Difference between revisions of "Aufgaben:Exercise 4.3: Different Frequencies"

From LNTwww
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Signale, Basisfunktionen und Vektorräume}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces}}
  
[[File:P_ID1999__Dig_A_4_3.png|right|frame|Vorgegebene Signalmenge]]
+
[[File:P_ID1999__Dig_A_4_3.png|right|frame|Given signal set  $\{s_i(t)\}$]]
In der Grafik sind $M = 5$ Signale $s_i(t)$ dargestellt. Entgegen der Nomenklatur im Theorieteil sind für die Laufvariable $i$ die $0, \ ... \ , M–$ möglich. Anzumerken ist:
+
In the diagram  $M = 5$  different signals  $s_i(t)$  are shown.  Contrary to the nomenclature in the theory section,  the indexing variable  $i$  can have the values  $0, \ \text{...} \ , M-1$.   
* Alle Signale sind zeitbegrenzt auf $0$ bis $T$; damit ist auch die Energie aller Signale endlich.
 
* Das Signal $s_1(t)$ hat die Periodendauer $T_0 = T$. Die Frequenz ist damit gleich $f_0 = 1/T$.
 
* Die Signale $s_i(t)$, $i ≠ 0$, sind Cosinusschwingungen mit der Frequenz $i \cdot f_0$. Dagegen ist $s_0(t)$ zwischen $0$ und $T$ konstant.
 
* Der Maximalwert aller Signale ist $A$ und es gilt $|s_i(t)| ≤ A$.
 
  
 +
To be noted:
 +
* All signals are time-limited to  $0$  ...   $T$;  thus the energy of all signals is finite.
  
Gesucht sind in dieser Aufgabe die $N$ Basisfunktionen, die hier entgegen der bisherigen Beschreibung im Theorieteil mit $j = 0, \ ... \ , N–1$ durchnummeriert werden.
+
* The signal  $s_1(t)$  has the period  $T_0 = T$.  The frequency is therefore  $f_0 = 1/T$.
  
''Hinweis:''
+
* The signals  $s_i(t)$  with  $i ≠ 0$  are cosine oscillations with frequency  $i \cdot f_0$.
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume| Signale, Basisfunktionen und Vektorräume]].  
+
 +
*In contrast,  $s_0(t)$  is constant between  $0$  and  $T$. 
 +
 +
* The maximum value of all signals is  $A$  and  $|s_i(t)| ≤ A$ holds.
  
  
 +
In this exercise we are looking for the  $N$  basis functions,  which are numbered here with  $j = 0, \ \text{...} \ , N-1$. 
  
===Fragebogen===
+
 
 +
 
 +
Note:  The exercise belongs to the chapter   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
 +
 +
 
 +
 
 +
 
 +
===Question===
 
<quiz display=simple>
 
<quiz display=simple>
{Beschreiben Sie die Signalmenge $\{s_i(t)\}, 0 &#8804; i &#8804; 4$ möglichst kompakt. Welche Beschreibungsform ist richtig?
+
{Describe the signal set&nbsp; $\{s_i(t)\}$&nbsp; with&nbsp;  $0 &#8804; i &#8804; 4$&nbsp; as compactly as possible. <br>Which description form is correct?
|type="[]"}
+
|type="()"}
- $s_i(t) = A \cdot \cos {(2\pi i \cdot t/T)}$.
+
- $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$.
+ $s_i(t) = A \cdot \cos {(2\pi i \cdot t/T)}$ für $0 &#8804; t < T$, sonst $0$.
+
+ $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$&nbsp; for &nbsp;$0 &#8804; t < T$, &nbsp;otherwise $0$.
- $s_i(t) = A \cdot \cos {(2\pi t/T \, &ndash; \, i \cdot \pi/2)}$ für $0 &#8804; t < T$, sonst $0$.
+
- $s_i(t) = A \cdot \cos {(2\pi t/T \, &ndash; \, i \cdot \pi/2)}$&nbsp; for &nbsp;$0 &#8804; t < T$, &nbsp;otherwise $0$.
  
{Geben Sie die Anzahl $N$ der erforderlichen Basisfunktionen an.
+
{Specify the number&nbsp; $N$&nbsp; of basis functions required.
 
|type="{}"}
 
|type="{}"}
$N$ = { 5 3% }
+
$N \ = \ $ { 5 3% }
  
{Wie lautet die Basisfunktion $\varphi_0(t)$, die formgleich $s_0(t)$ ist?
+
{What is the basis function&nbsp; $\varphi_0(t)$ that is equal in form to&nbsp; $s_0(t)$?&nbsp;
|type="[]"}
+
|type="()"}
 
- $\varphi_0(t) = s_0(t)$,
 
- $\varphi_0(t) = s_0(t)$,
+ $\varphi_0(t) = (1/T)^{\rm 0.5}$ für $0 &#8804; t < T$, außerhalb $0$.
+
+ $\varphi_0(t) = \sqrt{1/T}$&nbsp; for&nbsp; $0 &#8804; t < T$, &nbsp;outside &nbsp;$0$.
- $\varphi_0(t) = (2/T)^{\rm 0.5}$ für $0 &#8804; t < T$, außerhalb $0$.
+
- $\varphi_0(t) = \sqrt{2/T}$&nbsp; for&nbsp; $0 &#8804; t < T$, &nbsp;outside &nbsp;$0$.
  
{Wie lautet die Basisfunktion $\varphi_1(t)$, die formgleich $s_1(t)$ ist?
+
{What is the basis function&nbsp; $\varphi_1(t)$&nbsp; that is equal in form to&nbsp;  $s_1(t)$?&nbsp;
|type="[]"}
+
|type="()"}
 
- $\varphi_1(t) = s_1(t)$,
 
- $\varphi_1(t) = s_1(t)$,
- $\varphi_1(t) = (1/T)^{\rm 0.5} \cdot \cos {(2\pi t/T)}$ für $0 &#8804; t < T$, außerhalb $0$.
+
- $\varphi_1(t) = \sqrt{1/T} \cdot \cos {(2\pi t/T)}$ for $0 &#8804; t < T$, &nbsp;outside $0$.
+ $\varphi_1(t) = (2/T)^{\rm 0.5} \cdot \cos {(2\pi t/T)}$ für $0 &#8804; t < T$, außerhalb $0$.
+
+ $\varphi_1(t) =\sqrt{2/T} \cdot \cos {(2\pi t/T)}$ for $0 &#8804; t < T$, &nbsp;outside $0$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorchlag 2</u>, der die unterschiedlichen Frequenzen und die Begrenzung auf den Bereich $0 &#8804; t < T$ berücksichtigt. Die Signale $s_i(t)$ gemäß Vorschlag 3 unterscheiden sich dagegen nicht bezüglich der Frequenz, sondern weisen unterschiedliche Phasenlagen auf.
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>solution 2</u>:
 +
* This takes into account the different frequencies and the limitation to the range&nbsp; $0 &#8804; t < T$.
 +
 +
*The signals&nbsp; $s_i(t)$&nbsp; according to suggestion 3,&nbsp; on the other hand,&nbsp; do not differ with respect to frequency,&nbsp; but have different phase positions.
 +
 
  
  
'''(2)'''&nbsp; Die energiebegrenzten Signale $s_i(t) = A \cdot \cos {(2\pi i \cdot t/T)}$ sind alle zueinander orthogonal, das heißt, das innere Produkt zweier Signale $s_i(t)$ und $s_k(t)$ mit $i &ne; k$ ist stets $0$:
+
'''(2)'''&nbsp; The energy-limited signals &nbsp; $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$ &nbsp; are orthogonal to each other &nbsp; &rArr; &nbsp; the inner product of two signals&nbsp; $s_i(t)$,&nbsp; $s_k(t)$&nbsp; with&nbsp; $i &ne; k$&nbsp; is always&nbsp; $0$:
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A^2 \cdot \int_{0}^{T}\cos(2\pi i \cdot t/T) \cdot \cos(2\pi k \cdot t/T)\,{\rm d} t =$$
+
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A^2 \cdot \int_{0}^{T}\cos(2\pi \cdot i \cdot t/T) \cdot \cos(2\pi \cdot k \cdot t/T)\,{\rm d} t $$
:$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{A^2}{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t +
+
:$$ \Rightarrow \hspace{0.3cm} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} {A^2}/{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t +
 
  \frac{A^2}{2} \cdot \int_{0}^{T}\cos(2\pi (i+k) t/T) \,{\rm d} t
 
  \frac{A^2}{2} \cdot \int_{0}^{T}\cos(2\pi (i+k) t/T) \,{\rm d} t
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Mit $i &#8712; \{0, \ ... \ , 4\}$ und $k &#8712; \{0, \ ... \ , 4\}$ sowie $i &ne; j$ ist sowohl $i \, &ndash; k$ ganzzahlig ungleich $0$, ebenso die Summe $i + k$. Dadurch liefern beide Integrale das Ergebnis $0$:
+
*With&nbsp; $i &#8712; \{0, \ \text{...} \ , 4\}$&nbsp; and&nbsp; $k &#8712; \{0, \ \text{...}\ , 4\}$&nbsp; as well as&nbsp; $i &ne; j$,&nbsp; both&nbsp; $i \, - k$&nbsp; is integer&nbsp; $\ne0$,&nbsp; as is the&nbsp; sum $i + k$.  
 +
*Thus,&nbsp; both integrals yield the result zero:
 
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0  
 
:$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5}
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5}
Line 59: Line 73:
  
  
'''(3)'''&nbsp; Die Energie des innerhalb $T$ konstanten Signals $s_0(t)$ ist gleich
+
'''(3)'''&nbsp; The energy of the signal&nbsp; $s_0(t)$,&nbsp; which is constant within&nbsp; $T$,&nbsp; is equal to
 
:$$E_0 = ||s_0(t)||^2 = A^2 \cdot T  
 
:$$E_0 = ||s_0(t)||^2 = A^2 \cdot T  
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T} $$
+
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T} \hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm} \varphi_0 (t) = \frac{s_0(t)}{||s_0(t)||} =  
+
\Rightarrow \hspace{0.3cm} \varphi_0 (t) = \frac{s_0(t)}{||s_0(t)||} =  
 
\left\{ \begin{array}{c} 1/\sqrt{T} \\
 
\left\{ \begin{array}{c} 1/\sqrt{T} \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
\\  {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
+
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
  
Richtig ist also der <u>Lösungsvorschlag 2</u>.
+
Therefore,&nbsp; <u>solution 2</u>&nbsp; is correct.
  
  
'''(4)'''&nbsp; Richtig ist hier der <u>letzte Lösungsvorschlag</u> wegen
+
'''(4)'''&nbsp; The&nbsp; <u>last solution</u>&nbsp; is correct because of
 
:$$E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2}  
 
:$$E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2}  
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} $$
+
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} \hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm} \varphi_1 (t) = \frac{s_1(t)}{||s_1(t)||} =  
+
\Rightarrow \hspace{0.3cm} \varphi_1 (t) = \frac{s_1(t)}{||s_1(t)||} =  
 
\left\{ \begin{array}{c} \sqrt{2/T} \cdot \cos(2\pi t/T) \\
 
\left\{ \begin{array}{c} \sqrt{2/T} \cdot \cos(2\pi t/T) \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
\\  {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
+
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.1 Basisfunktionen & Vektorräume^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.1 Basis Functions & Vector Spaces^]]

Latest revision as of 16:56, 13 July 2022

Given signal set  $\{s_i(t)\}$

In the diagram  $M = 5$  different signals  $s_i(t)$  are shown.  Contrary to the nomenclature in the theory section,  the indexing variable  $i$  can have the values  $0, \ \text{...} \ , M-1$. 

To be noted:

  • All signals are time-limited to  $0$  ...   $T$;  thus the energy of all signals is finite.
  • The signal  $s_1(t)$  has the period  $T_0 = T$.  The frequency is therefore  $f_0 = 1/T$.
  • The signals  $s_i(t)$  with  $i ≠ 0$  are cosine oscillations with frequency  $i \cdot f_0$.
  • In contrast,  $s_0(t)$  is constant between  $0$  and  $T$. 
  • The maximum value of all signals is  $A$  and  $|s_i(t)| ≤ A$ holds.


In this exercise we are looking for the  $N$  basis functions,  which are numbered here with  $j = 0, \ \text{...} \ , N-1$. 


Note:  The exercise belongs to the chapter  "Signals, Basis Functions and Vector Spaces".



Question

1

Describe the signal set  $\{s_i(t)\}$  with  $0 ≤ i ≤ 4$  as compactly as possible.
Which description form is correct?

$s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$.
$s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$  for  $0 ≤ t < T$,  otherwise $0$.
$s_i(t) = A \cdot \cos {(2\pi t/T \, – \, i \cdot \pi/2)}$  for  $0 ≤ t < T$,  otherwise $0$.

2

Specify the number  $N$  of basis functions required.

$N \ = \ $

3

What is the basis function  $\varphi_0(t)$ that is equal in form to  $s_0(t)$? 

$\varphi_0(t) = s_0(t)$,
$\varphi_0(t) = \sqrt{1/T}$  for  $0 ≤ t < T$,  outside  $0$.
$\varphi_0(t) = \sqrt{2/T}$  for  $0 ≤ t < T$,  outside  $0$.

4

What is the basis function  $\varphi_1(t)$  that is equal in form to  $s_1(t)$? 

$\varphi_1(t) = s_1(t)$,
$\varphi_1(t) = \sqrt{1/T} \cdot \cos {(2\pi t/T)}$ for $0 ≤ t < T$,  outside $0$.
$\varphi_1(t) =\sqrt{2/T} \cdot \cos {(2\pi t/T)}$ for $0 ≤ t < T$,  outside $0$.


Solution

(1)  Correct is the  solution 2:

  • This takes into account the different frequencies and the limitation to the range  $0 ≤ t < T$.
  • The signals  $s_i(t)$  according to suggestion 3,  on the other hand,  do not differ with respect to frequency,  but have different phase positions.


(2)  The energy-limited signals   $s_i(t) = A \cdot \cos {(2\pi \cdot i \cdot t/T)}$   are orthogonal to each other   ⇒   the inner product of two signals  $s_i(t)$,  $s_k(t)$  with  $i ≠ k$  is always  $0$:

$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} A^2 \cdot \int_{0}^{T}\cos(2\pi \cdot i \cdot t/T) \cdot \cos(2\pi \cdot k \cdot t/T)\,{\rm d} t $$
$$ \Rightarrow \hspace{0.3cm} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} {A^2}/{2} \cdot \int_{0}^{T}\cos(2\pi (i-k) t/T) \,{\rm d} t + \frac{A^2}{2} \cdot \int_{0}^{T}\cos(2\pi (i+k) t/T) \,{\rm d} t \hspace{0.05cm}.$$
  • With  $i ∈ \{0, \ \text{...} \ , 4\}$  and  $k ∈ \{0, \ \text{...}\ , 4\}$  as well as  $i ≠ j$,  both  $i \, - k$  is integer  $\ne0$,  as is the  sum $i + k$.
  • Thus,  both integrals yield the result zero:
$$< \hspace{-0.1cm}s_i(t), \hspace{0.1cm} s_k(t)\hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm}= 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \hspace{0.05cm}\hspace{0.15cm}\underline {N = M = 5} \hspace{0.05cm}.$$


(3)  The energy of the signal  $s_0(t)$,  which is constant within  $T$,  is equal to

$$E_0 = ||s_0(t)||^2 = A^2 \cdot T \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_0(t)|| = A \cdot \sqrt{T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_0 (t) = \frac{s_0(t)}{||s_0(t)||} = \left\{ \begin{array}{c} 1/\sqrt{T} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$

Therefore,  solution 2  is correct.


(4)  The  last solution  is correct because of

$$E_1 = ||s_1(t)||^2 = \frac{A^2 \cdot T}{2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} ||s_1(t)|| = A \cdot \sqrt{{T}/{2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varphi_1 (t) = \frac{s_1(t)}{||s_1(t)||} = \left\{ \begin{array}{c} \sqrt{2/T} \cdot \cos(2\pi t/T) \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$