Difference between revisions of "Aufgaben:Exercise 4.3: Pointer Diagram Representation"

From LNTwww
 
(21 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Analytisches Signal und zugehörige Spektralfunktion
+
{{quiz-Header|Buchseite=Signal_Representation/Analytical_Signal_and_Its_Spectral_Function
 
}}
 
}}
  
[[File:P_ID716__Sig_A_4_3.png|250px|right|frame|Zeigerdiagramm einer Harmonischen]]
+
[[File:P_ID716__Sig_A_4_3.png|250px|right|frame|Pointer diagram of a harmonic]]
  
Wir betrachten ein analytisches Signal $x_+(t)$, welches durch das gezeichnete Diagramm in der komplexen Ebene festgelegt ist. Je nach Wahl der Signalparameter ergeben sich daraus drei physikalische BP–Signale $x_1(t)$, $x_2(t)$ und $x_3(t)$, die sich durch verschiedene Startpunkte $S_i = x_i(t = 0)$ unterscheiden (blauer, grüner und roter Punkt). Zudem seien auch die Winkelgeschwindigkeiten der drei Konstellationen unterschiedlich:
+
We consider an analytical signal  $x_+(t)$, which is defined by the drawn diagram in the complex plane.  Depending on the choice of signal parameters, this results in three physical band-pass signals  $x_1(t)$,  $x_2(t)$  and  $x_3(t)$, which differ by different starting points  $S_i = x_i(t = 0)$.  
*Das analytische Signal $x_{1+}(t)$ beginnt bei $S_1 = 3 \ \rm V$. Die Winkelgeschwindigkeit ist $\omega_1 = \pi \cdot 10^{4} \ 1/\text{s}$.
 
*Das Signal $x_{2+}(t)$ beginnt beim grünen Startpunkt $S_2 = {\rm j} \cdot 3 \ \text{V}$ und dreht gegenüber $x_{1+}(t)$ mit doppelter Winkelgeschwindigkeit   ⇒   $\omega_2 = 2 \cdot \omega_1$.
 
*Das Signal $x_{3+}(t)$ beginnt beim rot markierten Ausgangspunkt $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\pi /3}$ und dreht mit gleicher Geschwindigkeit wie das Signal $x_{2+}(t)$.
 
  
 +
In addition, the angular velocities of the three constellations  (blue, green and red point)  are also different:
 +
*The (blue) analytical signal  $x_{1+}(t)$  starts at  $S_1 = 3 \ \rm V$.  The angular velocity is  $\omega_1 = \pi \cdot 10^{4} \ 1/\text{s}$.
 +
*The signal  $x_{2+}(t)$  starts at the green starting point  $S_2 = {\rm j} \cdot 3 \ \text{V}$  and, compared to  $x_{1+}(t)$ , rotates with twice the angular velocity  ⇒   $\omega_2 = 2 \cdot \omega_1$.
 +
*The signal $x_{3+}(t)$ starts at the red starting point  $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi /3}$  and rotates with same speed as the signal  $x_{2+}(t)$.
  
  
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Analytisches_Signal_und_zugehörige_Spektralfunktion|Analytisches Signal und zugehörige Spektralfunktion]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]].
 +
*The interactive applet  [[Applets:Physical_Signal_%26_Analytic_Signal|Physical and Analytical Signal]]  illustrates the topic covered here.
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Amplituden aller betrachteten Signale?
+
{What are the amplitudes of all signals considered?
 
|type="{}"}
 
|type="{}"}
 
$A\ = \ $  { 3 3% } &nbsp;$\text{V}$
 
$A\ = \ $  { 3 3% } &nbsp;$\text{V}$
  
{Welche Werte besitzen Frequenz und Phase des Signals $x_1(t)$?
+
{What are the frequency and phase values of the signal&nbsp; $x_1(t)$?
 
|type="{}"}
 
|type="{}"}
 
$f_1\ = \ $  { 5 3% } &nbsp;$\text{kHz}$
 
$f_1\ = \ $  { 5 3% } &nbsp;$\text{kHz}$
$\varphi_1\ = \ $  { 0. } &nbsp;$\text{Grad}$
+
$\varphi_1\ = \ $  { 0. } &nbsp;$\text{deg}$
  
{Welche Werte besitzen Frequenz und Phase des Signals $x_2(t)$?
+
{What are the frequency and phase values of the signal&nbsp; $x_2(t)$?
 
|type="{}"}
 
|type="{}"}
 
$f_2\ = \ $  { 10 3% } &nbsp;$\text{kHz}$
 
$f_2\ = \ $  { 10 3% } &nbsp;$\text{kHz}$
$\varphi_2\ = \ $  { -91--89 } &nbsp;$\text{Grad}$
+
$\varphi_2\ = \ $  { -91--89 } &nbsp;$\text{deg}$
  
{Welche Werte besitzen Frequenz und Phase des Signals $x_3(t)$?
+
{What are the frequency and phase values of the signal &nbsp; $x_3(t)$?
 
|type="{}"}
 
|type="{}"}
 
$f_3\ = \ $  { 10 3% } &nbsp;$\text{kHz}$
 
$f_3\ = \ $  { 10 3% } &nbsp;$\text{kHz}$
$\varphi_3\ = \ $  { 60 3% } &nbsp;$\text{Grad}$
+
$\varphi_3\ = \ $  { 60 3% } &nbsp;$\text{deg}$
  
{Nach welcher Zeit $t_1$ ist das analytische Signal erstmalig wieder gleich dem Startwert $x_{3+}(t = 0)$?
+
{After what time&nbsp; $t_1$&nbsp; is the analytical signal&nbsp; $x_{3+}(t)$&nbsp; for the first time again equal to the initial value&nbsp; $x_{3+}(t = 0)$?
 
|type="{}"}
 
|type="{}"}
 
$t_1\ = \ $  { 0.1 3% } &nbsp;$\text{ms}$
 
$t_1\ = \ $  { 0.1 3% } &nbsp;$\text{ms}$
  
{Nach welcher Zeit $t_2$ ist das physikalische Signal $x_3(t)$ zum ersten Mal wieder so groß wie zum Zeitpunkt $t = 0$?
+
{After what time&nbsp; $t_2$&nbsp; is the physical signal&nbsp; $x_3(t)$&nbsp; for the first time again as large as at time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$t_2\ = \ $  { 0.033 3% } &nbsp;$\text{ms}$
 
$t_2\ = \ $  { 0.033 3% } &nbsp;$\text{ms}$
Line 52: Line 59:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Die Amplitude der harmonischen Schwingung ist gleich der Zeigerlänge. Für alle Signale gilt $A \; \underline{= 3 \ \text{V}}$.
+
'''(1)'''&nbsp;  The amplitude of the harmonic oscillation is equal to the pointer length.&nbsp; For all signals&nbsp; $A \; \underline{= 3 \ \text{V}}$.
 
 
  
  
'''(2)'''&nbsp;  Die gesuchte Frequenz ergibt sich zu $f_1 = \omega_1/(2\pi ) \; \underline{= 5 \ \text{kHz}}$. Die Phase kann aus $S_1 = 3 \ \text{V} \cdot \text{e}^{–\text{j} \cdot \varphi_1}$ ermittelt werden und ist $\varphi_1 \; \underline{= 0}$. Insgesamt ergibt sich
+
'''(2)'''&nbsp;  The sought frequency is given by&nbsp; $f_1 = \omega_1/(2\pi ) \; \underline{= 5 \ \text{kHz}}$.  
 +
*The phase can be determined from&nbsp; $S_1 = 3 \ \text{V} \cdot \text{e}^{–\text{j} \hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_1}$&nbsp; and is&nbsp; $\varphi_1 \; \underline{= 0}$.  
 +
*In total this gives
 
   
 
   
 
:$$x_1(t) = 3\hspace{0.05cm}{\rm V}
 
:$$x_1(t) = 3\hspace{0.05cm}{\rm V}
Line 64: Line 72:
  
  
'''(3)'''&nbsp;  Wegen $\omega_2 = 2\cdot \omega_1$ beträgt nun die Frequenz $f_2 = 2 \cdot f_1 \; \underline{= 10 \ \text{kHz}}$ . Die Phase ergibt sich mit dem Startzeitpunkt $S_2$ zu $\text{e}^{–\text{j} \cdot \varphi_2} = \text{j}$ &nbsp; &rArr; &nbsp; $\varphi_2 \; \underline{= \pi /2 \; (–90^{\circ})}$. Somit lautet die Zeitfunktion:
+
'''(3)'''&nbsp;  Because of&nbsp; $\omega_2 = 2\cdot \omega_1$&nbsp;, the frequency is now&nbsp; $f_2 = 2 \cdot f_1 \; \underline{= 10 \ \text{kHz}}$.  
 +
*The phase is obtained with the starting time&nbsp; $S_2$&nbsp; at&nbsp; $\text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\varphi_2} = \text{j}$ &nbsp; &rArr; &nbsp; $\varphi_2 \; \underline{= -\pi /2 \; (-90^{\circ})}$.  
 +
*Thus the time function is:
 
   
 
   
 
:$$x_2(t) = 3\hspace{0.05cm}{\rm V}
 
:$$x_2(t) = 3\hspace{0.05cm}{\rm V}
Line 70: Line 80:
 
  \cdot  {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).$$
 
  \cdot  {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).$$
  
Dieses Signal ist somit „minus–sinusförmig”, was auch direkt am Zeigerdiagramm abgelesen werden kann:  
+
This signal is "minus-sine", which can also be read directly from the pointer diagram:
*Der Realteil von $x_{2+}(t)$ zum Zeitpunkt $t = 0$ ist Null. Da der Zeiger entgegen dem Uhrzeigersinn dreht, ergibt sich zunächst ein negativer Realteil.  
+
*The real part of&nbsp; $x_{2+}(t)$&nbsp; at time&nbsp; $t = 0$&nbsp; is zero.&nbsp; Since the pointer turns counterclockwise, the real part is negative at first.
*Nach einer viertel Umdrehung ist $x_2(T/4) = - 3 \ \text{V}$. Dreht man nochmals in Schritten von $90^\circ$ entgegen dem Uhrzeigersinn weiter, so ergeben sich die Signalwerte $0 \ \text{V}$, $3 \ \text{V}$, und $0 \ \text{V}$.
+
*After a quarter turn,&nbsp; $x_2(T/4) = - 3 \ \text{V}$.  
 +
*If one continues to turn counterclockwise in steps of&nbsp; $90^\circ$, the signal values&nbsp; $0 \ \text{V}$,&nbsp; $3 \ \text{V}$&nbsp; and&nbsp; $0 \ \text{V}$ result.
  
  
'''(4)'''&nbsp;   Diese Teilaufgabe kann analog zu den Fragen (2) und (3) gelöst werden: &nbsp; $f_3  \; \underline{= 10 \ \text{kHz}}$, $\varphi_3 \; \underline{= 60^\circ}$.
+
'''(4)'''&nbsp; This sub-task can be solved analogously to sub-tasks&nbsp; '''(2)'''&nbsp; and '''(3)''' : &nbsp;  
 +
:$$f_3  \; \underline{= 10 \ \text{kHz}}, \ \varphi_3 \; \underline{= 60^\circ}.$$
  
  
'''(5)'''&nbsp;   Der Zeiger benötigt für eine Umdrehung genau die Periodendauer $T_3 = 1/f_3  \; \underline{= 0.1 \ \text{ms}} \;(= t_1)$.
+
'''(5)'''&nbsp; The pointer requires exactly the period&nbsp; $T_3 = 1/f_3  \; \underline{= 0.1 \ \text{ms}} \;(= t_1)$ for one rotation.
  
  
'''(6)'''&nbsp;   Das analytische Signal startet bei $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}60^{\circ}}$. Dreht das Signal um $120^\circ$ weiter, so ergibt sich genau der gleiche Realteil. Es gilt dann mit $t_2 = t_1/3 \; \underline{= 0.033 \ \text{ms}} $ die folgende Beziehung:
+
'''(6)'''&nbsp; The analytical signal starts at&nbsp; $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}60^{\circ}}$.  
 +
*If the signal rotates further by&nbsp; $120^\circ$,&nbsp; exactly the same real part results.
 +
*The following relationship then applies with&nbsp; $t_2 = t_1/3 \; \underline{= 0.033 \ \text{ms}} $&nbsp;:
 
   
 
   
 
:$$x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V}
 
:$$x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V}
Line 89: Line 103:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^4.2 Analytical Signal and its Spectral Function^]]

Latest revision as of 16:02, 6 May 2021

Pointer diagram of a harmonic

We consider an analytical signal  $x_+(t)$, which is defined by the drawn diagram in the complex plane.  Depending on the choice of signal parameters, this results in three physical band-pass signals  $x_1(t)$,  $x_2(t)$  and  $x_3(t)$, which differ by different starting points  $S_i = x_i(t = 0)$.

In addition, the angular velocities of the three constellations  (blue, green and red point)  are also different:

  • The (blue) analytical signal  $x_{1+}(t)$  starts at  $S_1 = 3 \ \rm V$.  The angular velocity is  $\omega_1 = \pi \cdot 10^{4} \ 1/\text{s}$.
  • The signal  $x_{2+}(t)$  starts at the green starting point  $S_2 = {\rm j} \cdot 3 \ \text{V}$  and, compared to  $x_{1+}(t)$ , rotates with twice the angular velocity  ⇒   $\omega_2 = 2 \cdot \omega_1$.
  • The signal $x_{3+}(t)$ starts at the red starting point  $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi /3}$  and rotates with same speed as the signal  $x_{2+}(t)$.





Hints:


Questions

1

What are the amplitudes of all signals considered?

$A\ = \ $

 $\text{V}$

2

What are the frequency and phase values of the signal  $x_1(t)$?

$f_1\ = \ $

 $\text{kHz}$
$\varphi_1\ = \ $

 $\text{deg}$

3

What are the frequency and phase values of the signal  $x_2(t)$?

$f_2\ = \ $

 $\text{kHz}$
$\varphi_2\ = \ $

 $\text{deg}$

4

What are the frequency and phase values of the signal   $x_3(t)$?

$f_3\ = \ $

 $\text{kHz}$
$\varphi_3\ = \ $

 $\text{deg}$

5

After what time  $t_1$  is the analytical signal  $x_{3+}(t)$  for the first time again equal to the initial value  $x_{3+}(t = 0)$?

$t_1\ = \ $

 $\text{ms}$

6

After what time  $t_2$  is the physical signal  $x_3(t)$  for the first time again as large as at time  $t = 0$?

$t_2\ = \ $

 $\text{ms}$


Solution

(1)  The amplitude of the harmonic oscillation is equal to the pointer length.  For all signals  $A \; \underline{= 3 \ \text{V}}$.


(2)  The sought frequency is given by  $f_1 = \omega_1/(2\pi ) \; \underline{= 5 \ \text{kHz}}$.

  • The phase can be determined from  $S_1 = 3 \ \text{V} \cdot \text{e}^{–\text{j} \hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_1}$  and is  $\varphi_1 \; \underline{= 0}$.
  • In total this gives
$$x_1(t) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi \cdot {\rm 5 \hspace{0.05cm} kHz}\cdot t) .$$


(3)  Because of  $\omega_2 = 2\cdot \omega_1$ , the frequency is now  $f_2 = 2 \cdot f_1 \; \underline{= 10 \ \text{kHz}}$.

  • The phase is obtained with the starting time  $S_2$  at  $\text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\varphi_2} = \text{j}$   ⇒   $\varphi_2 \; \underline{= -\pi /2 \; (-90^{\circ})}$.
  • Thus the time function is:
$$x_2(t) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t + 90^\circ) = -3\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).$$

This signal is "minus-sine", which can also be read directly from the pointer diagram:

  • The real part of  $x_{2+}(t)$  at time  $t = 0$  is zero.  Since the pointer turns counterclockwise, the real part is negative at first.
  • After a quarter turn,  $x_2(T/4) = - 3 \ \text{V}$.
  • If one continues to turn counterclockwise in steps of  $90^\circ$, the signal values  $0 \ \text{V}$,  $3 \ \text{V}$  and  $0 \ \text{V}$ result.


(4)  This sub-task can be solved analogously to sub-tasks  (2)  and (3) :  

$$f_3 \; \underline{= 10 \ \text{kHz}}, \ \varphi_3 \; \underline{= 60^\circ}.$$


(5)  The pointer requires exactly the period  $T_3 = 1/f_3 \; \underline{= 0.1 \ \text{ms}} \;(= t_1)$ for one rotation.


(6)  The analytical signal starts at  $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}60^{\circ}}$.

  • If the signal rotates further by  $120^\circ$,  exactly the same real part results.
  • The following relationship then applies with  $t_2 = t_1/3 \; \underline{= 0.033 \ \text{ms}} $ :
$$x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 60^\circ) = 1.5\hspace{0.05cm}{\rm V} .$$