Difference between revisions of "Aufgaben:Exercise 4.1Z: Transmission Behavior of Short Cables"

From LNTwww
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Einige Ergebnisse der Leitungstheorie
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory
 
}}
 
}}
  
[[File:P_ID1798__LZI_Z_4_1.png|right|Kurzer Leitungsabschnitt]]
+
[[File:EN_LZI_Z_4_1.png|right|frame|Short line section]]
Wir gehen von einer homogenen und reflektionsfrei abgeschlossenen Leitung der Länge $l$ aus, so dass für die Spektralfunktion am Ausgang gilt:
+
We assume a homogeneous and reflection-free terminated line of length  $l$  so that the following applies to the spectral function at the output:
$$U_2(f)  =  U_1(f) \cdot  {\rm e}^{-\hspace{0.02cm}\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l}  \hspace{0.05cm}.$$
+
:$$U_2(f)  =  U_1(f) \cdot  {\rm e}^{-\hspace{0.02cm}\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l}  \hspace{0.05cm}.$$
Hierbei beschreibt $\gamma(f)$ das Übertragungsmaß einer extrem kurzen Leitung der infinitesimalen Länge $dx$, das mit den Belägen $R'$, $L'$, $G'$' und $C'$ (siehe Grafik) wie folgt dargestellt werden kann:
+
Here  $\gamma(f)$  describes the  '''complex propagation function'''  of an extremely short line of infinitesimal length  $dx$,  which can be represented with the parameters  $R\hspace{0.05cm}'$,  $L\hspace{0.05cm}'$,  $G\hspace{0.08cm}'$ and  $C\hspace{0.08cm}'$ (see diagram) as follows:
$$\gamma(f)  =  \sqrt{(R' + {\rm j}  \cdot 2\pi f \cdot  L')  \cdot  (G' + {\rm j}  \cdot  2\pi f \cdot  C')} =
+
:$$\gamma(f)  =  \sqrt{(R\hspace{0.05cm}' + {\rm j}  \cdot 2\pi f \cdot  L\hspace{0.05cm}')  \cdot  (G\hspace{0.08cm}' + {\rm j}  \cdot  2\pi f \cdot  C\hspace{0.08cm}')} =
 
  \alpha (f) + {\rm j}  \cdot \beta (f)\hspace{0.05cm}.$$
 
  \alpha (f) + {\rm j}  \cdot \beta (f)\hspace{0.05cm}.$$
Der Realteil von $\gamma(f)$ ergibt das Dämpfungsmaß $\alpha(f)$, der Imaginärteil das Phasenmaß $\beta(f)$. Nach einiger Rechnung kann man für diese Größen schreiben:
+
The real part of  $\gamma(f)$  results in
$$\alpha(f)  =  \sqrt{{1}/{2}\cdot \left (R' G' - \omega^2 \cdot L'  C'\right)+
+
*The real part of  $\gamma(f)$  results in the attenuation function $\alpha(f)$  (per unit length).
   {1}/{2}\sqrt{(R'^2 + \omega^2 \cdot L'^2) \cdot (G'^2 + \omega^2 \cdot C'^2)}}
+
*The imaginary part of  $\gamma(f)$  results in the phase function  $\beta(f)$ (per unit length).  
  \hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
+
 
 +
 
 +
After some calculation one can write for these sizes:
 +
:$$\alpha(f)  =  \sqrt{{1}/{2}\cdot \left (R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' - \omega^2 \cdot L\hspace{0.05cm}\cdot C\hspace{0.08cm}'\right)+
 +
   {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}}
 +
  \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
 
  f},$$
 
  f},$$
$$\beta(f)  =  \sqrt{{1}/{2}\cdot \left (-R' G' + \omega^2 \cdot L'  C'\right)+
+
:$$\beta(f)  =  \sqrt{{1}/{2}\cdot \left (-R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' + \omega^2 \cdot L\hspace{0.05cm}'  C\hspace{0.08cm}'\right)+
   {1}/{2}\sqrt{(R'^2 + \omega^2 \cdot L'^2) \cdot (G'^2 + \omega^2 \cdot C'^2)}}
+
   {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}}
  \hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
+
  \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
Beim Dämpfungsmaß ist zusätzlich die Pseudoeinheit „Neper (Np)” hinzuzufügen und beim Phasenmaß „Radian (rad)”.  
+
 
 +
*For the attenuation function  $a(f)$  the pseudo unit  "Neper"  (Np)  has to be added additionally and for the phase function  $b(f)$  "Radian"  (rad).  
 +
*Since the primary line parameters are each related to the line length,  $\alpha(f)$  and  $\beta(f)$  have the units  "Np/km"  and  "rad/km",  respectively.
 +
 
 +
 
 +
Another important descriptive quantity besides  $\gamma(f)$  is the  '''wave impedance'''  $Z_{\rm W}(f)$,  which gives the relationship between voltage and current of the two running waves at each location.  It holds:
 +
:$$Z_{\rm W}(f)  =  \sqrt{\frac {R\hspace{0.05cm}' + {\rm j}  \cdot \omega  L\hspace{0.05cm}'}{G\hspace{0.08cm}' + {\rm j}  \cdot \omega  C\hspace{0.08cm}'}}
 +
\hspace{0.1cm}\bigg |_{\hspace{0.05cm} \omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
 +
 
 +
 
  
Da die Leitungsbeläge jeweils auf die Leitungslänge bezogen sind, weisen $\alpha(f)$ bzw. $\beta(f)$ die Einheiten „Np/km” bzw. „rad/km” auf.
 
  
Eine weitere wichtige Beschreibungsgröße neben $\gamma(f)$ ist der Wellenwiderstand $Z_{\rm W}(f)$, der an jedem Ort den Zusammenhang zwischen Spannung und Strom der beiden laufenden Wellen angibt. Es gilt:
 
$$Z_{\rm W}(f)  =  \sqrt{\frac {R' + {\rm j}  \cdot \omega  L'}{G' + {\rm j}  \cdot \omega  C'}}
 
\hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
 
  
''Hinweise:''
+
Notes:  
*Die Aufgabe gehört zum Kapitel   [[Lineare_zeitinvariante_Systeme/Einige_Ergebnisse_der_Leitungstheorie|Einige Ergebnisse der Leitungstheorie]].
+
*The exercise belongs to the chapter    [[Linear_and_Time_Invariant_Systems/Some_Results_from_Line_Transmission_Theory|Some Results from Line Transmission Theory]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
*Verwenden Sie für die numerischen Berechnungen jeweils die Zahlenwerte
+
*Use the following values for the numerical calculations:
$$R\hspace{0.03cm}' = 100\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
+
:$$R\hspace{0.05cm}' = 100\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm}
  G\hspace{0.03cm}' = 1\,\,{\rm \mu S}/{ {\rm km}}\hspace{0.05cm},\hspace{0.3cm}
+
  G\hspace{0.08cm}' = 1\,\,{\rm µ S}/{ {\rm km}}\hspace{0.05cm},\hspace{0.3cm}
  2\pi  L' = 2\,\,{\rm mH}/{ {\rm km}}  \hspace{0.05cm},\hspace{0.3cm}
+
  2\pi  L\hspace{0.03cm}' = 2\,\,{\rm mH}/{ {\rm km}}  \hspace{0.05cm},\hspace{0.3cm}
  2\pi  C\hspace{0.03cm}' = 200\,\,{\rm nF}/{ {\rm km}}
+
  2\pi  C\hspace{0.08cm}' = 200\,\,{\rm nF}/{ {\rm km}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie $\alpha(f)$, $\beta(f)$ und $Z_{\rm W}(f)$ für die Frequenz $f = 0$ (Gleichstrom) an.
+
{Specify &nbsp;$\alpha(f)$, &nbsp;$\beta(f)$ and &nbsp;$Z_{\rm W}(f)$&nbsp; for frequency &nbsp;$f = 0$&nbsp; ("direct current").
 
|type="{}"}
 
|type="{}"}
$\alpha(f = f_0) \ =$  { 0.01 3% } $\ \rm Np/km$
+
$\alpha(f =0) \ =$  { 0.01 3% } $\ \rm Np/km$
$\beta(f = f_0) \ =$ { 0. } $\ \rm rad/km$
+
$\beta(f = 0) \ =$ { 0. } $\ \rm rad/km$
$Z_W(f = f_0) \ =$  { 10 3% } $\ \rm k \Omega$
+
$Z_{\rm W}(f = 0) \ =$  { 10000 3% } $\ \rm \Omega$
  
  
{Berechnen Sie das Dämpfungsmaß $\alpha(f)$ für $f = 100\ \rm  kHz$.
+
{Calculate the attenuation function &nbsp;$\alpha(f)$&nbsp; (per unit length)&nbsp; for &nbsp;$f = 100\ \rm  kHz$.
 
|type="{}"}
 
|type="{}"}
$\alpha(f = 100\ \rm  kHz) \ =$  { 0.486 3% } $\ \rm Np/km$
+
$\alpha(f = 100\ \rm  kHz) \ = \ $  { 0.486 3% } $\ \rm Np/km$
  
  
{Geben Sie für $f  &#8594; \infty$ gültige Näherungen für $Z_{\rm W}(f)$ und $\alpha(f)$ an.
+
{Give the approximations of &nbsp;$Z_{\rm W}(f)$&nbsp; and &nbsp;$\alpha(f)$,&nbsp; valid for &nbsp;$f &#8594; \infty$&nbsp;.
 
|type="{}"}
 
|type="{}"}
$ Z_W(f &#8594; \infty) \ =$  { 100 3% } $\ \rm \Omega$
+
$ Z_{\rm W}(f &#8594; \infty) \ = \ $  { 100 3% } $\ \rm \Omega$
$\alpha(f &#8594; \infty)\ =$ { 0.5 3% } $\ \rm Np/km$
+
$\alpha(f &#8594; \infty) \ = \ $ { 0.5 3% } $\ \rm Np/km$
  
  
{Leiten Sie mit $\omega L' \ll R'$ und $\omega C' \gg G'$ eine $\alpha(f)$&ndash; Näherung für (nicht zu) kleine Frequenzen ab. Welches Dämpfungsmaß ergibt sich für $ f = 1 \ \rm kHz$ und $ f = 4 \ \rm kHz$.
+
{Use &nbsp;$\omega L\hspace{0.03cm}' \ll R\hspace{0.05cm}'$&nbsp; and &nbsp;$\omega C\hspace{0.08cm}' \gg G\hspace{0.08cm}'$&nbsp; to derive an &nbsp;$\alpha(f)$&nbsp;  approximation for&nbsp; (not too)&nbsp; small frequencies. <br>What is the attenuation function per unit length for &nbsp;$ f = 1 \ \rm kHz$&nbsp; and &nbsp;$ f = 4 \ \rm kHz$?
 
|type="{}"}
 
|type="{}"}
$\alpha(f = 1\  \rm kHz) \ =$  { 0.1 3% } $\ \rm Np/km$
+
$\alpha(f = 1\  \rm kHz) \ = \ $  { 0.1 3% } $\ \rm Np/km$
$\alpha(f = 4\  \rm kHz) \ =$ { 0.2 3% } $\ \rm Np/km$
+
$\alpha(f = 4\  \rm kHz) \ = \ $ { 0.2 3% } $\ \rm Np/km$
  
  
{Geben Sie für den gleichen Frequenzbereich eine geeignete Näherung für den Wellenwiderstand  $Z_{\rm W}(f)$ an. Welcher Wert ergibt sich für $ f = 1 \ \rm kHz$?
+
{For the same frequency range,&nbsp; give a suitable approximation for the wave impedance &nbsp;$Z_{\rm W}(f)$&nbsp;. <br>What value results for &nbsp;$ f = 1 \ \rm kHz$?
 
|type="{}"}
 
|type="{}"}
${\rm Re}\{Z_W(f = 1\ \rm kHz)\} \ = $ { 500 3% } $\ \rm \Omega$
+
${\rm Re}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ = \ $ { 500 3% } $\ \rm \Omega$
${\rm Im}\{Z_W(f = 1\ \rm kHz)\} \ = $ { -515--485 } $\ \rm \Omega$
+
${\rm Im}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ = $ { -515--485 } $\ \rm \Omega$
  
  
Line 72: Line 84:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Setzt man in die gegebenen Gleichungen die Frequenz $f = 0$ ein, so erhält man
+
'''(1)'''&nbsp; If you insert the frequency&nbsp; $f = 0$&nbsp; into the given equations, we obtain
$$\alpha(f = 0)    =  [1\,{\rm Np}] \cdot \sqrt{{1}/{2}\cdot R' \cdot G'+ {1}/{2}\cdot R' \cdot
+
:$$\alpha(f = 0)    =  [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{{1}/{2}\hspace{-0.03cm}\cdot \hspace{-0.03cm}  R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm}  G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm}
  G'} =  [1\,{\rm Np}] \cdot \sqrt{ R' \cdot G'} =  [1\,{\rm Np}] \cdot \sqrt{ 100\,{\rm \Omega/km} \cdot 10^{-6}\,{\rm (\Omega \cdot km})^{-1}}
+
  G\hspace{0.03cm}'} =  [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm}  \sqrt{ R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm}  G\hspace{0.03cm}'} =  [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm}  \sqrt{ 100\,{\rm \Omega/km} \hspace{-0.03cm}\cdot \hspace{-0.03cm}  10^{-6}\,{\rm (\Omega \hspace{-0.03cm}\cdot \hspace{-0.03cm}  km})^{-1}}
 
  \hspace{0.15cm}\underline{= 0.01\,{\rm Np}/{ {\rm km}}
 
  \hspace{0.15cm}\underline{= 0.01\,{\rm Np}/{ {\rm km}}
 
  }\hspace{0.05cm},$$
 
  }\hspace{0.05cm},$$
$$\beta(f = 0)  =  [1\,{\rm rad}] \cdot \sqrt{-{1}/{2}\cdot R' \cdot G'+ {1}/{2}\cdot R' \cdot
+
:$$\beta(f = 0)  =  [1\,{\rm rad}] \cdot \sqrt{-{1}/{2}\cdot R\hspace{0.03cm}' \cdot G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \cdot
  G'} \hspace{0.15cm}\underline{=  0 }\hspace{0.05cm},$$
+
  G\hspace{0.03cm}'} \hspace{0.15cm}\underline{=  0 }\hspace{0.05cm},$$
:$$Z_{\rm W}(f = 0)  =  \sqrt{\frac {R'}{G'}} =  \sqrt{\frac {100\,{\rm \Omega/km}}{{\rm 10^{-6}/(\Omega \cdot km})}}\hspace{0.15cm}\underline{=  10\, {\rm
+
:$$Z_{\rm W}(f = 0)  =  \sqrt{\frac {R\hspace{0.03cm}'}{G\hspace{0.03cm}'}} =  \sqrt{\frac {100\,{\rm \Omega/km}}{{\rm 10^{-6}/(\Omega \cdot km})}}\hspace{0.15cm}\underline{=  10\, {\rm
 
k \Omega}}\hspace{0.05cm}.$$
 
k \Omega}}\hspace{0.05cm}.$$
Die Gleichsignaldämpfung wird relevant,  
+
 
*wenn das Nutzsignal im Basisband übertragen werden soll und einen Gleichanteil besitzt, oder
+
The DC signal attenuation becomes relevant,  
*wenn der Netzabschluss beim Teilnehmer von der Ortsvermittlungsstelle aus mit Leistung versorgt werden muss (Fernspeisung).
+
*if the useful signal is to be transmitted in the baseband and has a DC component,&nbsp; or
 +
*if the network termination at the participant must be supplied with power from the local exchange&nbsp; ("remote power supply").
 +
 
  
  
'''(2)'''&nbsp; Mit $f = 10^{5} \ \rm  Hz$ und den angegebenen Werten gilt
+
'''(2)'''&nbsp; With&nbsp; $f = 10^{5} \ \rm  Hz$&nbsp; and the specified values,&nbsp; the following holds:
$$f \cdot  2\pi  L'  =  10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot
+
:$$f \cdot  2\pi  L'  =  10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot
 
10^{-3}\,\frac{\rm \Omega \cdot s}{ {\rm km}}= 200 \,\frac{\rm
 
10^{-3}\,\frac{\rm \Omega \cdot s}{ {\rm km}}= 200 \,\frac{\rm
 
\Omega
 
\Omega
}{ {\rm km}} \hspace{0.05cm},$$
+
}{ {\rm km}} \hspace{0.05cm},\hspace{1.05cm}
$$f \cdot  2\pi  C'  =  10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot
+
f \cdot  2\pi  C'  =  10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot
 
10^{-7}\,\frac{\rm  s}{ {\rm \Omega \cdot km}}= 0.02
 
10^{-7}\,\frac{\rm  s}{ {\rm \Omega \cdot km}}= 0.02
 
\,\frac{\rm 1 }{ {\rm \Omega \cdot km}} \hspace{0.05cm}.$$
 
\,\frac{\rm 1 }{ {\rm \Omega \cdot km}} \hspace{0.05cm}.$$
Damit ergibt sich für das Dämpfungsmaß in &bdquo;Np/km&rdquo;:
+
This results in the following for the attenuation function in "Np/km":
$$\alpha(f = 100\,{\rm kHz})
+
:$$\alpha(f = 100\,{\rm kHz})
 
=  \sqrt{ {1}/{2}\cdot \left (100 \cdot 10^{-6} - 200 \cdot 0.02 \right)+
 
=  \sqrt{ {1}/{2}\cdot \left (100 \cdot 10^{-6} - 200 \cdot 0.02 \right)+
 
   {1}/{2} \cdot  \sqrt{(100^2 + 200^2) \cdot (10^{-12} + 0.02^2)}} $$
 
   {1}/{2} \cdot  \sqrt{(100^2 + 200^2) \cdot (10^{-12} + 0.02^2)}} $$
$$ \Rightarrow \; \;  \alpha(f = 100\,{\rm kHz}) \approx  \sqrt{{1}/{2}\cdot \left (10^{-4} - 4 \right)+
+
:$$ \Rightarrow \; \;  \alpha(f = 100\,{\rm kHz}) \approx  \sqrt{{1}/{2}\cdot \left (10^{-4} - 4 \right)+
 
  {1}/{2}\cdot \sqrt{5 \cdot 10^{4} \cdot 4 \cdot 10^{-4}}} \approx \sqrt {-2 + \frac{\sqrt{20}}{
 
  {1}/{2}\cdot \sqrt{5 \cdot 10^{4} \cdot 4 \cdot 10^{-4}}} \approx \sqrt {-2 + \frac{\sqrt{20}}{
 
  2}} \hspace{0.15cm}\underline{\approx 0.486 \ {\rm Np/km}} \hspace{0.05cm}.$$
 
  2}} \hspace{0.15cm}\underline{\approx 0.486 \ {\rm Np/km}} \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Der Grenzübergang bezüglich des Wellenwiderstands für $f  &#8594; \infty$ ergibt sich, wenn man im Zähler $R'$ und im Nenner $G'$ gegenüber den jeweils zweiten Term vernachlässigt:
+
'''(3)'''&nbsp; The limit for&nbsp; $f  &#8594; \infty$&nbsp; results if one neglects the second terms in the numerator&nbsp; $R\hspace{0.03cm}'$&nbsp; and in the denominator&nbsp; $G\hspace{0.08cm}'$&nbsp;:
$$\lim_{f \rightarrow \infty} \hspace{0.1cm} Z_{\rm W}(f)
+
:$$\lim_{f \rightarrow \infty} \hspace{0.1cm} Z_{\rm W}(f)
  = \lim_{\omega \rightarrow \infty} \hspace{0.1cm}  \sqrt{\frac {R' + {\rm j}  \cdot \omega L'}{G' + {\rm j}  \cdot \omega  C'}}
+
  = \lim_{\omega \rightarrow \infty} \hspace{0.1cm}  \sqrt{\frac {R\hspace{0.03cm}' + {\rm j}  \cdot \omega L'}{G' + {\rm j}  \cdot \omega  C\hspace{0.03cm}'}}
  =\sqrt{\frac {2 \pi L' }{2 \pi C'}}=\sqrt{\frac {2 \cdot 10^{-3}\,{\rm \Omega \cdot s} }
+
  =\sqrt{\frac {2 \pi L\hspace{0.03cm}' }{2 \pi C\hspace{0.03cm}'}}=\sqrt{\frac {2 \cdot 10^{-3}\,{\rm \Omega \cdot s} }
 
  {2 \cdot 10^{-73}\,{\rm s/\Omega} }} \hspace{0.15cm}\underline{= 100\,{\rm \Omega }}\hspace{0.05cm}.$$
 
  {2 \cdot 10^{-73}\,{\rm s/\Omega} }} \hspace{0.15cm}\underline{= 100\,{\rm \Omega }}\hspace{0.05cm}.$$
Die Näherung für die Dämpfungsfunktion ist schwieriger herzuleiten. Ausgehend von
+
*The approximation for the attenuation function is more difficult to derive.&nbsp; Starting from
$$\alpha(\omega)  =  \sqrt{ {1}/{2}\cdot \left (R' G' - \omega^2 \cdot L'  C'\right)+
+
:$$\alpha(\omega)  =  \sqrt{ {1}/{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}'  C\hspace{0.03cm}'\right)+
   {1}/{2}\sqrt{(R'^2 + \omega^2 \cdot L'^2) \cdot (G'^2 + \omega^2 \cdot C'^2)}}$$  
+
   {1}/{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot C\hspace{0.03cm}\hspace{0.03cm}'^2)}}$$  
gilt dann ebenfalls:
+
:then also the following applies:
$$2 \cdot \alpha^2(\omega)    =  R' G' + \omega^2 \cdot L'
+
:$$2 \cdot \alpha^2(\omega)    =  R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L'
 
  C'\cdot
 
  C'\cdot
  \left [-1 +\sqrt{(1 + \frac{R'^2}{ \omega^2 \cdot L'^2}) \cdot (1 + \frac{G'^2}{ \omega^2 \cdot C'^2})} \hspace{0.1cm}
+
  \left [-1 +\sqrt{(1 + \frac{R\hspace{0.03cm}'^2}{ \omega^2 \cdot L\hspace{0.03cm}'^2}) \cdot (1 + \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2})} \hspace{0.1cm}
\right]
 
  \approx  R' G' + \omega^2 \cdot L'
 
C'\cdot
 
\left [-1 +\sqrt{1 + \frac{R'^2}{ \omega^2 \cdot L'^2}+ \frac{G'^2}{ \omega^2 \cdot C'^2}} \hspace{0.1cm}
 
 
  \right]$$
 
  \right]$$
Über die für kleine $x$ gültige Näherung $\sqrt{1 + x}\approx 1+x/2$ kommt man zum Zwischenergebnis für (unendlich) große Frequenzen:
+
:$$\Rightarrow \; \; 2 \cdot \alpha^2(\omega)      \approx  R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L'
$$2 \cdot \alpha^2(\omega \rightarrow \infty)    =  R' G' + \omega^2 \cdot L'
+
C\hspace{0.03cm}'\cdot
  C'\cdot
+
\left [-1 +\sqrt{1 + \frac{R'^2}{ \omega^2 \cdot L'^2}+ \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2}} \hspace{0.1cm}
  \left [ -1 +1 + {1}/{2} \cdot  \left ( \frac{R'^2}{ \omega^2 \cdot L'^2}+ \frac{G'^2}{ \omega^2 \cdot C'^2}
+
\right].$$
 +
*Using the approximation&nbsp; $\sqrt{1 + x}\approx 1+x/2$&nbsp; valid for small&nbsp; $x$,&nbsp; one arrives at the intermediate result for (infinitely) large frequencies:
 +
:$$2 \cdot \alpha^2(\omega \rightarrow \infty)    =  R\hspace{0.03cm}' G\hspace{0.05cm}' + \omega^2 \cdot L'
 +
  C\hspace{0.05cm}'\cdot
 +
  \left [ -1 +1 + {1}/{2} \cdot  \left ( \frac{R\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2}+ \frac{G\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2}
 
  \right) \hspace{0.1cm}
 
  \right) \hspace{0.1cm}
 
  \right]  $$
 
  \right]  $$
$$\Rightarrow \hspace{0.3cm}  2  \cdot \alpha^2(\omega \rightarrow \infty) =  \frac{2 \cdot  R'  G'  C'  L'+ R'\hspace{0.03cm}^2  C'\hspace{0.03cm}^2+
+
:$$\Rightarrow \hspace{0.3cm}  2  \cdot \alpha^2(\omega \rightarrow \infty) =  \frac{2 \cdot  R\hspace{0.03cm}'  G\hspace{0.03cm}'  C\hspace{0.03cm}'  L'+ R\hspace{0.03cm}'\hspace{0.03cm}^2  C\hspace{0.03cm}'\hspace{0.03cm}^2+
   G'\hspace{0.03cm}^2  L'\hspace{0.03cm}^2}{2 \cdot C'  L'
+
   G\hspace{0.03cm}'\hspace{0.03cm}^2  L\hspace{0.03cm}'\hspace{0.03cm}^2}{2 \cdot C\hspace{0.03cm}'  L\hspace{0.03cm}'
   }=
+
   }= \frac{(R\hspace{0.03cm}'  C\hspace{0.03cm}' + G\hspace{0.03cm}'  L\hspace{0.03cm}')^2}{2 \cdot C\hspace{0.03cm}'  L\hspace{0.03cm}' }$$
  \frac{(R'  C' + G'  L')^2}{2 \cdot C'  L' }$$
+
:$$\Rightarrow \hspace{0.3cm} \alpha(\omega \rightarrow \infty)  =
$$\Rightarrow \hspace{0.3cm} \alpha(\omega \rightarrow \infty)  =
+
   {1}/{2}\cdot \frac{R\hspace{0.03cm}' C\hspace{0.03cm}' + G\hspace{0.03cm}'  L\hspace{0.03cm}'}{\sqrt{ C\hspace{0.03cm}'  L\hspace{0.03cm}' }}=
   {1}/{2}\cdot \frac{R' C' + G'  L'}{\sqrt{ C'  L' }}=
+
   {1}/{2}\cdot \left [R\hspace{0.03cm}' \cdot \sqrt{\frac{C\hspace{0.03cm}'}{L\hspace{0.03cm}'}}+G\hspace{0.03cm}' \cdot \sqrt{\frac{L\hspace{0.03cm}'}{C\hspace{0.03cm}'}}\right]\hspace{0.05cm}.$$
   {1}/{2}\cdot \left [R' \cdot \sqrt{\frac{C'}{L'}}+G' \cdot \sqrt{\frac{L'}{C'}}\right]\hspace{0.05cm}.$$
+
*With the numerical values inserted,&nbsp; we get
Mit den eingesetzten Zahlenwerten ergibt sich
+
:$$\alpha(f \rightarrow \infty)  =  \alpha(\omega \rightarrow \infty)
$$\alpha(f \rightarrow \infty)  =  \alpha(\omega \rightarrow \infty)
 
 
  =  {0.5\,{\rm Np/km}}\cdot \left [100 \cdot \sqrt{\frac{2 \cdot 10^{-7}}{2 \cdot10^{-3}}}+10^{-6} \cdot
 
  =  {0.5\,{\rm Np/km}}\cdot \left [100 \cdot \sqrt{\frac{2 \cdot 10^{-7}}{2 \cdot10^{-3}}}+10^{-6} \cdot
 
   \sqrt{\frac{2 \cdot10^{-3}}{2 \cdot10^{-7}}}\right]
 
   \sqrt{\frac{2 \cdot10^{-3}}{2 \cdot10^{-7}}}\right]
Line 142: Line 155:
  
  
'''(4)'''&nbsp; Für kleine Frequenzen gilt $\omega L' \ll R'$ und $ \omega C' \gg G'$. Damit erhält man für das Dämpfungsmaß unter Vernachlässigung des $\omega^2$&ndash;Anteils:
+
'''(4)'''&nbsp; For small frequencies, &nbsp;$\omega L\hspace{0.03cm}' \ll R\hspace{0.03cm}'$&nbsp; and &nbsp;$ \omega C\hspace{0.03cm}' \gg G\hspace{0.03cm}'$ apply.  
$$\alpha(f)    =  \sqrt{\frac {1}{2}\cdot \left (R' G' - \omega^2 \cdot L'  C'\right)+
+
*Neglecting the&nbsp; $\omega^2$&ndash;part, one obtains:
  \frac {1}{2}\sqrt{(R'^2 + \omega^2 \cdot L'^2) \cdot (G'^2 + \omega^2 \cdot C'^2)}}
+
:$$\alpha(f)    =  \sqrt{\frac {1}{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}'  C\hspace{0.03cm}'\right)+
  \hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
+
  \frac {1}{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2+ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2)}}
 +
  \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
 
  f}$$
 
  f}$$
$$ \Rightarrow \hspace{0.3cm} \alpha(f)    \approx  \sqrt{\frac {R' G'}{2}+
+
:$$ \Rightarrow \hspace{0.3cm} \alpha(f)    \approx  \sqrt{\frac {R\hspace{0.03cm}' G\hspace{0.03cm}'}{2}+
  \frac {R' \cdot \omega C'}{2}}
+
  \frac {R\hspace{0.03cm}' \cdot \omega C\hspace{0.03cm}'}{2}}
  \hspace{0.1cm}\bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
+
  \hspace{0.1cm}\bigg |_{\hspace{0.03cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi
 
  f} \approx \sqrt{
 
  f} \approx \sqrt{
   {1}/{2} \cdot f \cdot R' \cdot 2 \pi C'}
+
   {1}/{2} \cdot f \cdot R\hspace{0.03cm}' \cdot 2 \pi C\hspace{0.03cm}'}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Hierbei ist berücksichtigt, dass der erste Anteil gemäß Teilaufgabe (1) außer bei der Frequenz $f = 0$ direkt vernachlässigt werden kann.  
+
*Here it is considered that the first part can be neglected according to subtask&nbsp; '''(1)'''&nbsp; except for the frequency&nbsp; $f = 0$&nbsp;.  
*Für die Frequenz $f = 1 \ \rm kHz$ ergibt sich die Näherung
+
*For the frequency&nbsp; $f = 1 \ \rm kHz$&nbsp; we get the approximation
 
:$$\alpha(f = 1\,{\rm kHz})  = \sqrt{
 
:$$\alpha(f = 1\,{\rm kHz})  = \sqrt{
 
   {1}/{2} \cdot 10^{3}\,{\rm Hz} \cdot 100\,\frac{\rm \Omega }{ {\rm km}} \cdot 2 \cdot 10^{-7}
 
   {1}/{2} \cdot 10^{3}\,{\rm Hz} \cdot 100\,\frac{\rm \Omega }{ {\rm km}} \cdot 2 \cdot 10^{-7}
Line 160: Line 174:
 
\hspace{0.15cm}\underline{= 0.1\,{\rm Np }/{ {\rm km}}}
 
\hspace{0.15cm}\underline{= 0.1\,{\rm Np }/{ {\rm km}}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Für die Frequenz $f = 1 \ \rm kHz$ ist das Dämpfungsmaß doppelt so groß:
+
*For frequency&nbsp; $f = 4 \ \rm kHz$&nbsp; the attenuation function per unit length is twice as large:
 
:$$\alpha(f = 4\,{\rm kHz})  \hspace{0.15cm}\underline{ = 0.2\,{\rm Np }/{ {\rm km}}}
 
:$$\alpha(f = 4\,{\rm kHz})  \hspace{0.15cm}\underline{ = 0.2\,{\rm Np }/{ {\rm km}}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
'''(5)'''&nbsp; Für den Wellenwiderstand gilt bei niedrigen Frequenzen näherungsweise
+
 
$$Z_{\rm W}(f)  =  \sqrt{\frac {R' + {\rm j}  \cdot f \cdot 2 \pi  L'}{G' + {\rm j}    \cdot f \cdot 2 \pi  C'}}
+
 
  \approx \sqrt\frac{1 }{  {\rm j}} \cdot \sqrt{\frac {R' }{  f \cdot 2 \pi
+
'''(5)'''&nbsp; The wave impedance at low frequencies is approximated by:
  C'}}= (1 - {\rm j})\cdot \sqrt{\frac {R' }{  2 \cdot f \cdot 2 \pi
+
:$$Z_{\rm W}(f)  =  \sqrt{\frac {R\hspace{0.03cm}' + {\rm j}  \cdot f \cdot 2 \pi  L\hspace{0.03cm}'}{G\hspace{0.03cm}' + {\rm j}    \cdot f \cdot 2 \pi  C\hspace{0.03cm}'}}
  C'}}\hspace{0.05cm}.$$
+
  \approx \sqrt\frac{1 }{  {\rm j}} \cdot \sqrt{\frac {R\hspace{0.03cm}' }{  f \cdot 2 \pi
Mit den angegebenen Leitungsbeschlägen erhält man
+
  C\hspace{0.03cm}'}}= (1 - {\rm j})\cdot \sqrt{\frac {R\hspace{0.03cm}' }{  2 \cdot f \cdot 2 \pi
$${\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}  =  \sqrt{\frac {100\,{\rm \Omega/km }}{  2 \cdot 10^{3}\,{\rm Hz} \cdot 2 \cdot 10^{-7}
+
  C\hspace{0.03cm}'}}\hspace{0.05cm}.$$
 +
*With the specified line fittings we obtain:
 +
:$${\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}  =  \sqrt{\frac {100\,{\rm \Omega/km }}{  2 \cdot 10^{3}\,{\rm Hz} \cdot 2 \cdot 10^{-7}
 
  \,{\rm s/(\Omega \cdot km) }}} \hspace{0.15cm}\underline{= 500\,{\rm
 
  \,{\rm s/(\Omega \cdot km) }}} \hspace{0.15cm}\underline{= 500\,{\rm
 
  \Omega}}\hspace{0.05cm},$$
 
  \Omega}}\hspace{0.05cm},$$
$$ {\rm Im}\{Z_{\rm W}(f= 1\,{\rm kHz})\} =  -{\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}\hspace{0.15cm}\underline{= -500\,{\rm
+
:$$ {\rm Im}\{Z_{\rm W}(f= 1\,{\rm kHz})\} =  -{\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}\hspace{0.15cm}\underline{= -500\,{\rm
 
  \Omega}}\hspace{0.05cm}.$$
 
  \Omega}}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 179: Line 195:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.1 Einige Ergebnisse der Leitungstheorie^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.1 Results of Line Transmission Theory^]]

Latest revision as of 17:14, 9 November 2021

Short line section

We assume a homogeneous and reflection-free terminated line of length  $l$  so that the following applies to the spectral function at the output:

$$U_2(f) = U_1(f) \cdot {\rm e}^{-\hspace{0.02cm}\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l} \hspace{0.05cm}.$$

Here  $\gamma(f)$  describes the  complex propagation function  of an extremely short line of infinitesimal length  $dx$,  which can be represented with the parameters  $R\hspace{0.05cm}'$,  $L\hspace{0.05cm}'$,  $G\hspace{0.08cm}'$ and  $C\hspace{0.08cm}'$ (see diagram) as follows:

$$\gamma(f) = \sqrt{(R\hspace{0.05cm}' + {\rm j} \cdot 2\pi f \cdot L\hspace{0.05cm}') \cdot (G\hspace{0.08cm}' + {\rm j} \cdot 2\pi f \cdot C\hspace{0.08cm}')} = \alpha (f) + {\rm j} \cdot \beta (f)\hspace{0.05cm}.$$

The real part of  $\gamma(f)$  results in

  • The real part of  $\gamma(f)$  results in the attenuation function $\alpha(f)$  (per unit length).
  • The imaginary part of  $\gamma(f)$  results in the phase function  $\beta(f)$ (per unit length).


After some calculation one can write for these sizes:

$$\alpha(f) = \sqrt{{1}/{2}\cdot \left (R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' - \omega^2 \cdot L\hspace{0.05cm}' \cdot C\hspace{0.08cm}'\right)+ {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f},$$
$$\beta(f) = \sqrt{{1}/{2}\cdot \left (-R\hspace{0.05cm}' \cdot G\hspace{0.08cm}' + \omega^2 \cdot L\hspace{0.05cm}' C\hspace{0.08cm}'\right)+ {1}/{2}\cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.08cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.08cm}'\hspace{0.05cm}^2)}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
  • For the attenuation function  $a(f)$  the pseudo unit  "Neper"  (Np)  has to be added additionally and for the phase function  $b(f)$  "Radian"  (rad).  
  • Since the primary line parameters are each related to the line length,  $\alpha(f)$  and  $\beta(f)$  have the units  "Np/km"  and  "rad/km",  respectively.


Another important descriptive quantity besides  $\gamma(f)$  is the  wave impedance  $Z_{\rm W}(f)$,  which gives the relationship between voltage and current of the two running waves at each location.  It holds:

$$Z_{\rm W}(f) = \sqrt{\frac {R\hspace{0.05cm}' + {\rm j} \cdot \omega L\hspace{0.05cm}'}{G\hspace{0.08cm}' + {\rm j} \cdot \omega C\hspace{0.08cm}'}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm} \omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$



Notes:

  • Use the following values for the numerical calculations:
$$R\hspace{0.05cm}' = 100\,\,{\rm \Omega}/{ {\rm km} }\hspace{0.05cm},\hspace{0.3cm} G\hspace{0.08cm}' = 1\,\,{\rm µ S}/{ {\rm km}}\hspace{0.05cm},\hspace{0.3cm} 2\pi L\hspace{0.03cm}' = 2\,\,{\rm mH}/{ {\rm km}} \hspace{0.05cm},\hspace{0.3cm} 2\pi C\hspace{0.08cm}' = 200\,\,{\rm nF}/{ {\rm km}} \hspace{0.05cm}.$$



Questions

1

Specify  $\alpha(f)$,  $\beta(f)$ and  $Z_{\rm W}(f)$  for frequency  $f = 0$  ("direct current").

$\alpha(f =0) \ =$

$\ \rm Np/km$
$\beta(f = 0) \ =$

$\ \rm rad/km$
$Z_{\rm W}(f = 0) \ =$

$\ \rm \Omega$

2

Calculate the attenuation function  $\alpha(f)$  (per unit length)  for  $f = 100\ \rm kHz$.

$\alpha(f = 100\ \rm kHz) \ = \ $

$\ \rm Np/km$

3

Give the approximations of  $Z_{\rm W}(f)$  and  $\alpha(f)$,  valid for  $f → \infty$ .

$ Z_{\rm W}(f → \infty) \ = \ $

$\ \rm \Omega$
$\alpha(f → \infty) \ = \ $

$\ \rm Np/km$

4

Use  $\omega L\hspace{0.03cm}' \ll R\hspace{0.05cm}'$  and  $\omega C\hspace{0.08cm}' \gg G\hspace{0.08cm}'$  to derive an  $\alpha(f)$  approximation for  (not too)  small frequencies.
What is the attenuation function per unit length for  $ f = 1 \ \rm kHz$  and  $ f = 4 \ \rm kHz$?

$\alpha(f = 1\  \rm kHz) \ = \ $

$\ \rm Np/km$
$\alpha(f = 4\ \rm kHz) \ = \ $

$\ \rm Np/km$

5

For the same frequency range,  give a suitable approximation for the wave impedance  $Z_{\rm W}(f)$ .
What value results for  $ f = 1 \ \rm kHz$?

${\rm Re}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ = \ $

$\ \rm \Omega$
${\rm Im}\{Z_{\rm W}(f = 1\ \rm kHz)\} \ = \ $

$\ \rm \Omega$


Solution

(1)  If you insert the frequency  $f = 0$  into the given equations, we obtain

$$\alpha(f = 0) = [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{{1}/{2}\hspace{-0.03cm}\cdot \hspace{-0.03cm} R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm} G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm} G\hspace{0.03cm}'} = [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{ R\hspace{0.03cm}' \hspace{-0.03cm}\cdot \hspace{-0.03cm} G\hspace{0.03cm}'} = [1\,{\rm Np}] \hspace{-0.03cm}\cdot \hspace{-0.03cm} \sqrt{ 100\,{\rm \Omega/km} \hspace{-0.03cm}\cdot \hspace{-0.03cm} 10^{-6}\,{\rm (\Omega \hspace{-0.03cm}\cdot \hspace{-0.03cm} km})^{-1}} \hspace{0.15cm}\underline{= 0.01\,{\rm Np}/{ {\rm km}} }\hspace{0.05cm},$$
$$\beta(f = 0) = [1\,{\rm rad}] \cdot \sqrt{-{1}/{2}\cdot R\hspace{0.03cm}' \cdot G\hspace{0.03cm}'+ {1}/{2}\cdot R\hspace{0.03cm}' \cdot G\hspace{0.03cm}'} \hspace{0.15cm}\underline{= 0 }\hspace{0.05cm},$$
$$Z_{\rm W}(f = 0) = \sqrt{\frac {R\hspace{0.03cm}'}{G\hspace{0.03cm}'}} = \sqrt{\frac {100\,{\rm \Omega/km}}{{\rm 10^{-6}/(\Omega \cdot km})}}\hspace{0.15cm}\underline{= 10\, {\rm k \Omega}}\hspace{0.05cm}.$$

The DC signal attenuation becomes relevant,

  • if the useful signal is to be transmitted in the baseband and has a DC component,  or
  • if the network termination at the participant must be supplied with power from the local exchange  ("remote power supply").


(2)  With  $f = 10^{5} \ \rm Hz$  and the specified values,  the following holds:

$$f \cdot 2\pi L' = 10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot 10^{-3}\,\frac{\rm \Omega \cdot s}{ {\rm km}}= 200 \,\frac{\rm \Omega }{ {\rm km}} \hspace{0.05cm},\hspace{1.05cm} f \cdot 2\pi C' = 10^5\,\frac{1}{ {\rm s}} \cdot 2 \cdot 10^{-7}\,\frac{\rm s}{ {\rm \Omega \cdot km}}= 0.02 \,\frac{\rm 1 }{ {\rm \Omega \cdot km}} \hspace{0.05cm}.$$

This results in the following for the attenuation function in "Np/km":

$$\alpha(f = 100\,{\rm kHz}) = \sqrt{ {1}/{2}\cdot \left (100 \cdot 10^{-6} - 200 \cdot 0.02 \right)+ {1}/{2} \cdot \sqrt{(100^2 + 200^2) \cdot (10^{-12} + 0.02^2)}} $$
$$ \Rightarrow \; \; \alpha(f = 100\,{\rm kHz}) \approx \sqrt{{1}/{2}\cdot \left (10^{-4} - 4 \right)+ {1}/{2}\cdot \sqrt{5 \cdot 10^{4} \cdot 4 \cdot 10^{-4}}} \approx \sqrt {-2 + \frac{\sqrt{20}}{ 2}} \hspace{0.15cm}\underline{\approx 0.486 \ {\rm Np/km}} \hspace{0.05cm}.$$


(3)  The limit for  $f → \infty$  results if one neglects the second terms in the numerator  $R\hspace{0.03cm}'$  and in the denominator  $G\hspace{0.08cm}'$ :

$$\lim_{f \rightarrow \infty} \hspace{0.1cm} Z_{\rm W}(f) = \lim_{\omega \rightarrow \infty} \hspace{0.1cm} \sqrt{\frac {R\hspace{0.03cm}' + {\rm j} \cdot \omega L'}{G' + {\rm j} \cdot \omega C\hspace{0.03cm}'}} =\sqrt{\frac {2 \pi L\hspace{0.03cm}' }{2 \pi C\hspace{0.03cm}'}}=\sqrt{\frac {2 \cdot 10^{-3}\,{\rm \Omega \cdot s} } {2 \cdot 10^{-73}\,{\rm s/\Omega} }} \hspace{0.15cm}\underline{= 100\,{\rm \Omega }}\hspace{0.05cm}.$$
  • The approximation for the attenuation function is more difficult to derive.  Starting from
$$\alpha(\omega) = \sqrt{ {1}/{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}' C\hspace{0.03cm}'\right)+ {1}/{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot C\hspace{0.03cm}\hspace{0.03cm}'^2)}}$$
then also the following applies:
$$2 \cdot \alpha^2(\omega) = R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L' C'\cdot \left [-1 +\sqrt{(1 + \frac{R\hspace{0.03cm}'^2}{ \omega^2 \cdot L\hspace{0.03cm}'^2}) \cdot (1 + \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2})} \hspace{0.1cm} \right]$$
$$\Rightarrow \; \; 2 \cdot \alpha^2(\omega) \approx R\hspace{0.03cm}' G\hspace{0.03cm}' + \omega^2 \cdot L' C\hspace{0.03cm}'\cdot \left [-1 +\sqrt{1 + \frac{R'^2}{ \omega^2 \cdot L'^2}+ \frac{G\hspace{0.03cm}'^2}{ \omega^2 \cdot C\hspace{0.03cm}'^2}} \hspace{0.1cm} \right].$$
  • Using the approximation  $\sqrt{1 + x}\approx 1+x/2$  valid for small  $x$,  one arrives at the intermediate result for (infinitely) large frequencies:
$$2 \cdot \alpha^2(\omega \rightarrow \infty) = R\hspace{0.03cm}' G\hspace{0.05cm}' + \omega^2 \cdot L' C\hspace{0.05cm}'\cdot \left [ -1 +1 + {1}/{2} \cdot \left ( \frac{R\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2}+ \frac{G\hspace{0.03cm}'\hspace{0.03cm}^2}{ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2} \right) \hspace{0.1cm} \right] $$
$$\Rightarrow \hspace{0.3cm} 2 \cdot \alpha^2(\omega \rightarrow \infty) = \frac{2 \cdot R\hspace{0.03cm}' G\hspace{0.03cm}' C\hspace{0.03cm}' L'+ R\hspace{0.03cm}'\hspace{0.03cm}^2 C\hspace{0.03cm}'\hspace{0.03cm}^2+ G\hspace{0.03cm}'\hspace{0.03cm}^2 L\hspace{0.03cm}'\hspace{0.03cm}^2}{2 \cdot C\hspace{0.03cm}' L\hspace{0.03cm}' }= \frac{(R\hspace{0.03cm}' C\hspace{0.03cm}' + G\hspace{0.03cm}' L\hspace{0.03cm}')^2}{2 \cdot C\hspace{0.03cm}' L\hspace{0.03cm}' }$$
$$\Rightarrow \hspace{0.3cm} \alpha(\omega \rightarrow \infty) = {1}/{2}\cdot \frac{R\hspace{0.03cm}' C\hspace{0.03cm}' + G\hspace{0.03cm}' L\hspace{0.03cm}'}{\sqrt{ C\hspace{0.03cm}' L\hspace{0.03cm}' }}= {1}/{2}\cdot \left [R\hspace{0.03cm}' \cdot \sqrt{\frac{C\hspace{0.03cm}'}{L\hspace{0.03cm}'}}+G\hspace{0.03cm}' \cdot \sqrt{\frac{L\hspace{0.03cm}'}{C\hspace{0.03cm}'}}\right]\hspace{0.05cm}.$$
  • With the numerical values inserted,  we get
$$\alpha(f \rightarrow \infty) = \alpha(\omega \rightarrow \infty) = {0.5\,{\rm Np/km}}\cdot \left [100 \cdot \sqrt{\frac{2 \cdot 10^{-7}}{2 \cdot10^{-3}}}+10^{-6} \cdot \sqrt{\frac{2 \cdot10^{-3}}{2 \cdot10^{-7}}}\right] \hspace{0.15cm}\underline{\approx 0.5 \, {\rm Np}/{\rm km}}\hspace{0.05cm}.$$


(4)  For small frequencies,  $\omega L\hspace{0.03cm}' \ll R\hspace{0.03cm}'$  and  $ \omega C\hspace{0.03cm}' \gg G\hspace{0.03cm}'$ apply.

  • Neglecting the  $\omega^2$–part, one obtains:
$$\alpha(f) = \sqrt{\frac {1}{2}\cdot \left (R\hspace{0.03cm}' G\hspace{0.03cm}' - \omega^2 \cdot L\hspace{0.03cm}' C\hspace{0.03cm}'\right)+ \frac {1}{2}\sqrt{(R\hspace{0.03cm}'\hspace{0.03cm}^2 + \omega^2 \cdot L\hspace{0.03cm}'\hspace{0.03cm}^2) \cdot (G\hspace{0.03cm}'\hspace{0.03cm}^2+ \omega^2 \cdot C\hspace{0.03cm}'\hspace{0.03cm}^2)}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}$$
$$ \Rightarrow \hspace{0.3cm} \alpha(f) \approx \sqrt{\frac {R\hspace{0.03cm}' G\hspace{0.03cm}'}{2}+ \frac {R\hspace{0.03cm}' \cdot \omega C\hspace{0.03cm}'}{2}} \hspace{0.1cm}\bigg |_{\hspace{0.03cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f} \approx \sqrt{ {1}/{2} \cdot f \cdot R\hspace{0.03cm}' \cdot 2 \pi C\hspace{0.03cm}'} \hspace{0.05cm}.$$
  • Here it is considered that the first part can be neglected according to subtask  (1)  except for the frequency  $f = 0$ .
  • For the frequency  $f = 1 \ \rm kHz$  we get the approximation
$$\alpha(f = 1\,{\rm kHz}) = \sqrt{ {1}/{2} \cdot 10^{3}\,{\rm Hz} \cdot 100\,\frac{\rm \Omega }{ {\rm km}} \cdot 2 \cdot 10^{-7} \,\frac{\rm s }{ {\rm \Omega \cdot km}}} \hspace{0.15cm}\underline{= 0.1\,{\rm Np }/{ {\rm km}}} \hspace{0.05cm}.$$
  • For frequency  $f = 4 \ \rm kHz$  the attenuation function per unit length is twice as large:
$$\alpha(f = 4\,{\rm kHz}) \hspace{0.15cm}\underline{ = 0.2\,{\rm Np }/{ {\rm km}}} \hspace{0.05cm}.$$


(5)  The wave impedance at low frequencies is approximated by:

$$Z_{\rm W}(f) = \sqrt{\frac {R\hspace{0.03cm}' + {\rm j} \cdot f \cdot 2 \pi L\hspace{0.03cm}'}{G\hspace{0.03cm}' + {\rm j} \cdot f \cdot 2 \pi C\hspace{0.03cm}'}} \approx \sqrt\frac{1 }{ {\rm j}} \cdot \sqrt{\frac {R\hspace{0.03cm}' }{ f \cdot 2 \pi C\hspace{0.03cm}'}}= (1 - {\rm j})\cdot \sqrt{\frac {R\hspace{0.03cm}' }{ 2 \cdot f \cdot 2 \pi C\hspace{0.03cm}'}}\hspace{0.05cm}.$$
  • With the specified line fittings we obtain:
$${\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\} = \sqrt{\frac {100\,{\rm \Omega/km }}{ 2 \cdot 10^{3}\,{\rm Hz} \cdot 2 \cdot 10^{-7} \,{\rm s/(\Omega \cdot km) }}} \hspace{0.15cm}\underline{= 500\,{\rm \Omega}}\hspace{0.05cm},$$
$$ {\rm Im}\{Z_{\rm W}(f= 1\,{\rm kHz})\} = -{\rm Re}\{Z_{\rm W}(f= 1\,{\rm kHz})\}\hspace{0.15cm}\underline{= -500\,{\rm \Omega}}\hspace{0.05cm}.$$