Difference between revisions of "Aufgaben:Exercise 4.1Z: Calculation of Moments"

From LNTwww
 
(32 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Differentielle Entropie
+
{{quiz-Header|Buchseite=Information_Theory/Differential_Entropy
 
}}
 
}}
  
[[File:P_ID2863__Inf_Z_4_1.png|right|Exponential– und Laplaceverteilung]]
+
[[File:EN_Inf_Z_4_1_vers2.png|right|frame|Exponential PDF (top), <br>Laplace PDF (bottom)]]
Die Grafik zeigt oben die Wahrscheinlichkeitsdichtefunktion (WDF) der [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen|Exponentialverteilung]]:
+
The upper graph shows the probability density function&nbsp; $\rm (PDF)$&nbsp; of the&nbsp; [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen|exponential distribution]]:
:$$f_X(x) = \left\{ \begin{array}{c} A_{ X} \cdot {\rm exp}(-\lambda \cdot x) \\ A_{ X}/2 \\ 0 \\  \end{array} \right. \begin{array}{*{20}c}  {\rm{f\ddot{u}r}} \hspace{0.1cm}x>0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x=0,  \\    {\rm{f\ddot{u}r}} \hspace{0.1cm}x<0. \\ \end{array}$$
+
:$$f_X(x) = \left\{ \begin{array}{c} A_{ X} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm}x} \\ A_{ X}/2 \\ 0 \\  \end{array} \right. \begin{array}{*{20}c}  {\rm{f\ddot{u}r}} \hspace{0.1cm}x>0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x=0,  \\    {\rm{f\ddot{u}r}} \hspace{0.1cm}x<0. \\ \end{array}$$
Darunter gezeichnet ist die WDF der [[Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgrößen#Zweiseitige_Exponentialverteilung_.E2.80.93_Laplaceverteilung|Laplaceverteilung]], die für alle $y$&ndash;Werte wie folgt angegeben werden kann:
+
Drawn below is the PDF of the&nbsp; [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen#Zweiseitige_Exponentialverteilung_.E2.80.93_Laplaceverteilung|Laplace distribution]], which can be specified for all&nbsp; $y$&ndash;values as follows:
:$$f_Y(y) =  A_{ Y} \cdot {\rm exp}(-\lambda \cdot |y|)\hspace{0.05cm}.$$
+
:$$f_Y(y) =  A_{ Y} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} |\hspace{0.03cm}y\hspace{0.03cm}|}\hspace{0.05cm}.$$
  
Die zwei wertkontinuierlichen Zufallsgrößen $X$ und $Y$ sollen hinsichtlich der folgenden Kenngrößen verglichen werden:
+
The two continuous random variables&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; are to be compared with respect to the following characteristics:
*dem linearen Mittelwert $m_1$ (Moment erster Ordnung),
+
*The linear mean&nbsp; $m_1$&nbsp; (first order moment),
*dem Moment zweiter Ordnung &nbsp; &#8658; &nbsp; $m_2$,
+
*the second order moment &nbsp; &#8658; &nbsp; $m_2$,
*der Varianz $\sigma^2 = m_2 - m_1^2$ &nbsp; &#8658; &nbsp; Satz von Steiner,  
+
*the variance&nbsp; $\sigma^2 = m_2 - m_1^2$ &nbsp; &#8658; &nbsp; Steiner's theorem,  
*der Streuung $\sigma$.
+
*the standard deviation&nbsp; $\sigma$.
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Differentielle_Entropie|Differentielle Entropie]].
+
 
*Nützliche Hinweise zur Lösung dieser Aufgabe und weitere Informationen zu den wertkontinuierlichen Zufallsgrößen finden Sie im Kapitel &bdquo;Kontinuierliche Zufallsgrößen&rdquo; des Buches [[Stochastische Signaltheorie]].
+
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
 
*Gegeben sind außerdem die beiden unbestimmten Integrale:
+
 
 +
 
 +
Hints:
 +
*The task belongs to the chapter&nbsp; [[Information_Theory/Differentielle_Entropie|Differential Entropy]].
 +
*Useful hints for solving this task and further information on continuous random variables can be found in the third chapter  "Continuous Random Variables" of the book&nbsp;  [[Theory of Stochastic Signals]].
 +
 +
*Also given are the two indefinite integrals:
 
:$$\int \hspace{-0.01cm} x \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\hspace{0.05cm}, $$
 
:$$\int \hspace{-0.01cm} x \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\hspace{0.05cm}, $$
 
:$$\int \hspace{-0.01cm} x^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot
 
:$$\int \hspace{-0.01cm} x^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot
Line 27: Line 33:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist der Maximalwert $A_X$ der WDF$f_X(x)$?
+
{What is the maximum value&nbsp; $A_X$&nbsp; of the PDF&nbsp; $f_X(x)$?
|type="[]"}
+
|type="()"}
 
- $A_X = \lambda/2$,
 
- $A_X = \lambda/2$,
 
+ $A_X = \lambda$,
 
+ $A_X = \lambda$,
 
- $A_X = 1/\lambda$.
 
- $A_X = 1/\lambda$.
  
{Wie groß ist der Maximalwert $A_Y$ der WDF$f_Y(y)$?
+
{What is the maximum value&nbsp; $A_Y$&nbsp; of the PDF&nbsp; $f_Y(y)$?
|type="[]"}
+
|type="()"}
 
+ $A_Y = \lambda/2$,
 
+ $A_Y = \lambda/2$,
 
- $A_Y = \lambda$,
 
- $A_Y = \lambda$,
Line 43: Line 49:
  
  
{Gibt es ein Argument $z$, so dass $f_X(z) =  f_Y(z)$ gilt?
+
{Is there an argument&nbsp; $z$, such that &nbsp;$f_X(z) =  f_Y(z)$&nbsp;?
|type="[]"}
+
|type="()"}
+ Ja.
+
+ Yes.
- Nein.
+
- No.
  
  
{Welche Aussagen gelten für die Kenngrößen der Exponentialverteilung?
+
{Which statements are true about the characteristics of the exponential distribution?
 
|type="[]"}
 
|type="[]"}
+ Der lineare Mittelwert ist $m_1 = 1/\lambda$.
+
+ The linear mean is&nbsp; $m_1 = 1/\lambda$.
+ Der quadratische Mittelwert ist $m_2 = 2/\lambda^2$.
+
+ The second order moment is&nbsp; $m_2 = 2/\lambda^2$.
+ Die Varianz ist $\sigma^2 = 1/\lambda^2$.
+
+ The variance is&nbsp; $\sigma^2 = 1/\lambda^2$.
  
{Welche Aussagen gelten für die Kenngrößen der Laplaceverteilung?
+
{Which statements are true about the characteristics of the Laplace distribution?
 
|type="[]"}
 
|type="[]"}
- Der lineare Mittelwert ist $m_1 = 1/\lambda$.
+
- The linear mean is&nbsp; $m_1 = 1/\lambda$.
+ Der quadratische Mittelwert ist $m_2 = 2/\lambda^2$.
+
+ The second order moment is&nbsp; $m_2 = 2/\lambda^2$.
- Die Varianz ist $\sigma^2 = 1/\lambda^2$.
+
- The variance is&nbsp; $\sigma^2 = 1/\lambda^2$.
  
{Mit welcher Wahrscheinlichkeiten unterscheidet sich die Zufallsgröße ($X$ bzw. $Y$) vom Mittelwert $m$ betragsmäßig um mehr als die Streuung $\sigma$?
+
{With what probabilities does the random variable&nbsp; $(X$&nbsp; or &nbsp; $Y)$&nbsp; differ from the respective mean in magnitude by more than the dispersion &nbsp;$\sigma$?
 
|type="{}"}
 
|type="{}"}
$\text{Exponential:     }{\rm Pr}( |X  -  m_X| > \sigma_X) \ = $  { 0.135 3% }
+
$\text{Exponential:}\; \;{\rm Pr}( |X  -  m_X| > \sigma_X) \ = \ $  { 0.135 3% }
$\text{Laplace:             }{\rm Pr}( |Y  -  m_Y| > \sigma_Y) \ = $ { 0.243 3% }
+
$\text{Laplace:}\; \;{\rm Pr}( |Y  -  m_Y| > \sigma_Y) \ = \ $ { 0.243 3% }
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
<b>a)</b>&nbsp;&nbsp;Die Fläche unter der WDF muss immer 1 sein. Daraus folgt für die Exponentialverteilung:
+
'''(1)'''&nbsp; <u>Proposed solution 2</u> is correct:
$$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\left [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\right ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1
+
*The area under the PDF must always be&nbsp; $1$&nbsp;.&nbsp; It follows for the exponential distribution:
 +
:$$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\big [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\big ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1
 
  \hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$
 
  \hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$
Richtig ist somit der <u>Lösungsvorschlag 2</u>.
 
  
<b>b)</b>&nbsp;&nbsp;Aus der Grafik auf der Angabenseite erkennt man, dass die Höhe <i>A<sub>Y</sub></i> der Laplaceverteilung nur halb so groß ist wie das Maximum der Exponentialverteilung &nbsp;&#8658;<i>A<sub>Y</sub></i> = <i>&lambda;</i>/2 &nbsp;&#8658;&nbsp;<u>Lösungsvorschlag 1</u>.
 
  
<b>c)</b>&nbsp;&nbsp;Richtig ist <u>JA</u>, obwohl für <i>z</i> &ne; 0 stets <i>f<sub>X</sub></i>(<i>z</i>) &ne; <i>f<sub>Y</sub></i>(<i>z</i>) gilt. Betrachten wir nun den Sonderfall <i>z</i> = 0:
+
'''(2)'''&nbsp; <u>Proposed solution 1</u> is correct:
:* Für die Laplaceverteilung gilt <i>f<sub>Y</sub></i>(0) = <i>&lambda;</i>/2.
+
*From the graph on the information page, we can see that the height&nbsp; $A_Y$&nbsp; of the Laplace PDF is only half as large as the maximum of the exponential PDF:
:* Bei der Exponentialverteilung unterscheiden sich der links- und der rechtsseitige Grenzwert für <i>x</i> &#8594; 0. Der WDF&ndash;Wert an der Stelle <i>x</i> = 0 ist der Mittelwert dieser beiden Grenzwerte:
+
:$$A_Y = \lambda/2.$$  
$$f_X(0) = \frac{1}{2} \cdot [ 0 + \lambda] = \lambda/2 =  f_Y(0)\hspace{0.05cm}.$$
 
  
<b>d)</b>&nbsp;&nbsp;Bei der Exponentialverteilung erhält man entsprechend [http://en.lntwww.de/Biografien_und_Bibliografien/Buchstaben_A_-_D#Buchstabe_B '''[BS01]'''] für
+
 
:* den linearen Mittelwert (Moment erster Ordnung):  
+
'''(3)'''&nbsp; Correct is <u>YES</u>,&nbsp; although for&nbsp; $z \ne 0$&nbsp; always &nbsp;$f_X(z) = f_Y(z)$. &nbsp;  Let us now consider the special case&nbsp; $z= 0$:
$$m_1 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot \left [\frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\right ]_{0}^{\infty}= {1}/{\lambda} \hspace{0.05cm},$$
+
* For the Laplace PDF:&nbsp; $f_Y(y = 0) = \lambda/2$.
:* den quadratischen Mittelwert  (Moment zweiter Ordnung):
+
* For the exponential PDF,&nbsp; the left-hand and right-hand limits differ for&nbsp; $x \to 0$.
$$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot
+
*The PDF value at point&nbsp; $x= 0$&nbsp; is the average of these two limits:
 +
:$$f_X(0) = \frac{1}{2} \cdot \big [ 0 + \lambda \big] = \lambda/2 =  f_Y(0)\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; <u>All proposed solutions</u> are correct.&nbsp;
 +
 
 +
For the exponential distribution, the&nbsp; $k$&ndash;th order moment is generally calculated to be
 +
:$$m_k = \frac{k!}{\lambda^k} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} m_1 = \frac{1}{\lambda}, \hspace{0.3cm} m_2 = \frac{2}{\lambda^2}, \hspace{0.3cm} m_3 = \frac{6}{\lambda^3}, \ \text{...}$$
 +
Thus one obtains for
 +
* the linear mean (first order moment):
 +
:$$m_1 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot \left [\frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\right ]_{0}^{\infty}= {1}/{\lambda} \hspace{0.05cm},$$
 +
* the second order moment:
 +
:$$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot
 
(\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3})
 
(\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3})
 
\right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$
 
\right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$
Daraus ergibt sich mit dem Satz von Steiner für die Varianz der Exponentialverteilung:
+
From this, using Steiner's theorem for the variance of the exponential distribution, we get:
$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2}  
+
:$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2}  
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}  
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}  
 
\sigma = {1}/{\lambda}\hspace{0.05cm}.$$
 
\sigma = {1}/{\lambda}\hspace{0.05cm}.$$
Richtig sind also <u>alle Lösungsvorschläge</u>. &nbsp;<i>Hinweis:</i> Bei der Exponentialverteilung berechnet sich das Moment <i>k</i>&ndash;ter Ordnung allgemein zu <i>m<sub>k</sub></i> = <i>k</i>!/<i>&lambda;</i><sup><i>k</i></sup> &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i>m</i><sub>1</sub> = 1/<i>&lambda;</i>,&nbsp;&nbsp; <i>m</i><sub>2</sub> = 2/<i>&lambda;</i><sup>2</sup>, &nbsp;&nbsp; <i>m</i><sub>3</sub> = 6/<i>&lambda;</i><sup>3</sup>, ...
 
  
<b>e)</b>&nbsp;&nbsp;Richtig ist nur der <u>Lösungsvorschlag 2</u>: Der quadratische Mittelwert der Laplaceverteilung ist aufgrund der symmetrischen WDF genau so groß wie bei der Exponentialverteilung:
+
 
$$m_2 = \frac{\lambda}{2} \cdot \int_{-\infty}^{\infty} \hspace{-0.01cm} y^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|y|}\hspace{0.1cm}{\rm d}y = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} y^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y = {2}/{\lambda^2} \hspace{0.05cm}.$$
+
[[File:EN_Inf_A_4_3.png|right|frame|To illustrate the sample solution to problem&nbsp; '''(5)''']]
Der Mittelwert  der Laplaceverteilung ist <i>m</i><sub>1</sub> = 0. Damit ist die Varianz der Laplaceverteilung doppelt so groß wie bei der Exponentialverteilung:
+
'''(5)'''&nbsp; Only the <u>proposed solution 2</u> is correct:  
$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} - 0 ={2}/{\lambda^2}  
+
*The second moment of&nbsp; "Laplace"&nbsp; is the same as for the exponential distribution because of the symmetric PDF:
 +
:$$m_2 = \frac{\lambda}{2} \cdot \int_{-\infty}^{\infty} \hspace{-0.01cm} y^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|y|}\hspace{0.1cm}{\rm d}y = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} y^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y = {2}/{\lambda^2} \hspace{0.05cm}.$$
 +
 
 +
*In contrast, the mean of the Laplace distribution is&nbsp; $m_1 = 0$.  
 +
*Thus, the variance of the Laplace distribution is twice that of the exponential distribution:
 +
:$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} - 0 ={2}/{\lambda^2}  
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}  
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}  
 
\sigma = {\sqrt{2}}/{\lambda}\hspace{0.05cm}.$$
 
\sigma = {\sqrt{2}}/{\lambda}\hspace{0.05cm}.$$
  
[[File:P_ID2864__Inf_Z_4_1f_neu.png|right|]]
 
  
<b>f)</b>&nbsp;&nbsp;Für die Exponentialverteilung ergibt sich  entsprechend der oberen Grafik mit <i>m<sub>X</sub></i> = <i>&sigma;<sub>X</sub></i> = 1/<i>&#955;</i>:
+
'''(6)'''&nbsp; For the exponential distribution, according to the upper graph with&nbsp; $m_X = \sigma_X = 1/\lambda$:
$${\rm Pr}( |X  -  m_X| > \sigma_X) =
+
:$${\rm Pr}( |X  -  m_X| > \sigma_X) \hspace{-0.05cm} = \hspace{-0.05cm}
{\rm Pr}( X > 2/\lambda) $$ $$\
+
{\rm Pr}( X > 2/\lambda)  
  =   \lambda \cdot\int_{2/\lambda}^{\infty} \hspace{-0.01cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x =  
+
  \hspace{-0.05cm} = \hspace{-0.05cm}  \lambda \cdot\int_{2/\lambda}^{\infty} \hspace{-0.08cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x =  
 
  -\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}
 
  -\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}
\right ]_{2/\lambda}^{\infty}$$ $$\
+
\right ]_{2/\lambda}^{\infty}
   =  {\rm e}^{-2} \hspace{0.15cm}\underline {\approx 0.135}\hspace{0.05cm}.$$
+
   =  {\rm e}^{-2} \hspace{0.15cm}\underline {\approx 0.135}.$$
Für die Laplaceverteilung (untere Grafik) erhält man mit <i>m<sub>Y</sub></i>&nbsp;=&nbsp;0 und <i>&sigma;<sub>Y</sub></i>&nbsp;=&nbsp;2<sup>0.5</sup>/<i>&lambda;</i>:
+
For the Laplace distribution (lower graph),&nbsp; with &nbsp;$m_Y = 0$&nbsp; and &nbsp;$\sigma_Y = \sqrt{2}/\lambda$ we obtain::
$${\rm Pr}( |Y  -  m_Y| > \sigma_Y) =
+
:$${\rm Pr}( |Y  -  m_Y| > \sigma_Y) =
2 \cdot {\rm Pr}( Y > \sqrt{2}/\lambda) $$ $$\
+
2 \cdot {\rm Pr}( Y > \sqrt{2}/\lambda)  
  =    2 \cdot \frac{\lambda}{2} \cdot\int_{\sqrt{2}/\lambda}^{\infty} \hspace{-0.01cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x =  
+
  =    2 \cdot \frac{\lambda}{2} \cdot\int_{\sqrt{2}/\lambda}^{\infty} \hspace{-0.01cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x $$
 +
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}( |Y  -  m_Y| > \sigma_Y) =
 
\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}
 
\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}
\right ]_{\sqrt{2}/\lambda}^{\infty}$$ $$\
+
\right ]_{\sqrt{2}/\lambda}^{\infty}
 
  = -  {\rm e}^{-\sqrt{2}} \hspace{0.15cm}\underline {\approx 0.243}\hspace{0.05cm}.$$
 
  = -  {\rm e}^{-\sqrt{2}} \hspace{0.15cm}\underline {\approx 0.243}\hspace{0.05cm}.$$
  
Ein Vergleich der schraffierten Flächen in nebenstehender Grafik bestätigt das Ergebnis qualitativ: Die blauen Flächen sind zusammen etwas größer als die rote Fläche.
+
A comparison of the shaded areas in the accompanying graph qualitatively confirms the result: <br> &rArr; &nbsp;  The blue areas together are slightly larger than the red area.
 +
 
 +
 
  
  
Line 129: Line 151:
  
  
[[Category:Aufgaben zu Informationstheorie|^4.1  Differentielle Entropie^]]
+
[[Category:Information Theory: Exercises|^4.1  Differential Entropy^]]

Latest revision as of 14:19, 18 January 2023

Exponential PDF (top),
Laplace PDF (bottom)

The upper graph shows the probability density function  $\rm (PDF)$  of the  exponential distribution:

$$f_X(x) = \left\{ \begin{array}{c} A_{ X} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm}x} \\ A_{ X}/2 \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm}x>0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x=0, \\ {\rm{f\ddot{u}r}} \hspace{0.1cm}x<0. \\ \end{array}$$

Drawn below is the PDF of the  Laplace distribution, which can be specified for all  $y$–values as follows:

$$f_Y(y) = A_{ Y} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} |\hspace{0.03cm}y\hspace{0.03cm}|}\hspace{0.05cm}.$$

The two continuous random variables  $X$  and  $Y$  are to be compared with respect to the following characteristics:

  • The linear mean  $m_1$  (first order moment),
  • the second order moment   ⇒   $m_2$,
  • the variance  $\sigma^2 = m_2 - m_1^2$   ⇒   Steiner's theorem,
  • the standard deviation  $\sigma$.





Hints:

  • The task belongs to the chapter  Differential Entropy.
  • Useful hints for solving this task and further information on continuous random variables can be found in the third chapter "Continuous Random Variables" of the book  Theory of Stochastic Signals.
  • Also given are the two indefinite integrals:
$$\int \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\hspace{0.05cm}, $$
$$\int \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot (\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) \hspace{0.05cm}. $$


Questions

1

What is the maximum value  $A_X$  of the PDF  $f_X(x)$?

$A_X = \lambda/2$,
$A_X = \lambda$,
$A_X = 1/\lambda$.

2

What is the maximum value  $A_Y$  of the PDF  $f_Y(y)$?

$A_Y = \lambda/2$,
$A_Y = \lambda$,
$A_Y = 1/\lambda$.

3

Is there an argument  $z$, such that  $f_X(z) = f_Y(z)$ ?

Yes.
No.

4

Which statements are true about the characteristics of the exponential distribution?

The linear mean is  $m_1 = 1/\lambda$.
The second order moment is  $m_2 = 2/\lambda^2$.
The variance is  $\sigma^2 = 1/\lambda^2$.

5

Which statements are true about the characteristics of the Laplace distribution?

The linear mean is  $m_1 = 1/\lambda$.
The second order moment is  $m_2 = 2/\lambda^2$.
The variance is  $\sigma^2 = 1/\lambda^2$.

6

With what probabilities does the random variable  $(X$  or   $Y)$  differ from the respective mean in magnitude by more than the dispersion  $\sigma$?

$\text{Exponential:}\; \;{\rm Pr}( |X - m_X| > \sigma_X) \ = \ $

$\text{Laplace:}\; \;{\rm Pr}( |Y - m_Y| > \sigma_Y) \ = \ $


Solution

(1)  Proposed solution 2 is correct:

  • The area under the PDF must always be  $1$ .  It follows for the exponential distribution:
$$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\big [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\big ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$


(2)  Proposed solution 1 is correct:

  • From the graph on the information page, we can see that the height  $A_Y$  of the Laplace PDF is only half as large as the maximum of the exponential PDF:
$$A_Y = \lambda/2.$$


(3)  Correct is YES,  although for  $z \ne 0$  always  $f_X(z) = f_Y(z)$.   Let us now consider the special case  $z= 0$:

  • For the Laplace PDF:  $f_Y(y = 0) = \lambda/2$.
  • For the exponential PDF,  the left-hand and right-hand limits differ for  $x \to 0$.
  • The PDF value at point  $x= 0$  is the average of these two limits:
$$f_X(0) = \frac{1}{2} \cdot \big [ 0 + \lambda \big] = \lambda/2 = f_Y(0)\hspace{0.05cm}.$$


(4)  All proposed solutions are correct. 

For the exponential distribution, the  $k$–th order moment is generally calculated to be

$$m_k = \frac{k!}{\lambda^k} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} m_1 = \frac{1}{\lambda}, \hspace{0.3cm} m_2 = \frac{2}{\lambda^2}, \hspace{0.3cm} m_3 = \frac{6}{\lambda^3}, \ \text{...}$$

Thus one obtains for

  • the linear mean (first order moment):
$$m_1 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot \left [\frac{{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}}{(-\lambda)^2}\cdot(-\lambda \cdot x-1)\right ]_{0}^{\infty}= {1}/{\lambda} \hspace{0.05cm},$$
  • the second order moment:
$$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot (\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) \right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$

From this, using Steiner's theorem for the variance of the exponential distribution, we get:

$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \sigma = {1}/{\lambda}\hspace{0.05cm}.$$


To illustrate the sample solution to problem  (5)

(5)  Only the proposed solution 2 is correct:

  • The second moment of  "Laplace"  is the same as for the exponential distribution because of the symmetric PDF:
$$m_2 = \frac{\lambda}{2} \cdot \int_{-\infty}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}|y|}\hspace{0.1cm}{\rm d}y = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} y^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}y}\hspace{0.1cm}{\rm d}y = {2}/{\lambda^2} \hspace{0.05cm}.$$
  • In contrast, the mean of the Laplace distribution is  $m_1 = 0$.
  • Thus, the variance of the Laplace distribution is twice that of the exponential distribution:
$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} - 0 ={2}/{\lambda^2} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \sigma = {\sqrt{2}}/{\lambda}\hspace{0.05cm}.$$


(6)  For the exponential distribution, according to the upper graph with  $m_X = \sigma_X = 1/\lambda$:

$${\rm Pr}( |X - m_X| > \sigma_X) \hspace{-0.05cm} = \hspace{-0.05cm} {\rm Pr}( X > 2/\lambda) \hspace{-0.05cm} = \hspace{-0.05cm} \lambda \cdot\int_{2/\lambda}^{\infty} \hspace{-0.08cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = -\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x} \right ]_{2/\lambda}^{\infty} = {\rm e}^{-2} \hspace{0.15cm}\underline {\approx 0.135}.$$

For the Laplace distribution (lower graph),  with  $m_Y = 0$  and  $\sigma_Y = \sqrt{2}/\lambda$ we obtain::

$${\rm Pr}( |Y - m_Y| > \sigma_Y) = 2 \cdot {\rm Pr}( Y > \sqrt{2}/\lambda) = 2 \cdot \frac{\lambda}{2} \cdot\int_{\sqrt{2}/\lambda}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x $$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}( |Y - m_Y| > \sigma_Y) = \left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x} \right ]_{\sqrt{2}/\lambda}^{\infty} = - {\rm e}^{-\sqrt{2}} \hspace{0.15cm}\underline {\approx 0.243}\hspace{0.05cm}.$$

A comparison of the shaded areas in the accompanying graph qualitatively confirms the result:
⇒   The blue areas together are slightly larger than the red area.