Difference between revisions of "Aufgaben:Exercise 4.19: Orthogonal Multilevel FSK"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit nichtkohärenter Demodulation}}  
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation}}  
  
[[File:P_ID2092__Dig_A_4_19.png|right|frame|Signalraumkonstellationen]]
+
[[File:P_ID2092__Dig_A_4_19.png|right|frame|Signal space constellations]]
Wir betrachten in dieser letzten Übungsaufgabe zu diesem Kapitel &nbsp;<i>Frequency Shift Keying</i>&nbsp; (FSK) mit&nbsp; $M$&nbsp; Signalformen und setzen voraus, dass diese paarweise zueinander orthogonal sind. In diesem Fall können die äquivalenten Tiefpass&ndash;Signale&nbsp; $s_i(t)$ mit $i = 1, \ \text{...} \ , M$&nbsp; in folgender Form dargestellt werden:
+
In this last exercise of this chapter we consider &nbsp;<i>Frequency Shift Keying</i>&nbsp; (FSK) with&nbsp; $M$&nbsp; waveforms and assume that they are orthogonal to each other in pairs. In this case, the equivalent low&ndash;pass signals&nbsp; $s_i(t)$ with $i = 1, \ \text{...} \ , M$&nbsp; can be represented in the following form:
 
:$$s_i(t)  = \sqrt{E_{\rm S}} \cdot \xi_i(t) \hspace{0.05cm}.$$
 
:$$s_i(t)  = \sqrt{E_{\rm S}} \cdot \xi_i(t) \hspace{0.05cm}.$$
  
$\xi_i(t)$&nbsp; sind komplexe Basisfunktionen, für die allgemein&nbsp; $i = 1, \ \text{...} \ , N$&nbsp; gilt. Bei orthogonaler Signalisierung ist allerdings stets&nbsp; $M = N$.  
+
$\xi_i(t)$&nbsp; are complex basis functions for which in general&nbsp; $i = 1, \ \text{...} \ , N$&nbsp; holds. However, for orthogonal signaling,&nbsp; $M = N$ is always true.
  
Die Grafik zeigt drei verschiedene Signalraumkonstellationen. Jedoch beschreiben nicht alle drei eine orthogonale FSK. Hierauf wird in der Teilaufgabe '''(1)''' Bezug genommen.
+
The diagram shows three different signal space constellations. However, not all three describe an orthogonal FSK. This is referred to in the subtask '''(1)'''.
  
Im&nbsp; [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Theorieteil]]&nbsp; ist die exakte Formel für die Wahrscheinlichkeit einer korrekten Entscheidung bei AWGN&ndash;Störung angegeben:
+
In the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation| "theory part"]],&nbsp; the exact formula for the probability of a correct decision in the case of AWGN noise is given:
 
:$${\rm Pr}({\cal{C}}) =\sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0}
 
:$${\rm Pr}({\cal{C}}) =\sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Daraus lässt sich sehr einfach die Symbolfehlerwahrscheinlichkeit berechnen:
+
From this it is very easy to calculate the symbol error probability:
 
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) =  1 - {\rm Pr}({\cal{C}}) = \sum_{i = 1}^{M-1} (-1)^{i+1} \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot  {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0}
 
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) =  1 - {\rm Pr}({\cal{C}}) = \sum_{i = 1}^{M-1} (-1)^{i+1} \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot  {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Eine obere Schranke&nbsp; $(p_{\rm S, \ max} &#8805; p_{\rm S})$&nbsp; ergibt sich aufgrund der alternierenden Vorzeichen, wenn man von dieser Summe nur den ersten Term&nbsp; $(i=1)$&nbsp; berücksichtigt:
+
An upper bound&nbsp; $(p_{\rm S, \ max} &#8805; p_{\rm S})$&nbsp; is obtained due to the alternating signs if we consider only the first term&nbsp; $(i=1)$&nbsp; of this sum:
 
:$$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}
 
:$$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In der Teilaufgabe '''(4)''' soll diese Schranke bei gegebenem Verhältnis&nbsp; $E_{\rm B}/N_0$&nbsp; ausgewertet werden, wobei&nbsp; $E_{\rm B}$&nbsp; die mittlere Signalenergie pro Bit angibt:
+
In subtask '''(4)''', this bound is to be evaluated for a given ratio&nbsp; $E_{\rm B}/N_0$,&nbsp; where&nbsp; $E_{\rm B}$&nbsp; is the average signal energy per bit:
 
:$$E_{\rm B} = \frac{ E_{\rm S} }  { {\rm log_2}\hspace{0.1cm}(M)}  
 
:$$E_{\rm B} = \frac{ E_{\rm S} }  { {\rm log_2}\hspace{0.1cm}(M)}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
Line 31: Line 31:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe gehört zum Kapitel&nbsp;  [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit nichtkohärenter Demodulation]].
+
* The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation| "Carrier Frequency Systems with Non-Coherent Demodulation"]].
* Bezug genommen wird insbesondere auf die Seite&nbsp;  [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_nichtkoh%C3%A4renter_Demodulation#Nichtkoh.C3.A4rente_Demodulation_von_mehrstufiger_FSK|Nichtkohärente Demodulation von mehrstufiger FSK]].
+
* Reference is made in particular to the section&nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Non-coherent_demodulation_of_multi-level_FSK|"Non-coherent demodulation of multi-level FSK"]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der obigen Signalraumkonstellationen gelten für orthogonale FSK?
+
{Which of the above signal space constellations are valid for orthogonal FSK?
 
|type="[]"}
 
|type="[]"}
+ Konstellation &nbsp;$\rm A$,
+
+ Constellation &nbsp;$\rm A$,
- Konstellation &nbsp;$\rm B$,
+
- Constellation &nbsp;$\rm B$,
+ Konstellation &nbsp;$\rm C$.
+
+ Constellation &nbsp;$\rm C$.
  
{Berechnen Sie für&nbsp; $E_{\rm S}/N_0 = 6$&nbsp; die Fehlerwahrscheinlichkeit der binären, ternären und quaternären FSK. $E_{\rm S}$&nbsp; bezeichnet die Symbolenergie.
+
{For&nbsp; $E_{\rm S}/N_0 = 6$,&nbsp; calculate the error probability of binary, ternary and quaternary FSK. $E_{\rm S}$&nbsp; denotes the symbol energy.
 
|type="{}"}
 
|type="{}"}
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 2.49 3% } $\ \%$
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 2.49 3% } $\ \%$
Line 52: Line 52:
 
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 6.75 3% } $\ \%$
 
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $ { 6.75 3% } $\ \%$
  
{Berechnen Sie für&nbsp; $E_{\rm S}/N_0 = 6$&nbsp; die angegebenen oberen Schranken&nbsp; $p_{\rm S, \ max}$ für die  Fehlerwahrscheinlichkeiten.
+
{For&nbsp; $E_{\rm S}/N_0 = 6$,&nbsp; calculate the given upper bounds&nbsp; $p_{\rm S, \ max}$ for the error probabilities.
 
|type="{}"}
 
|type="{}"}
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 2.49 3% } $\ \%$  
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 2.49 3% } $\ \%$  
Line 58: Line 58:
 
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 7.47 3% } $\ \%$
 
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 7.47 3% } $\ \%$
  
{Berechnen Sie für&nbsp; $E_{\rm B}/N_0 = 6$&nbsp; die Fehlerwahrscheinlichkeit der binären, ternären und quaternären FSK. $E_{\rm B}$&nbsp; bezeichnet die Bitenergie.
+
{For&nbsp; $E_{\rm B}/N_0 = 6$,&nbsp; calculate the error probability of the binary, ternary, and quaternary FSK. $E_{\rm B}$&nbsp; denotes the bit energy.
 
|type="{}"}
 
|type="{}"}
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 2.49 3% } $\ \%$
 
$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $ { 2.49 3% } $\ \%$
Line 65: Line 65:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:  
+
'''(1)'''&nbsp; <u>Solutions 1 and 3</u> are correct:  
*Bei der Konstellation &nbsp;$\rm B$&nbsp; ist die Orthogonalität nicht gegeben. Vielmehr gilt hier $M = 3$ und $N = 2$.
+
*In constellation &nbsp;$\rm B$&nbsp; the orthogonality is not given. Rather $M = 3$ and $N = 2$ are valid here.
  
  
  
'''(2)'''&nbsp; Für die binäre FSK $(M = 2)$ gilt mit der Abkürzung $x = E_{\rm S}/N_0 = 6$:
+
'''(2)'''&nbsp; For the binary FSK $(M = 2)$ applies with the abbreviation $x = E_{\rm S}/N_0 = 6$:
 
:$$p_{\rm S} =  (-1)^{2} \cdot {1 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3}  \hspace{0.15cm}\underline{\approx 2.49 \%}  
 
:$$p_{\rm S} =  (-1)^{2} \cdot {1 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3}  \hspace{0.15cm}\underline{\approx 2.49 \%}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Entsprechend erhält man für die ternäre FSK $(M = 3)$:
+
*Accordingly, for the ternary FSK $(M = 3)$ we obtain:
 
:$$p_{\rm S} = (-1)^{2} \cdot {2 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} +  
 
:$$p_{\rm S} = (-1)^{2} \cdot {2 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} +  
 
  (-1)^{3} \cdot {2 \choose 2 }  \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}=
 
  (-1)^{3} \cdot {2 \choose 2 }  \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}=
Line 82: Line 82:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
*Schließlich ergibt sich für die quaternäre FSK $(M = 4)$:
+
*Finally, for the quaternary FSK $(M = 4)$ we obtain:
 
:$$p_{\rm S} = (-1)^{2} \cdot {3 \choose 1 }  \cdot \frac{{\rm e }^{-x/2}}{2}  +  
 
:$$p_{\rm S} = (-1)^{2} \cdot {3 \choose 1 }  \cdot \frac{{\rm e }^{-x/2}}{2}  +  
 
  (-1)^{3} \cdot {3 \choose 2 }  \cdot \frac{{\rm e }^{-2x/3}}{3}
 
  (-1)^{3} \cdot {3 \choose 2 }  \cdot \frac{{\rm e }^{-2x/3}}{3}
Line 91: Line 91:
  
  
'''(3)'''&nbsp; Bei gleichem $E_{\rm S}/N_0 = 6$ gilt stets $p_{\rm S, \ max} &#8805; p_{\rm S}$:
+
'''(3)'''&nbsp; For equal $E_{\rm S}/N_0 = 6$, $p_{\rm S, \ max} &#8805; p_{\rm S}$ always holds:
 
:$$M =2\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=2.49\%} = p_{\rm S} \hspace{0.05cm},$$
 
:$$M =2\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=2.49\%} = p_{\rm S} \hspace{0.05cm},$$
 
:$$M =3\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=4.98\%} > 4.37\% = p_{\rm S} \hspace{0.05cm},$$
 
:$$M =3\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=4.98\%} > 4.37\% = p_{\rm S} \hspace{0.05cm},$$
 
:$$M =4\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=7.47\%} > {6.75\%} = p_{\rm S} \hspace{0.05cm}.$$
 
:$$M =4\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=7.47\%} > {6.75\%} = p_{\rm S} \hspace{0.05cm}.$$
  
Analysiert man die Gleichung &nbsp;$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$&nbsp; genauer, so erkennt man, dass diese Schranke genau die [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit#Union_Bound_-_Obere_Schranke_f.C3.BCr_die_Fehlerwahrscheinlichkeit| Union&ndash;Bound]] angibt:
+
Analyzing the equation &nbsp;$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$&nbsp; in more detail, we see that this bound exactly specifies the [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability#Union_Bound_-_Upper_bound_for_the_error_probability| "Union Bound"]]:
* Beim Binärsystem gibt $1/2 \cdot  {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ die Verfälschungswahrscheinlichkeit an, zum Beispiel von $\boldsymbol{s}_1$ nach $\boldsymbol{s}_2$ oder umgekehrt.
+
* For the binary system, $1/2 \cdot  {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ gives the falsification probability, for example from $\boldsymbol{s}_1$ to $\boldsymbol{s}_2$ or vice versa.
* Beim <i>M</i>&ndash;stufigen System ist der Abstand zwischen $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ genau so groß. Aber auch die Punkte $\boldsymbol{s}_1, \ \text{... ,} \, \boldsymbol{s}_M$ liegen im gleichen Abstand zu $\boldsymbol{s}_1$ bzw. zu $\boldsymbol{s}_2$.
+
* For the <i>M</i>&ndash;level system, the distance between $\boldsymbol{s}_1$ and $\boldsymbol{s}_2$ is exactly the same. But also the points $\boldsymbol{s}_1, \ \text{... ,} \, \boldsymbol{s}_M$ are at the same distance from $\boldsymbol{s}_1$ or from $\boldsymbol{s}_2$.
* Die "Union&ndash;Bound" berücksichtigt die Verfälschungsmöglichkeiten eines Punktes zu jedem der allgemein $M&ndash;1$ anderen Punkte durch den Faktor $M -1$.
+
* The "Union Bound" considers the distortion possibilities of a point to each of the generally $M&ndash;1$ other points by the factor $M -1$.
  
  
'''(4)'''&nbsp; Mit &nbsp;$E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$&nbsp; erhält man$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-\log_2 \ (M) E_{\rm B}/(2N_{\rm 0})}$.
+
'''(4)'''&nbsp; With &nbsp;$E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$&nbsp; one obtains$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-\log_2 \ (M) E_{\rm B}/(2N_{\rm 0})}$.
  
*Die Fehlerwahrscheinlichkeit wird mit zunehmender Stufenzahl kleiner, da bei konstantem $E_{\rm B}$ die Energie $E_{\rm S}$ pro Symbol um den Faktor ${\rm log}_2 \, (M)$ zunimmt.  
+
*The error probability becomes smaller as the number of levels increases, because at constant $E_{\rm B}$ the energy $E_{\rm S}$ per symbol increases by the factor ${\rm log}_2 \, (M)$.  
*Der Faktor $M-1$ (berücksichtigt die Verfälschungsmöglichkeiten eines Signalraumpunktes) hat weniger Einfluss als die Vergrößerung des negativen Exponenten:
+
*The factor $M-1$ (considers the falsification possibilities of a signal space point) has less influence than the increase of the negative exponent:
 
:$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 2.49\%} \hspace{0.05cm},$$
 
:$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 2.49\%} \hspace{0.05cm},$$
 
:$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm e }^{-4.755} \hspace{0.5cm}  \underline{= 0.86\%} \hspace{0.05cm},$$
 
:$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm e }^{-4.755} \hspace{0.5cm}  \underline{= 0.86\%} \hspace{0.05cm},$$

Revision as of 20:08, 16 August 2022

Signal space constellations

In this last exercise of this chapter we consider  Frequency Shift Keying  (FSK) with  $M$  waveforms and assume that they are orthogonal to each other in pairs. In this case, the equivalent low–pass signals  $s_i(t)$ with $i = 1, \ \text{...} \ , M$  can be represented in the following form:

$$s_i(t) = \sqrt{E_{\rm S}} \cdot \xi_i(t) \hspace{0.05cm}.$$

$\xi_i(t)$  are complex basis functions for which in general  $i = 1, \ \text{...} \ , N$  holds. However, for orthogonal signaling,  $M = N$ is always true.

The diagram shows three different signal space constellations. However, not all three describe an orthogonal FSK. This is referred to in the subtask (1).

In the  "theory part",  the exact formula for the probability of a correct decision in the case of AWGN noise is given:

$${\rm Pr}({\cal{C}}) =\sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0} \hspace{0.05cm}.$$

From this it is very easy to calculate the symbol error probability:

$$p_{\rm S} = {\rm Pr}({\cal{E}}) = 1 - {\rm Pr}({\cal{C}}) = \sum_{i = 1}^{M-1} (-1)^{i+1} \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0} \hspace{0.05cm}.$$

An upper bound  $(p_{\rm S, \ max} ≥ p_{\rm S})$  is obtained due to the alternating signs if we consider only the first term  $(i=1)$  of this sum:

$$p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})} \hspace{0.05cm}.$$

In subtask (4), this bound is to be evaluated for a given ratio  $E_{\rm B}/N_0$,  where  $E_{\rm B}$  is the average signal energy per bit:

$$E_{\rm B} = \frac{ E_{\rm S} } { {\rm log_2}\hspace{0.1cm}(M)} \hspace{0.05cm}.$$




Notes:



Questions

1

Which of the above signal space constellations are valid for orthogonal FSK?

Constellation  $\rm A$,
Constellation  $\rm B$,
Constellation  $\rm C$.

2

For  $E_{\rm S}/N_0 = 6$,  calculate the error probability of binary, ternary and quaternary FSK. $E_{\rm S}$  denotes the symbol energy.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

3

For  $E_{\rm S}/N_0 = 6$,  calculate the given upper bounds  $p_{\rm S, \ max}$ for the error probabilities.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$

4

For  $E_{\rm B}/N_0 = 6$,  calculate the error probability of the binary, ternary, and quaternary FSK. $E_{\rm B}$  denotes the bit energy.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$


Solution

(1)  Solutions 1 and 3 are correct:

  • In constellation  $\rm B$  the orthogonality is not given. Rather $M = 3$ and $N = 2$ are valid here.


(2)  For the binary FSK $(M = 2)$ applies with the abbreviation $x = E_{\rm S}/N_0 = 6$:

$$p_{\rm S} = (-1)^{2} \cdot {1 \choose 1 } \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3} \hspace{0.15cm}\underline{\approx 2.49 \%} \hspace{0.05cm}.$$
  • Accordingly, for the ternary FSK $(M = 3)$ we obtain:
$$p_{\rm S} = (-1)^{2} \cdot {2 \choose 1 } \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} + (-1)^{3} \cdot {2 \choose 2 } \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}= {\rm e }^{-3} - {1}/{3} \cdot {\rm e }^{-4} \approx 0.0498 - 0.0061 \hspace{0.15cm}\underline{ =4.37\%} \hspace{0.05cm}.$$
  • Finally, for the quaternary FSK $(M = 4)$ we obtain:
$$p_{\rm S} = (-1)^{2} \cdot {3 \choose 1 } \cdot \frac{{\rm e }^{-x/2}}{2} + (-1)^{3} \cdot {3 \choose 2 } \cdot \frac{{\rm e }^{-2x/3}}{3} + (-1)^{4} \cdot {4 \choose 3 } \cdot \frac{{\rm e }^{-3x/4 }}{4} = {3}/ {2} \cdot{\rm e }^{-3} - {\rm e }^{-4} + {\rm e }^{-4.5} \hspace{0.15cm}\underline{\approx 6.75\%} \hspace{0.05cm}.$$


(3)  For equal $E_{\rm S}/N_0 = 6$, $p_{\rm S, \ max} ≥ p_{\rm S}$ always holds:

$$M =2\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=2.49\%} = p_{\rm S} \hspace{0.05cm},$$
$$M =3\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=4.98\%} > 4.37\% = p_{\rm S} \hspace{0.05cm},$$
$$M =4\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=7.47\%} > {6.75\%} = p_{\rm S} \hspace{0.05cm}.$$

Analyzing the equation  $p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$  in more detail, we see that this bound exactly specifies the "Union Bound":

  • For the binary system, $1/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ gives the falsification probability, for example from $\boldsymbol{s}_1$ to $\boldsymbol{s}_2$ or vice versa.
  • For the M–level system, the distance between $\boldsymbol{s}_1$ and $\boldsymbol{s}_2$ is exactly the same. But also the points $\boldsymbol{s}_1, \ \text{... ,} \, \boldsymbol{s}_M$ are at the same distance from $\boldsymbol{s}_1$ or from $\boldsymbol{s}_2$.
  • The "Union Bound" considers the distortion possibilities of a point to each of the generally $M–1$ other points by the factor $M -1$.


(4)  With  $E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$  one obtains$p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-\log_2 \ (M) E_{\rm B}/(2N_{\rm 0})}$.

  • The error probability becomes smaller as the number of levels increases, because at constant $E_{\rm B}$ the energy $E_{\rm S}$ per symbol increases by the factor ${\rm log}_2 \, (M)$.
  • The factor $M-1$ (considers the falsification possibilities of a signal space point) has less influence than the increase of the negative exponent:
$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 2.49\%} \hspace{0.05cm},$$
$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{-4.755} \hspace{0.5cm} \underline{= 0.86\%} \hspace{0.05cm},$$
$$M =4\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {3}/{ 2} \cdot {\rm e }^{-6} \hspace{0.15cm} \underline{=0.37\%} \hspace{0.05cm}.$$