for&nbsp; $M > 4$.&nbsp; In contrast,&nbsp; the exact solution
* für&nbsp; $M = 2$&nbsp; aus der Identität mit der&nbsp; [[Digital_Signal_Transmission/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#Binary_Phase_Shift_Keying_.28BPSK.29| BPSK]], und
+
* for&nbsp; $M = 2$ &nbsp; from the identity with the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_phase_shift_keying_.28BPSK.29| "BPSK"]], and
* für&nbsp; $M = 4$&nbsp; aus der Tatsache, dass die 4&ndash;PSK mit der&nbsp; [[Digital_Signal_Transmission/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#Quadraturamplitudenmodulation_.28M.E2.80.93QAM.29|4&ndash;QAM]] identisch ist:
+
 
 +
* for&nbsp; $M = 4$ &nbsp; from the fact that the&nbsp; "4&ndash;PSK"&nbsp; is identical with the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"4&ndash;QAM"]]:
 
:$$p_{\rm B}  ={\rm Q} \left (  \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right )   
 
:$$p_{\rm B}  ={\rm Q} \left (  \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right )   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 33: Line 42:
  
  
''Hinweise:''
+
Notes:
* Die Aufgabe gehört zum Themengebiet des Kapitels&nbsp; [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Trägerfrequenzen mit kohärenter Demodulation]].
+
* The exercise belongs to the topic of the chapter&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation|"Carrier Frequency Systems with Coherent Demodulation"]].
*Bezug genommen eird insbesondere auf die Seite&nbsp;  [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Mehrstufiges_Phase.E2.80.93Shift_Keying_.28M.E2.80.93PSK.29| Mehrstufiges ''Phase Shift Keying'']].  
+
 
* Die Zuordnung der 8 bzw. 16 Symbole zu Binärfolgen der Länge 3 bzw. 4 nach der Graycodierung kann der Grafik entnommen werden (rote Beschriftung).
+
*Reference is made in particular to the section&nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Multi-level_phase.E2.80.93shift_keying_.28M.E2.80.93PSK.29| "Multi-level Phase Shift Keying"]].
* Bei der Lösung der Aufgabe können Sie folgende Gleichungen verwenden:
+
 +
* The assignment of the&nbsp; $8$&nbsp; or&nbsp; $16$&nbsp; symbols to binary sequences of length&nbsp; $3$&nbsp; or&nbsp; $4$&nbsp;according to the Gray coding can be taken from the graphic (red labeling).
 +
 
 +
* When solving the exercise, you can use the following equations:
 
:$$\cos(\alpha + \beta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos(\alpha ) \cdot \cos( \beta) - \sin(\alpha ) \cdot \sin( \beta)\hspace{0.05cm}, \hspace{0.25cm}
 
:$$\cos(\alpha + \beta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos(\alpha ) \cdot \cos( \beta) - \sin(\alpha ) \cdot \sin( \beta)\hspace{0.05cm}, \hspace{0.25cm}
 
  1 - \cos(2\alpha ) = \sin^2(\alpha )\hspace{0.05cm},$$
 
  1 - \cos(2\alpha ) = \sin^2(\alpha )\hspace{0.05cm},$$
Line 43: Line 55:
 
   
 
   
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Basisfunktionen bei der Bandpassdarstellung? $\varphi_1(t)$&nbsp; und&nbsp; $\varphi_2(t)$&nbsp; seien jeweils auf den Bereich&nbsp; $0 &#8804; t &#8804; T$&nbsp; begrenzt.
+
{What are the basis functions in the band-pass representation?&nbsp; Let $\varphi_1(t)$&nbsp; and&nbsp; $\varphi_2(t)$&nbsp; each be limited to the range&nbsp; $0 &#8804; t &#8804; T$.&nbsp;
 
|type="[]"}
 
|type="[]"}
 
- $\varphi_1(t) = \cos {(2\pi f_{\rm T}t)}$,
 
- $\varphi_1(t) = \cos {(2\pi f_{\rm T}t)}$,
Line 52: Line 64:
 
+ $\varphi_2(t) = \, &ndash;\sqrt {2/T} \cdot \sin {(2\pi f_{\rm T}t)}$.
 
+ $\varphi_2(t) = \, &ndash;\sqrt {2/T} \cdot \sin {(2\pi f_{\rm T}t)}$.
  
{Wie lauten der Inphase&ndash; und der Quadraturanteil des Signalraumpunktes&nbsp; $\boldsymbol{s}_i$? Welche Aussagen treffen zu?
+
{What are the in-phase and quadrature components of the signal space point&nbsp; $\boldsymbol{s}_i$?&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
 
+ $s_{\rm I \it i} = \sqrt {E_{\rm S}} \cdot \cos {(2\pi \cdot i/M)}$,
 
+ $s_{\rm I \it i} = \sqrt {E_{\rm S}} \cdot \cos {(2\pi \cdot i/M)}$,
Line 59: Line 71:
 
+ $s_{\rm Q \it i} = \sqrt {E_{\rm S}} \cdot \sin {(2\pi \cdot i/M)}$.
 
+ $s_{\rm Q \it i} = \sqrt {E_{\rm S}} \cdot \sin {(2\pi \cdot i/M)}$.
  
{Wie groß ist der Abstand&nbsp; $d$&nbsp; zwischen zwei benachbarten Signalraumpunkten? Welche Werte ergeben sich für&nbsp; $M = 8$&nbsp; bzw. &nbsp;$M = 16$?
+
{What is the distance&nbsp; $d$&nbsp; between two adjacent signal space points?&nbsp; What are the values for&nbsp; $M = 8$&nbsp; and &nbsp;$M = 16$, respectively?
 
|type="{}"}
 
|type="{}"}
 
$M = 8 \text{:} \hspace{0.45cm} d \ = \ $ { 0.765 3% } $\ \cdot \sqrt {E_{\rm S}}$
 
$M = 8 \text{:} \hspace{0.45cm} d \ = \ $ { 0.765 3% } $\ \cdot \sqrt {E_{\rm S}}$
 
$M = 16 \text{:} \hspace{0.2cm} d \ = \ $ { 0.39 3% } $\ \cdot \sqrt {E_{\rm S}}$
 
$M = 16 \text{:} \hspace{0.2cm} d \ = \ $ { 0.39 3% } $\ \cdot \sqrt {E_{\rm S}}$
  
{Welcher Wert ergibt sich für die Union Bound&nbsp; $(p_{\rm UB})$&nbsp; mit &nbsp;$E_{\rm S}/N_0 = 50$.
+
{What is the value of the&nbsp; "Union Bound"&nbsp; $(p_{\rm UB})$&nbsp; with &nbsp;$E_{\rm S}/N_0 = 50$.
 
|type="{}"}
 
|type="{}"}
 
$M = 8 \text{:} \hspace{0.45cm} p_{\rm UB}$ = { 0.014 3% } $\ \%$
 
$M = 8 \text{:} \hspace{0.45cm} p_{\rm UB}$ = { 0.014 3% } $\ \%$
 
$M = 16 \text{:} \hspace{0.2cm} p_{\rm UB}$ = { 6 3% } $\ \%$
 
$M = 16 \text{:} \hspace{0.2cm} p_{\rm UB}$ = { 6 3% } $\ \%$
  
{Gilt die Aussage: "$p_{\rm UB}$&nbsp; nähert &nbsp;$p_{\rm S}$&nbsp; um so genauer an, je größer &nbsp;$M$ &nbsp; ist"?
+
{Does the statement &nbsp; "$p_{\rm UB}$&nbsp; approximates &nbsp;$p_{\rm S}$&nbsp; more closely the larger &nbsp;$M$ &nbsp; is"&nbsp; hold?
 
|type="()"}
 
|type="()"}
+ JA.
+
+ YES.
- NEIN.
+
- NO.
  
{Welche Aussagen gelten hinsichtlich der Bitfehlerwahrscheinlichkeit&nbsp; $p_{\rm B}$?
+
{Which statements are true regarding the bit error probability&nbsp; $p_{\rm B}$?
 
|type="[]"}
 
|type="[]"}
+ $p_{\rm B}$&nbsp; ist für &nbsp;$M = 2$&nbsp; und &nbsp;$M = 4$&nbsp; am kleinsten.
+
+ $p_{\rm B}$&nbsp; is smallest for &nbsp;$M = 2$&nbsp; and &nbsp;$M = 4$.&nbsp;  
- $p_{\rm B}$&nbsp; ist für &nbsp;$M = 8$&nbsp; am kleinsten.
+
- $p_{\rm B}$&nbsp; is smallest for &nbsp;$M = 8$.&nbsp;
- $p_{\rm B}$&nbsp; ist für &nbsp;$M = 16$&nbsp; am kleinsten.
+
- $p_{\rm B}$&nbsp; is smallest for &nbsp;$M = 16$.&nbsp;  
+ $p_{\rm B}$&nbsp; ist nicht der Hauptgrund, dass man höherstufige PSK einsetzt.
+
+ $p_{\rm B}$&nbsp; is not the main reason for using higher level PSK.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 4</u>:
+
'''(1)'''&nbsp; <u>Solutions 2 and 4</u>&nbsp; are correct:
*Die Signalmenge kann im Bandpassbereich mit der angegebenen trigonometrischen Umformung wie folgt dargestellt werden:
+
*The signal set&nbsp; $\{s_i(t)\}$&nbsp; can be represented in the band-pass domain with the given trigonometric transformation as follows:
 
:$$s_i(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos \left ( 2\pi f_{\rm T}t + { 2\pi }/{ M} \cdot i \right ) = A \cdot \cos \left ( { 2\pi }/{ M} \cdot i \right ) \cdot \cos \left ( 2\pi f_{\rm T}t  \right )-
 
:$$s_i(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos \left ( 2\pi f_{\rm T}t + { 2\pi }/{ M} \cdot i \right ) = A \cdot \cos \left ( { 2\pi }/{ M} \cdot i \right ) \cdot \cos \left ( 2\pi f_{\rm T}t  \right )-
 
  A \cdot \sin \left ( { 2\pi }/{ M} \cdot i \right ) \cdot \sin \left ( 2\pi f_{\rm T}t  \right )\hspace{0.05cm}.$$
 
  A \cdot \sin \left ( { 2\pi }/{ M} \cdot i \right ) \cdot \sin \left ( 2\pi f_{\rm T}t  \right )\hspace{0.05cm}.$$
  
*Die jeweils ersten Terme in dieser Differenz führen zum Signalraumpunkt $\boldsymbol{s}_i$, die jeweils zweiten zu den Basisfunktionen $\varphi_1(t)$ und $\varphi_2(t)$. Hierbei ist zu beachten, dass diese jeweils energienormiert sein müssen:
+
*The respective first terms in this difference lead to the signal space point&nbsp; $\boldsymbol{s}_i$,&nbsp; the respective second terms to the basis functions&nbsp; $\varphi_1(t)$&nbsp; and&nbsp; $\varphi_2(t)$.  
 +
 
 +
*Here it is to be noted that these must be energy normalized in each case:
 
:$$\int_{0}^{T} \varphi_1 ( t)^2 \,{\rm d} t = \int_{0}^{T} \left [K \cdot \cos( 2\pi f_{\rm T}t)\right ]^2 \,{\rm d} t = 1\hspace{0.3cm}
 
:$$\int_{0}^{T} \varphi_1 ( t)^2 \,{\rm d} t = \int_{0}^{T} \left [K \cdot \cos( 2\pi f_{\rm T}t)\right ]^2 \,{\rm d} t = 1\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} \frac{K^2 \cdot T}{2} = 2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = \sqrt{2/T } \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} \frac{K^2 \cdot T}{2} = 2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = \sqrt{2/T } \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  \varphi_1 ( t) = \sqrt{2/T } \cdot \cos( 2\pi f_{\rm T}t)\hspace{0.05cm}.$$
 
  \varphi_1 ( t) = \sqrt{2/T } \cdot \cos( 2\pi f_{\rm T}t)\hspace{0.05cm}.$$
 
+
*Using the same arithmetic,&nbsp; we arrive at the second basis function:
*Mit gleichem Rechenweg kommt man zur zweiten Basisfunkion:
 
 
:$$\varphi_2 ( t) = -\sqrt{2/T } \cdot \sin( 2\pi f_{\rm T}t)\hspace{0.05cm}.$$
 
:$$\varphi_2 ( t) = -\sqrt{2/T } \cdot \sin( 2\pi f_{\rm T}t)\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 4</u>:
+
'''(2)'''&nbsp; <u>Solutions 1 and 4</u>&nbsp; are correct:
*Unter Verwendung der eben berechneten Basisfunktionen kann die Signalmenge $s_i(t)$ wie folgt dargestellt werden (wiederum begrenzt auf den Bereich $0 &#8804; t &#8804; T$):
+
*Using the basis functions just calculated,&nbsp; the signal set&nbsp; $s_i(t)$&nbsp; can be represented as follows&nbsp; $($again, limited to the range&nbsp; $0 &#8804; t &#8804; T)$:
 
:$$s_i(t) = A \cdot \sqrt{T/2 } \cdot \cos ( 2\pi  \cdot i /M ) \cdot \varphi_1 ( t)+
 
:$$s_i(t) = A \cdot \sqrt{T/2 } \cdot \cos ( 2\pi  \cdot i /M ) \cdot \varphi_1 ( t)+
 
  A \cdot \sqrt{T/2 } \cdot \sin ( 2\pi  \cdot i /M ) \cdot \varphi_2 ( t)
 
  A \cdot \sqrt{T/2 } \cdot \sin ( 2\pi  \cdot i /M ) \cdot \varphi_2 ( t)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Mit der für alle $M$ Punkte gleichen Energie $E = 0.5 \cdot A^2 \cdot T$, die gleichzeitig die mittlere Signalenergie pro Symbol ($E_{\rm S}$) ist, lautet obige Gleichung
+
*With the energy&nbsp; $E = 0.5 \cdot A^2 \cdot T$,&nbsp; which is the same for all&nbsp; $M$&nbsp; points and which is also the average signal energy per symbol&nbsp; $(E_{\rm S})$,&nbsp; the above equation is
 
:$$s_i(t) = s_{{\rm I}i} \cdot \varphi_1 ( t)+
 
:$$s_i(t) = s_{{\rm I}i} \cdot \varphi_1 ( t)+
 
  s_{{\rm Q}i}  \cdot \varphi_2 ( t)\hspace{0.3cm}
 
  s_{{\rm Q}i}  \cdot \varphi_2 ( t)\hspace{0.3cm}
Line 110: Line 123:
 
  s_{{\rm Q}i} = \sqrt{E_{\rm S} }\cdot \sin ( 2\pi  \cdot i /M )\hspace{0.05cm}. $$
 
  s_{{\rm Q}i} = \sqrt{E_{\rm S} }\cdot \sin ( 2\pi  \cdot i /M )\hspace{0.05cm}. $$
  
*Die in der Grafik vorne für $M = 8$ bzw. $M = 16$ skizzierten Signalraumpunkte lassen sich genau in dieser Weise darstellen.  
+
*The signal space points sketched in the front graph for&nbsp; $M = 8$&nbsp; resp.&nbsp; $M = 16$,&nbsp; can be represented in exactly this way.
  
  
  
[[File:P_ID2070__Dig_A_4_14c.png|right|frame|Zur Abstandsberechnung bei 8-PSK]]
+
'''(3)'''&nbsp; Since the distance from one to the nearest point is the same for all&nbsp; $i$,&nbsp; we can calculate&nbsp; $d$, for example,&nbsp; from the signal space points&nbsp; $\boldsymbol{s}_0$&nbsp; and&nbsp; $\boldsymbol{s}_1$.&nbsp;
'''(3)'''&nbsp; Da der Abstand von einem zum nächstgelegenen Punkt für alle $i$ gleich ist, können wir $d$ beispielsweise aus den Signalraumpunkten $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ berechnen. Betrachten Sie dabei die nachfolgende Skizze. Nach dem <i>Satz von Pythagoras</i> gilt:
+
*In doing&nbsp; so,&nbsp; consider the sketch below.&nbsp; According to the&nbsp; "Pythagorean theorem":
 +
[[File:P_ID2070__Dig_A_4_14c.png|right|frame|Distance calculation at the&nbsp;  "8-PSK"]]
 +
 
 
:$$d_{\rm norm}^2 \hspace{-0.01cm}=\hspace{-0.01cm} \sin^2(\frac{2\pi}{M}) + [1- \cos(\frac{2\pi}{M})]^2 $$
 
:$$d_{\rm norm}^2 \hspace{-0.01cm}=\hspace{-0.01cm} \sin^2(\frac{2\pi}{M}) + [1- \cos(\frac{2\pi}{M})]^2 $$
 
:$$\Rightarrow \hspace{0.3cm} d_{\rm norm}^2 \hspace{-0.01cm}=\hspace{-0.01cm} 2 \cdot [1- \cos( \frac{2\pi}{M} )] =  4 \cdot \sin^2(\pi/M )\hspace{0.05cm} $$
 
:$$\Rightarrow \hspace{0.3cm} d_{\rm norm}^2 \hspace{-0.01cm}=\hspace{-0.01cm} 2 \cdot [1- \cos( \frac{2\pi}{M} )] =  4 \cdot \sin^2(\pi/M )\hspace{0.05cm} $$
Line 121: Line 136:
 
\Rightarrow \hspace{0.3cm} d =  2\sqrt {E_{\rm S}} \cdot \sin{\pi}/{M })\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm} d =  2\sqrt {E_{\rm S}} \cdot \sin{\pi}/{M })\hspace{0.05cm}.$$
  
Daraus ergeben sich folgende Zahlenwerte:
+
*This results in the following numerical values:
 
:$$M = 8\hspace{-0.09cm}: \hspace{0.2cm}d  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \underline{0.765} \cdot \sqrt {E_{\rm S} } \hspace{0.05cm},$$
 
:$$M = 8\hspace{-0.09cm}: \hspace{0.2cm}d  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \underline{0.765} \cdot \sqrt {E_{\rm S} } \hspace{0.05cm},$$
 
:$$M = 16\hspace{-0.09cm}: \hspace{0.2cm} d  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \underline{0.390} \cdot \sqrt {E_{\rm S} } \hspace{0.05cm}.$$
 
:$$M = 16\hspace{-0.09cm}: \hspace{0.2cm} d  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \underline{0.390} \cdot \sqrt {E_{\rm S} } \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Mit dem Ergebnis aus '''(3)''' erhält man mit der vorne angegebenen Gleichung:
+
'''(4)'''&nbsp; Using the result from subtask&nbsp; '''(3)''',&nbsp; we obtain with the equation given in front:
 
:$$p_{\rm S} \le  p_{\rm UB}  =  2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]  \hspace{0.05cm}.$$
 
:$$p_{\rm S} \le  p_{\rm UB}  =  2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ]  \hspace{0.05cm}.$$
  
*Mit&nbsp; $E_{\rm S}/N_0 = 50$&nbsp; &#8658; &nbsp;$(2E_{\rm S}/N_0)^{\rm 0.5} = 10$ &nbsp; folgt daraus:
+
*With&nbsp; $E_{\rm S}/N_0 = 50$&nbsp; &#8658; &nbsp;$(2E_{\rm S}/N_0)^{\rm 0.5} = 10$ &nbsp; it follows:
 
:$$M = 8\hspace{-0.09cm}: \hspace{0.2cm}p_{\rm UB}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  2 \cdot {\rm Q}  ( 10 \cdot 0.383 )= 2 \cdot {\rm Q} ( 3.83 ) \approx \underline{0.014 \%} \hspace{0.05cm},$$
 
:$$M = 8\hspace{-0.09cm}: \hspace{0.2cm}p_{\rm UB}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  2 \cdot {\rm Q}  ( 10 \cdot 0.383 )= 2 \cdot {\rm Q} ( 3.83 ) \approx \underline{0.014 \%} \hspace{0.05cm},$$
 
:$$ M = 16\hspace{-0.09cm}: \hspace{0.2cm} p_{\rm UB}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  2 \cdot {\rm Q}  ( 10 \cdot 0.195 )= 2 \cdot {\rm Q} ( 1.95 ) \approx \underline{6 \%}  \hspace{0.05cm}.$$
 
:$$ M = 16\hspace{-0.09cm}: \hspace{0.2cm} p_{\rm UB}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  2 \cdot {\rm Q}  ( 10 \cdot 0.195 )= 2 \cdot {\rm Q} ( 1.95 ) \approx \underline{6 \%}  \hspace{0.05cm}.$$
  
*Die Fehlerwahrscheinlichkeit wird also mit steigendem $M$ immer größer, wenn man &ndash; wie hier &ndash; von  konstantem $E_{\rm S}/N_0$ ausgeht.  
+
*Thus,&nbsp; the symbol error probability becomes larger and larger as&nbsp; $M$&nbsp; increases,&nbsp; assuming constant&nbsp; $E_{\rm S}/N_0$,&nbsp; as in this case.
*Der günstigste Wert ergäbe sich für $M = 2$ (der Faktor $2$ der Union Bound ist dann nämlich nicht notwendig) zu
+
 
 +
*The most favorable value would result for&nbsp; $M = 2$&nbsp; (the factor&nbsp; $2$&nbsp; of the Union Bound is then not necessary)&nbsp; as follows
 
:$$M = 2\hspace{-0.09cm}: \hspace{0.2cm}p_{\rm UB} = p_{\rm S}  = {\rm Q}  ( 10  ) \approx { 10^{-23}}.$$
 
:$$M = 2\hspace{-0.09cm}: \hspace{0.2cm}p_{\rm UB} = p_{\rm S}  = {\rm Q}  ( 10  ) \approx { 10^{-23}}.$$
  
*Mehrstufige PSK würde also keinen Sinn machen, wenn es nicht andere Gründe für deren Anwendung gäbe, worauf in der Teilaufgabe '''(6)''' noch eingegangen wird.
+
*Thus,&nbsp; multi-level PSK would not make sense if there were not other reasons for its use,&nbsp; which will be discussed in subtask&nbsp; '''(6)'''.
 +
 
 +
 
  
 +
'''(5)'''&nbsp; Correct is <u>YES</u>.&nbsp; The graph shows the constellation for&nbsp; "8&ndash;PSK"&nbsp; and&nbsp; "16&ndash;PSK".
 +
[[File:P_ID2071__Dig_A_4_14e.png|right|frame|For the interpretation of the Union Bound at the&nbsp;  "$\rm M–PSK$"]]
 +
 +
*Each valid under the assumption that&nbsp; $\boldsymbol{s}_0$&nbsp; was transmitted.
  
 +
*The contour lines of the AWGN PDF are then circles around&nbsp; $\boldsymbol{s}_0$.
  
'''(5)'''&nbsp; Richtig ist <u>JA</u>. Die Grafik zeigt die Konstellation für 8&ndash;PSK und 16&ndash;PSK, jeweils gültig unter der Annahme, dass $\boldsymbol{s}_0$ gesendet wurde. Die Höhenlinien der AWGN&ndash;WDF sind dann Kreise um $\boldsymbol{s}_0$.
 
[[File:P_ID2071__Dig_A_4_14e.png|center|frame|Zur Interpretation der Union Bound bei <i>M</i>–PSK]]
 
Es gelten folgende Aussagen:
 
* Die tatsächliche Fehlerwahrscheinlichkeit $p_{\rm S}$ setzt sich aus den Anteilen <b>A</b>, <b>B</b> und <b>C</b> zusammen.
 
* Dagegen ergibt sich die "Union Bound" aus <b>A + B</b> (Verfälschung in das Symbol $\boldsymbol{s}_1$) plus <b>B + C</b> (Verfälschung in das Symbol $\boldsymbol{s}_{M-1}$).
 
* Damit gilt stets $p_{\rm S} = p_{\rm UB}$ &ndash; <b>B</b>. Der Anteil <b>B</b> ist aber um so kleiner, je größer $M$ ist.
 
  
 +
The following statements are valid:
 +
# The actual error probability&nbsp; $p_{\rm S}$&nbsp; is composed of the components&nbsp; $\rm A$,&nbsp; $\rm B$&nbsp; and&nbsp; $\rm C$.
 +
# On the other hand,&nbsp; the&nbsp; "Union Bound"&nbsp; results from&nbsp; $\rm A+B$&nbsp; $($falsification into the symbol&nbsp;  $\boldsymbol{s}_1)$&nbsp; plus&nbsp; $\rm C+B$&nbsp; $($falsification into the symbol $\boldsymbol{s}_{M-1})$.
 +
# Thus,&nbsp; $p_{\rm S} = p_{\rm UB}-B$&nbsp; always holds,&nbsp; but the larger&nbsp; $M$&nbsp; is, the smaller the fraction&nbsp; $\rm B$&nbsp; is.
  
  
'''(6)'''&nbsp; Zur Überprüfung gehen wir beispielsweise von $p_{\rm B} = 10^{\rm &ndash;4}$ aus. Daraus folgt für $M = 2$ und $M = 4$:
+
 
:$$p_{\rm B}  ={\rm Q} \left (  \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right ) = 10^{-4}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
'''(6)'''&nbsp; For verification we assume&nbsp; $p_{\rm B} = 10^{\rm &ndash;4}$.  
 +
 
 +
*From this follows for&nbsp; $M = 2$&nbsp; and&nbsp; $M = 4$:
 +
:$$p_{\rm B}  ={\rm Q} \left (  \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right ) = 10^{-4}$$
 +
:$$\Rightarrow \hspace{0.3cm}
 
  \sqrt{ { {2E_{\rm B}}}/{ N_0} } \approx 3.72   
 
  \sqrt{ { {2E_{\rm B}}}/{ N_0} } \approx 3.72   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Dagegen gilt mit der angegebenen Gleichung für $M = 8$:
+
*On the other hand,&nbsp; with the given equation for&nbsp; $M = 8$:
 
:$$p_{\rm B} \hspace{-0.1cm} \ \le \ \hspace{-0.1cm}  \frac{2}{{\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{{\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm S}}}/{ N_0} }\right )=  {2}/{3} \cdot {\rm Q} \left ( \sqrt{3} \cdot 0.383 \cdot 3.72 \right ) \approx {2}/{3} \cdot {\rm Q} \left ( 2.46 \right ) \approx 0.46 \%  
 
:$$p_{\rm B} \hspace{-0.1cm} \ \le \ \hspace{-0.1cm}  \frac{2}{{\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{{\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm S}}}/{ N_0} }\right )=  {2}/{3} \cdot {\rm Q} \left ( \sqrt{3} \cdot 0.383 \cdot 3.72 \right ) \approx {2}/{3} \cdot {\rm Q} \left ( 2.46 \right ) \approx 0.46 \%  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Entsprechend erhält man für $M = 16$ &#8658; ${\rm log}_2 (M) = 4$:
+
*Accordingly,&nbsp; for&nbsp; $M = 16$ &#8658; ${\rm log}_2 (M) = 4$&nbsp; is obtained:
 
:$$p_{\rm B} =  {2}/{4} \cdot {\rm Q} \left ( \sqrt{4} \cdot 0.195 \cdot 3.72 \right ) \approx {1}/{2} \cdot {\rm Q} \left ( 1.45 \right ) \approx 4.8 \%  
 
:$$p_{\rm B} =  {2}/{4} \cdot {\rm Q} \left ( \sqrt{4} \cdot 0.195 \cdot 3.72 \right ) \approx {1}/{2} \cdot {\rm Q} \left ( 1.45 \right ) \approx 4.8 \%  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Richtig sind also die <u>Aussagen 1 und 4</u>:  
+
Thus,&nbsp; The <u>statements 1 and 4</u>&nbsp; are correct:  
*Der wesentliche Vorteil einer höherstufigen PSK ist also nicht die niedrigere Bitfehlerrate, sondern der geringere Bedarf an der sehr teueren Ressource "Bandbreite".  
+
*Thus,&nbsp; the main advantage of a higher-level PSK is not the lower bit error rate,&nbsp; but the lower demand on the very expensive resource&nbsp; "bandwidth".
*Außerdem ist zu beachten, dass die Ergebnisse völlig anders sind, wenn ein (stark) verzerrender Kanal vorliegt, wie in der <i>Leitungsgebundenen Übertragungstechnik</i> üblich.
+
 
 +
*It should also be noted that the results are completely different when a&nbsp; (highly)&nbsp; distorting channel is present,&nbsp; as is common in&nbsp; "wireline transmission technology".
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Digital Signal Transmission: Exercises|^4.4 Kohärente Demodulation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.4 Coherent Demodulation^]]

Latest revision as of 21:31, 1 September 2022

Signal space constellations
of the 8-PSK and 16-PSK

Now a signal set  $\{s_i(t)\}$  is considered,  which is limited to the time domain  $0 ≤ t ≤ T$.  The index  $i$  runs through the values  $0, \ \text{...} \ , M-1$:

$$s_i(t) = A \cdot \cos \left ( 2\pi f_{\rm T}t + { 2\pi }/{ M} \cdot i \right ) \hspace{0.05cm}.$$
  • This is a  "phase modulation"  with  $M$  signal shapes. 
  • This modulation process is also called  "$\rm M–PSK$".  $M$  is usually a power of two.


The graphic shows the signal space constellation for  $M = 8$  (top)  and  $M = 16$  (bottom).  All signal space points have equal energy  $||\boldsymbol{s}_i||^2 = E_{\rm S}$  ("average symbol energy").

The exact calculation of the symbol error probability is difficult for  $M ≠ 2$.  However,  the so-called  "Union Bound"  can always be given as an upper bound for the symbol error probability  $(p_{\rm UB} ≥ p_{\rm S})$:

$$ p_{\rm UB} = 2 \cdot {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right ) = 2 \cdot {\rm Q} \left (\sqrt{ \frac{ d^2}{ 2 N_0}}\right ) \hspace{0.05cm}.$$

The following quantities are used here:

  • $d$  is the distance between two neighboring points,  for example between  $\boldsymbol{s}_0$  and  $\boldsymbol{s}_1$.
  • If the decision boundary is exactly centered perpendicular to the line connecting  $\boldsymbol{s}_0$  and  $\boldsymbol{s}_1$,  then  $d/2$  is the distance of  $\boldsymbol{s}_0$  or  $\boldsymbol{s}_1$  from this decision boundary.
  • The variance of the AWGN noise is  $\sigma_n^2 = N_0/2$.
  • The factor of  $2$  in the above limit takes into account that for  $M > 2$  each signal space point can be falsified in two directions,  e.g. for the  "8–PSK"  the symbol  $\boldsymbol{s}_0$  into the symbol  $\boldsymbol{s}_1$  or into the symbol  $\boldsymbol{s}_7$.
  • ${\rm Q}(x)$  is the complementary Gaussian error function for which the following approximation holds:
$${\rm Q}(x) \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$

The last subtask deals with the bit error probability.  For this,  the following bound was given in the  "theory section"  under the assumption of a  "Gray code": 

$$p_{\rm B} \le \frac{2}{{\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{{\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right ) \hspace{0.05cm}.$$

However,  this equation is only applicable for  $M > 4$.  In contrast,  the exact solution

  • for  $M = 2$   from the identity with the  "BPSK", and
  • for  $M = 4$   from the fact that the  "4–PSK"  is identical with the  "4–QAM":
$$p_{\rm B} ={\rm Q} \left ( \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right ) \hspace{0.05cm}.$$


Notes:

  • The assignment of the  $8$  or  $16$  symbols to binary sequences of length  $3$  or  $4$ according to the Gray coding can be taken from the graphic (red labeling).
  • When solving the exercise, you can use the following equations:
$$\cos(\alpha + \beta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \cos(\alpha ) \cdot \cos( \beta) - \sin(\alpha ) \cdot \sin( \beta)\hspace{0.05cm}, \hspace{0.25cm} 1 - \cos(2\alpha ) = \sin^2(\alpha )\hspace{0.05cm},$$
$$ \int_{0}^{T} \cos^2 ( 2\pi f_{\rm T}t) \,{\rm d} t \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5\hspace{0.05cm},\hspace{0.15cm}{\rm falls}\hspace{0.15cm} f_{\rm T} \gg 1/T \hspace{0.05cm}.$$


Questions

1

What are the basis functions in the band-pass representation?  Let $\varphi_1(t)$  and  $\varphi_2(t)$  each be limited to the range  $0 ≤ t ≤ T$. 

$\varphi_1(t) = \cos {(2\pi f_{\rm T}t)}$,
$\varphi_1(t) = \sqrt {2/T} \cdot \cos {(2\pi f_{\rm T}t)}$,
$\varphi_2(t) = E_{\rm S} \cdot \sin {(2\pi f_{\rm T}t)}$,
$\varphi_2(t) = \, –\sqrt {2/T} \cdot \sin {(2\pi f_{\rm T}t)}$.

2

What are the in-phase and quadrature components of the signal space point  $\boldsymbol{s}_i$?  Which statements are true?

$s_{\rm I \it i} = \sqrt {E_{\rm S}} \cdot \cos {(2\pi \cdot i/M)}$,
$s_{\rm I \it i} = \sqrt {E_{\rm S}} \cdot \sin {(2\pi \cdot i/M)}$,
$s_{\rm Q \it i} = \sqrt {E_{\rm S}} \cdot \cos {(2\pi \cdot i/M)}$,
$s_{\rm Q \it i} = \sqrt {E_{\rm S}} \cdot \sin {(2\pi \cdot i/M)}$.

3

What is the distance  $d$  between two adjacent signal space points?  What are the values for  $M = 8$  and  $M = 16$, respectively?

$M = 8 \text{:} \hspace{0.45cm} d \ = \ $

$\ \cdot \sqrt {E_{\rm S}}$
$M = 16 \text{:} \hspace{0.2cm} d \ = \ $

$\ \cdot \sqrt {E_{\rm S}}$

4

What is the value of the  "Union Bound"  $(p_{\rm UB})$  with  $E_{\rm S}/N_0 = 50$.

$M = 8 \text{:} \hspace{0.45cm} p_{\rm UB}$ =

$\ \%$
$M = 16 \text{:} \hspace{0.2cm} p_{\rm UB}$ =

$\ \%$

5

Does the statement   "$p_{\rm UB}$  approximates  $p_{\rm S}$  more closely the larger  $M$   is"  hold?

YES.
NO.

6

Which statements are true regarding the bit error probability  $p_{\rm B}$?

$p_{\rm B}$  is smallest for  $M = 2$  and  $M = 4$. 
$p_{\rm B}$  is smallest for  $M = 8$. 
$p_{\rm B}$  is smallest for  $M = 16$. 
$p_{\rm B}$  is not the main reason for using higher level PSK.


Solution

(1)  Solutions 2 and 4  are correct:

  • The signal set  $\{s_i(t)\}$  can be represented in the band-pass domain with the given trigonometric transformation as follows:
$$s_i(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos \left ( 2\pi f_{\rm T}t + { 2\pi }/{ M} \cdot i \right ) = A \cdot \cos \left ( { 2\pi }/{ M} \cdot i \right ) \cdot \cos \left ( 2\pi f_{\rm T}t \right )- A \cdot \sin \left ( { 2\pi }/{ M} \cdot i \right ) \cdot \sin \left ( 2\pi f_{\rm T}t \right )\hspace{0.05cm}.$$
  • The respective first terms in this difference lead to the signal space point  $\boldsymbol{s}_i$,  the respective second terms to the basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$.
  • Here it is to be noted that these must be energy normalized in each case:
$$\int_{0}^{T} \varphi_1 ( t)^2 \,{\rm d} t = \int_{0}^{T} \left [K \cdot \cos( 2\pi f_{\rm T}t)\right ]^2 \,{\rm d} t = 1\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{K^2 \cdot T}{2} = 2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = \sqrt{2/T } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \varphi_1 ( t) = \sqrt{2/T } \cdot \cos( 2\pi f_{\rm T}t)\hspace{0.05cm}.$$
  • Using the same arithmetic,  we arrive at the second basis function:
$$\varphi_2 ( t) = -\sqrt{2/T } \cdot \sin( 2\pi f_{\rm T}t)\hspace{0.05cm}.$$


(2)  Solutions 1 and 4  are correct:

  • Using the basis functions just calculated,  the signal set  $s_i(t)$  can be represented as follows  $($again, limited to the range  $0 ≤ t ≤ T)$:
$$s_i(t) = A \cdot \sqrt{T/2 } \cdot \cos ( 2\pi \cdot i /M ) \cdot \varphi_1 ( t)+ A \cdot \sqrt{T/2 } \cdot \sin ( 2\pi \cdot i /M ) \cdot \varphi_2 ( t) \hspace{0.05cm}.$$
  • With the energy  $E = 0.5 \cdot A^2 \cdot T$,  which is the same for all  $M$  points and which is also the average signal energy per symbol  $(E_{\rm S})$,  the above equation is
$$s_i(t) = s_{{\rm I}i} \cdot \varphi_1 ( t)+ s_{{\rm Q}i} \cdot \varphi_2 ( t)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{{\rm I}i} = \sqrt{E_{\rm S} }\cdot \cos ( 2\pi \cdot i /M )\hspace{0.05cm},\hspace{0.2cm} s_{{\rm Q}i} = \sqrt{E_{\rm S} }\cdot \sin ( 2\pi \cdot i /M )\hspace{0.05cm}. $$
  • The signal space points sketched in the front graph for  $M = 8$  resp.  $M = 16$,  can be represented in exactly this way.


(3)  Since the distance from one to the nearest point is the same for all  $i$,  we can calculate  $d$, for example,  from the signal space points  $\boldsymbol{s}_0$  and  $\boldsymbol{s}_1$. 

  • In doing  so,  consider the sketch below.  According to the  "Pythagorean theorem":
Distance calculation at the  "8-PSK"
$$d_{\rm norm}^2 \hspace{-0.01cm}=\hspace{-0.01cm} \sin^2(\frac{2\pi}{M}) + [1- \cos(\frac{2\pi}{M})]^2 $$
$$\Rightarrow \hspace{0.3cm} d_{\rm norm}^2 \hspace{-0.01cm}=\hspace{-0.01cm} 2 \cdot [1- \cos( \frac{2\pi}{M} )] = 4 \cdot \sin^2(\pi/M )\hspace{0.05cm} $$
$$\Rightarrow \hspace{0.3cm} d_{\rm norm}= 2 \cdot \sin({\pi}/{M }) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} d = 2\sqrt {E_{\rm S}} \cdot \sin{\pi}/{M })\hspace{0.05cm}.$$
  • This results in the following numerical values:
$$M = 8\hspace{-0.09cm}: \hspace{0.2cm}d \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \underline{0.765} \cdot \sqrt {E_{\rm S} } \hspace{0.05cm},$$
$$M = 16\hspace{-0.09cm}: \hspace{0.2cm} d \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \underline{0.390} \cdot \sqrt {E_{\rm S} } \hspace{0.05cm}.$$


(4)  Using the result from subtask  (3),  we obtain with the equation given in front:

$$p_{\rm S} \le p_{\rm UB} = 2 \cdot {\rm Q} \left [ \sin ({ \pi}/{ M}) \cdot \sqrt{ { 2E_{\rm S}}/{ N_0}} \right ] \hspace{0.05cm}.$$
  • With  $E_{\rm S}/N_0 = 50$  ⇒  $(2E_{\rm S}/N_0)^{\rm 0.5} = 10$   it follows:
$$M = 8\hspace{-0.09cm}: \hspace{0.2cm}p_{\rm UB} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \cdot {\rm Q} ( 10 \cdot 0.383 )= 2 \cdot {\rm Q} ( 3.83 ) \approx \underline{0.014 \%} \hspace{0.05cm},$$
$$ M = 16\hspace{-0.09cm}: \hspace{0.2cm} p_{\rm UB} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \cdot {\rm Q} ( 10 \cdot 0.195 )= 2 \cdot {\rm Q} ( 1.95 ) \approx \underline{6 \%} \hspace{0.05cm}.$$
  • Thus,  the symbol error probability becomes larger and larger as  $M$  increases,  assuming constant  $E_{\rm S}/N_0$,  as in this case.
  • The most favorable value would result for  $M = 2$  (the factor  $2$  of the Union Bound is then not necessary)  as follows
$$M = 2\hspace{-0.09cm}: \hspace{0.2cm}p_{\rm UB} = p_{\rm S} = {\rm Q} ( 10 ) \approx { 10^{-23}}.$$
  • Thus,  multi-level PSK would not make sense if there were not other reasons for its use,  which will be discussed in subtask  (6).


(5)  Correct is YES.  The graph shows the constellation for  "8–PSK"  and  "16–PSK".

For the interpretation of the Union Bound at the  "$\rm M–PSK$"
  • Each valid under the assumption that  $\boldsymbol{s}_0$  was transmitted.
  • The contour lines of the AWGN PDF are then circles around  $\boldsymbol{s}_0$.


The following statements are valid:

  1. The actual error probability  $p_{\rm S}$  is composed of the components  $\rm A$,  $\rm B$  and  $\rm C$.
  2. On the other hand,  the  "Union Bound"  results from  $\rm A+B$  $($falsification into the symbol  $\boldsymbol{s}_1)$  plus  $\rm C+B$  $($falsification into the symbol $\boldsymbol{s}_{M-1})$.
  3. Thus,  $p_{\rm S} = p_{\rm UB}-B$  always holds,  but the larger  $M$  is, the smaller the fraction  $\rm B$  is.


(6)  For verification we assume  $p_{\rm B} = 10^{\rm –4}$.

  • From this follows for  $M = 2$  and  $M = 4$:
$$p_{\rm B} ={\rm Q} \left ( \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right ) = 10^{-4}$$
$$\Rightarrow \hspace{0.3cm} \sqrt{ { {2E_{\rm B}}}/{ N_0} } \approx 3.72 \hspace{0.05cm}.$$
  • On the other hand,  with the given equation for  $M = 8$:
$$p_{\rm B} \hspace{-0.1cm} \ \le \ \hspace{-0.1cm} \frac{2}{{\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{{\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm S}}}/{ N_0} }\right )= {2}/{3} \cdot {\rm Q} \left ( \sqrt{3} \cdot 0.383 \cdot 3.72 \right ) \approx {2}/{3} \cdot {\rm Q} \left ( 2.46 \right ) \approx 0.46 \% \hspace{0.05cm}.$$
  • Accordingly,  for  $M = 16$ ⇒ ${\rm log}_2 (M) = 4$  is obtained:
$$p_{\rm B} = {2}/{4} \cdot {\rm Q} \left ( \sqrt{4} \cdot 0.195 \cdot 3.72 \right ) \approx {1}/{2} \cdot {\rm Q} \left ( 1.45 \right ) \approx 4.8 \% \hspace{0.05cm}.$$

Thus,  The statements 1 and 4  are correct:

  • Thus,  the main advantage of a higher-level PSK is not the lower bit error rate,  but the lower demand on the very expensive resource  "bandwidth".
  • It should also be noted that the results are completely different when a  (highly)  distorting channel is present,  as is common in  "wireline transmission technology".