Difference between revisions of "Aufgaben:Exercise 4.2: AM/PM Oscillations"

From LNTwww
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces}}
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces}}
  
[[File:P_ID1997__Dig_A_4_2.png|right|frame|AM/PM oscillations]]
+
[[File:P_ID1997__Dig_A_4_2.png|right|frame|Considered AM/PM oscillations]]
We consider the signal set  $\{s_i(t)\}$  with the indexing variable  $i = 1, \ \text{...} \, M$. All signals  $s_i(t)$  can be represented in the same way:
+
We consider the signal set   $\{s_i(t)\}$   with the indexing variable  $i = 1, \ \text{...} \, M$.  All signals  $s_i(t)$  can be represented in the same way:
 
:$$s_i(t) =  
 
:$$s_i(t) =  
 
\left\{ \begin{array}{c} A_i \cdot \cos(2\pi f_{\rm T}t + \phi_i) \\
 
\left\{ \begin{array}{c} A_i \cdot \cos(2\pi f_{\rm T}t + \phi_i) \\
Line 10: Line 10:
 
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
 
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
  
The signal duration  $T$  is an integer multiple of  $1/f_{\rm T}$, where  $f_{\rm T}$  is the signal frequency (carrier frequency).
+
The signal duration  $T$  is an integer multiple of  $1/f_{\rm T}$,  where  $f_{\rm T}$  is the signal frequency  ("carrier frequency").
 +
 
 +
*For the sketch,  the duration of the energy-limited signals is  $T = 4/f_{\rm T}$,   i.e. exactly four oscillations are recognized within  $T$  in each case.
  
*For the sketch, the duration of the energy-limited signals is  $T = 4/f_{\rm T}$ in each case, i.e. exactly four oscillations are recognized within  $T$ in each case.
 
 
*The individual signals  $s_i(t)$  differ in amplitude  $(A_i)$  and/or phase  $(\phi_i)$.  
 
*The individual signals  $s_i(t)$  differ in amplitude  $(A_i)$  and/or phase  $(\phi_i)$.  
  
  
For the first two signals (shown in the graph) holds:
+
For the first two signals  (shown in the graph)  holds:
 
:$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos(2\pi f_{\rm T}t )  \hspace{0.05cm},$$
 
:$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos(2\pi f_{\rm T}t )  \hspace{0.05cm},$$
 
:$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2A \cdot \cos(2\pi f_{\rm T}t + \pi/4)  \hspace{0.05cm}. $$
 
:$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2A \cdot \cos(2\pi f_{\rm T}t + \pi/4)  \hspace{0.05cm}. $$
  
If we first restrict ourselves to these two signals  $s_1(t)$  and $s_2(t)$, they can be completely described by the basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$.  These are orthonormal to each other, that is, taking into account the time constraint on  $T$  holds:
+
If we first restrict ourselves to these two signals  $s_1(t)$  and  $s_2(t)$,  they can be completely described by the basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$.  These are orthonormal to each other,  that is,  taking into account the time constraint on  $T$  holds:
:$$\int_{0}^{T}\varphi_1^2(t) \, {\rm d} t = \int_{0}^{T}\varphi_2^2(t) \, {\rm d} t = 1 \hspace{0.05cm}, \hspace{0.2cm}
+
:$$\int_{0}^{T}\varphi_1^2(t) \, {\rm d} t = \int_{0}^{T}\varphi_2^2(t) \, {\rm d} t = 1 \hspace{0.05cm},$$
  \int_{0}^{T}\varphi_1(t) \cdot \varphi_2(t)\, {\rm d} t = 0  
+
:$$ \int_{0}^{T}\varphi_1(t) \cdot \varphi_2(t)\, {\rm d} t = 0  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
With these basis functions, the two signals can be represented as follows:
+
With these basis functions,  the two signals can be represented as follows:
 
:$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{11} \cdot \varphi_1(t)  \hspace{0.05cm},$$
 
:$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{11} \cdot \varphi_1(t)  \hspace{0.05cm},$$
 
:$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{21} \cdot \varphi_1(t) + s_{22} \cdot \varphi_2(t) \hspace{0.05cm}. $$
 
:$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{21} \cdot \varphi_1(t) + s_{22} \cdot \varphi_2(t) \hspace{0.05cm}. $$
  
In subtask '''(7)''' we want to check whether all signals  $s_i(t)$  according to the above definition $($with arbitrary amplitude  $A_i$  and arbitrary phase  $\phi_i)$  can be described by the following equation:
+
In subtask  '''(7)'''  we want to check whether all signals  $s_i(t)$  according to the above definition   $($with arbitrary amplitude  $A_i$  and arbitrary phase  $\phi_i)$   can be described by the following equation:
 
:$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}. $$
 
:$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}. $$
  
The basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$  are to be found here by the  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process|"Gram–Schmidt process"]],  which was described in detail in the theory section. The required equations are summarized here again:
+
The basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$  are to be found here by the   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process|"Gram–Schmidt process"]],   which was described in detail in the theory section.  The required equations are summarized here again:
 
:$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}\hspace{0.4cm}{\rm with}\hspace{0.4cm}
 
:$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}\hspace{0.4cm}{\rm with}\hspace{0.4cm}
 
s_{11} = ||s_1(t)|| = \sqrt{\int_{0}^{T}s_1^2(t) \, {\rm d} t}  
 
s_{11} = ||s_1(t)|| = \sqrt{\int_{0}^{T}s_1^2(t) \, {\rm d} t}  
Line 45: Line 46:
  
  
 
+
Notes:  
''Notes:''
+
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
*Die Aufgabe gehört zum  Kapitel   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
+
 +
* For abbreviation,  use the energy  $E = 1/2 \cdot A^2 \cdot T$.
 
   
 
   
* For abbreviation, use the energy  $E = 1/2 \cdot A^2 \cdot T$.
+
* Furthermore,  the following trigonometric relation is given:    
* Furthermore, the following trigonometric relation is given:    
 
 
:$$\cos(\alpha \pm \beta) = \cos(\alpha )\cdot \cos(\beta) \mp \sin(\alpha )\cdot \sin(\beta)\hspace{0.05cm}.$$
 
:$$\cos(\alpha \pm \beta) = \cos(\alpha )\cdot \cos(\beta) \mp \sin(\alpha )\cdot \sin(\beta)\hspace{0.05cm}.$$
  
Line 56: Line 57:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{What is the energy and 2&ndash;norm of the signal &nbsp;$s_1(t)$, expressed by $E$?
+
{What is the energy and the&nbsp; "2&ndash;norm"&nbsp; of the signal &nbsp;$s_1(t)$,&nbsp; expressed by&nbsp; $E$?
 
|type="{}"}
 
|type="{}"}
 
$E_1\ = \ $ { 1 3% } $\ \cdot E$
 
$E_1\ = \ $ { 1 3% } $\ \cdot E$
Line 73: Line 74:
 
- $s_1(t) = \sqrt{2/T}  \cdot \varphi_1(t)$.
 
- $s_1(t) = \sqrt{2/T}  \cdot \varphi_1(t)$.
  
{What is the inner product&nbsp; $s_{\rm 21} = &#9001; s_2(t) \cdot \varphi_1(t)&#9002;$?
+
{What is the&nbsp; "inner product"&nbsp; $s_{\rm 21} = &#9001; s_2(t) \cdot \varphi_1(t)&#9002;$?
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 21} \ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
 
$s_{\rm 21} \ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
Line 83: Line 84:
 
- $\theta_2(t) = \sqrt{2/T} \cdot {\rm sin}(2\pi f_{\rm T}t)$.
 
- $\theta_2(t) = \sqrt{2/T} \cdot {\rm sin}(2\pi f_{\rm T}t)$.
  
{Give the coefficients of&nbsp; $s_2(t) = s_{\rm 21} \cdot \varphi_1(t) + s_{\rm 22} \cdot \varphi_2(t)$.&nbsp;  
+
{Give the coefficients of &nbsp; $s_2(t) = s_{\rm 21} \cdot \varphi_1(t) + s_{\rm 22} \cdot \varphi_2(t)$.&nbsp;  
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 21}\ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
 
$s_{\rm 21}\ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
 
$s_{\rm 22}\ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
 
$s_{\rm 22}\ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
  
{Which of the statements are generally true for the basis functions of the signal set&nbsp; $\{s_i(t)\}$ with $i = 1, \ \text{ ...} \ , M$, falls &nbsp;$M \gg 2$?
+
{Which of the statements are generally true for the basis functions of the signal set&nbsp; $\{s_i(t)\}$&nbsp; with&nbsp; $i = 1, \ \text{ ...} \ , M$,&nbsp; if &nbsp;$M \gg 2$?
 
|type="[]"}
 
|type="[]"}
 
- The number of basis functions is always&nbsp; $N = M$.
 
- The number of basis functions is always&nbsp; $N = M$.

Revision as of 15:47, 13 July 2022

Considered AM/PM oscillations

We consider the signal set   $\{s_i(t)\}$   with the indexing variable  $i = 1, \ \text{...} \, M$.  All signals  $s_i(t)$  can be represented in the same way:

$$s_i(t) = \left\{ \begin{array}{c} A_i \cdot \cos(2\pi f_{\rm T}t + \phi_i) \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$

The signal duration  $T$  is an integer multiple of  $1/f_{\rm T}$,  where  $f_{\rm T}$  is the signal frequency  ("carrier frequency").

  • For the sketch,  the duration of the energy-limited signals is  $T = 4/f_{\rm T}$,  i.e. exactly four oscillations are recognized within  $T$  in each case.
  • The individual signals  $s_i(t)$  differ in amplitude  $(A_i)$  and/or phase  $(\phi_i)$.


For the first two signals  (shown in the graph)  holds:

$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos(2\pi f_{\rm T}t ) \hspace{0.05cm},$$
$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2A \cdot \cos(2\pi f_{\rm T}t + \pi/4) \hspace{0.05cm}. $$

If we first restrict ourselves to these two signals  $s_1(t)$  and  $s_2(t)$,  they can be completely described by the basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$.  These are orthonormal to each other,  that is,  taking into account the time constraint on  $T$  holds:

$$\int_{0}^{T}\varphi_1^2(t) \, {\rm d} t = \int_{0}^{T}\varphi_2^2(t) \, {\rm d} t = 1 \hspace{0.05cm},$$
$$ \int_{0}^{T}\varphi_1(t) \cdot \varphi_2(t)\, {\rm d} t = 0 \hspace{0.05cm}.$$

With these basis functions,  the two signals can be represented as follows:

$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{11} \cdot \varphi_1(t) \hspace{0.05cm},$$
$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{21} \cdot \varphi_1(t) + s_{22} \cdot \varphi_2(t) \hspace{0.05cm}. $$

In subtask  (7)  we want to check whether all signals  $s_i(t)$  according to the above definition   $($with arbitrary amplitude  $A_i$  and arbitrary phase  $\phi_i)$   can be described by the following equation:

$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}. $$

The basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$  are to be found here by the   "Gram–Schmidt process",   which was described in detail in the theory section.  The required equations are summarized here again:

$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}\hspace{0.4cm}{\rm with}\hspace{0.4cm} s_{11} = ||s_1(t)|| = \sqrt{\int_{0}^{T}s_1^2(t) \, {\rm d} t} \hspace{0.05cm},\hspace{0.4cm} s_{21} = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = \int_{0}^{T}s_2(t) \cdot \varphi_1(t)\, {\rm d} t \hspace{0.05cm},$$
$$\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t)\hspace{0.05cm}, \hspace{0.2cm} \varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||}\hspace{0.05cm}.$$



Notes:

  • For abbreviation,  use the energy  $E = 1/2 \cdot A^2 \cdot T$.
  • Furthermore,  the following trigonometric relation is given:  
$$\cos(\alpha \pm \beta) = \cos(\alpha )\cdot \cos(\beta) \mp \sin(\alpha )\cdot \sin(\beta)\hspace{0.05cm}.$$


Questions

1

What is the energy and the  "2–norm"  of the signal  $s_1(t)$,  expressed by  $E$?

$E_1\ = \ $

$\ \cdot E$
$||s_1(t)|| \ = \ $

$\ \cdot \sqrt{E}$

2

What is the Gram–Schmidt basis function  $\varphi_1(t)$? 

$\varphi_1(t) = \sqrt{E} \cdot {\rm cos}(2\pi f_{\rm T}t)$,
$\varphi_1(t) = \cos(2\pi f_{\rm T}t)$,
$\varphi_1(t) = \sqrt{2/T} \cdot {\rm cos}(2\pi f_{\rm T}t)$.

3

What is the relationship between  $s_1(t)$  and  $\varphi_1(t)$?

$s_1(t) = \sqrt{E} \cdot \varphi_1(t)$,
$s_1(t) = A \cdot \varphi_1(t)$,
$s_1(t) = \sqrt{2/T} \cdot \varphi_1(t)$.

4

What is the  "inner product"  $s_{\rm 21} = 〈 s_2(t) \cdot \varphi_1(t)〉$?

$s_{\rm 21} \ = \ $

$\ \cdot \sqrt{E}$

5

What is the auxiliary function  $\theta_2(t)$?

$\theta_2(t) = +\sqrt{2} \cdot A \cdot {\rm sin}(2\pi f_{\rm T}t)$,
$\theta_2(t) =-\sqrt{2} \cdot A \cdot {\rm sin}(2\pi f_{\rm T}t)$,
$\theta_2(t) = \sqrt{2/T} \cdot {\rm sin}(2\pi f_{\rm T}t)$.

6

Give the coefficients of   $s_2(t) = s_{\rm 21} \cdot \varphi_1(t) + s_{\rm 22} \cdot \varphi_2(t)$. 

$s_{\rm 21}\ = \ $

$\ \cdot \sqrt{E}$
$s_{\rm 22}\ = \ $

$\ \cdot \sqrt{E}$

7

Which of the statements are generally true for the basis functions of the signal set  $\{s_i(t)\}$  with  $i = 1, \ \text{ ...} \ , M$,  if  $M \gg 2$?

The number of basis functions is always  $N = M$.
The number of basis functions is always  $N = 2$.
Possible basis functions are cosine and (minus) sine.


Solution

(1)  The energy can be calculated using the following equation:

$$E_{1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{0}^{T}A^2 \cdot \cos^2(2\pi f_{\rm T}t )\, {\rm d} t = \frac{A^2 \cdot T}{2}\hspace{0.05cm}+\hspace{0.05cm} \frac{A^2 }{2}\int_{0}^{T} \cos(4\pi f_{\rm T}t )\, {\rm d} t = \frac{A^2 \cdot T}{2} \hspace{0.05cm}\underline{= 1 \cdot E} \hspace{0.05cm}. $$
  • Here it is considered that $T$ is an even multiple of $1/f_{\rm T}$, so the second integral vanishes. Further:
$$||s_1(t)|| = \sqrt{E_1} = \sqrt{E} = \hspace{0.1cm}\hspace{0.15cm}\underline{1 \cdot\sqrt{E}} \hspace{0.05cm}.$$


(2)  Solution 3 is correct: The basis function $\varphi_1(t)$ is equal in form to $s_1(t)$, where holds:

$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}= \frac{A \cdot \cos(2\pi f_{\rm T}t )}{\sqrt{E}}= \frac{A \cdot \cos(2\pi f_{\rm T}t )}{\sqrt{1/2 \cdot A^2 \cdot T}} = \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t ) \hspace{0.05cm}.$$


(3)  Solution 1 is correct, since according to the equation given in (2):

$$s_1(t) = ||s_1(t)|| \cdot \varphi_1(t) = \sqrt{E} \cdot \varphi_1(t) \hspace{0.05cm}.$$


(4)  Using the signal $s_2(t)$ according to the given information, the basis function $\varphi_1(t)$ according to subtask (2) and the given trigonometric relation we get:

$$s_{21} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = \int_{0}^{T}2A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{4}) \cdot \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t )\, {\rm d} t = $$
$$\Rightarrow \hspace{0.3cm}s_{21} = \sqrt{\frac{8A^2}{T}}\cdot \int_{0}^{T}\cos({\pi}/{4}) \cdot \cos^2(2\pi f_{\rm T}t )\, {\rm d} t \hspace{0.1cm}- \sqrt{\frac{8A^2}{T}}\cdot \int_{0}^{T}\sin({\pi}/{4}) \cdot \sin(2\pi f_{\rm T}t )\cdot \cos(2\pi f_{\rm T}t )\, {\rm d} t \hspace{0.05cm}. $$
  • The second component yields the value $0$ (orthogonality). The first component yields:
$$s_{21} = \sqrt{\frac{8A^2}{T}}\cdot \frac{1}{\sqrt{2}}\cdot \frac{T}{2} = \sqrt{A^2 \cdot T} = \sqrt{2E} \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot \sqrt{E}} \hspace{0.05cm}.$$


(5)  According to the Gram–Schmidt process, we obtain

$$\theta_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_2(t) - s_{21} \cdot \varphi_1(t)\hspace{0.05cm} = 2A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{4}) - \sqrt{A^2 \cdot T} \cdot \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t ) $$
$$\Rightarrow \hspace{0.3cm}\theta_2(t) = 2A \cdot \cos({\pi}/{4})\cdot \cos(2\pi f_{\rm T}t )\hspace{0.1cm} - \hspace{0.1cm} 2A \cdot \sin({\pi}/{4})\cdot \sin(2\pi f_{\rm T}t )\hspace{0.1cm} - \sqrt{2} \cdot A \cdot \cos(2\pi f_{\rm T}t ) \hspace{0.05cm}. $$
  • With $\cos {(\pi/4)} = \sin (\pi/4) =\sqrt{0.5}$ it follows:
$$\theta_2(t) = - \sqrt{2} \cdot A \cdot \sin(2\pi f_{\rm T}t ) \hspace{0.05cm}.$$
  • Therefore, solution 2 is correct.


(6)  Analogous to subtask (2), the orthonormal basis function $\varphi_2(t)$ is given by

$$\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||} = - \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t ) \hspace{0.05cm}.$$
  • Thus, the signal $s_2(t)$ can be represented by $s_{21}$ according to subtask (4) as follows:
$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{21} \cdot \varphi_1(t) + s_{22} \cdot \varphi_2(t) \hspace{0.05cm}, \hspace{0.2cm}s_{21} = \underline{ = 1.414 \cdot \sqrt {E}}\hspace{0.05cm},$$
$$s_{22}\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{\theta_2(t)}{\varphi_2(t)} = \frac{-\sqrt{2} \cdot A \cdot \sin(2\pi f_{\rm T}t )} {-\sqrt{2/T}\cdot \sin(2\pi f_{\rm T}t )} = \sqrt{2} \cdot \sqrt{1/2 \cdot A^2 \cdot T}\hspace{0.05cm} \underline{ = 1.414 \cdot \sqrt {E}}\hspace{0.05cm}.$$


(7)  We consider very many energy-limited signals ($M \gg 2$) of the following form:

$$s_i(t)= \left\{ \begin{array}{c} A_i \cdot \cos(2\pi f_{\rm T}t + \phi_i) \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$

The indexing variable can take the values $i = 1, 2, \ \text{...} \ , M$. Then holds:

  • All $M$ signals can be completely described by only $N = 2$ basis functions:
$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}. $$
  • If one proceeds according to the Gram–Schmidt process, one obtains for the two basis functions
$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t + \phi_1)\hspace{0.05cm},\hspace{0.5cm} \varphi_2(t) = \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t + \phi_1 \pm {\pi}/{2})\hspace{0.05cm}.$$
  • The sign in the argument of the second cosine function ($± \pi/2$) is not unique. Rather, the sign of $s_{i 2}$ also depends on whether the plus sign or the minus sign was used for $\varphi_2(t)$.
  • However, possible basis functions that then lead to other coefficients are also:
$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t )\hspace{0.05cm},\hspace{0.5cm} \varphi_2(t) \pm \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t )\hspace{0.05cm}.$$

So solutions 2 and 3 are correct.