Difference between revisions of "Aufgaben:Exercise 4.3: Pointer Diagram Representation"

From LNTwww
 
(33 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signal_Representation/Analytical_Signal_and_Its_Spectral_Function
 
}}
 
}}
  
[[File:P_ID716__Sig_A_4_3.png|250px|right|Zeigerdiagramm einer Harmonischen (Aufgabe A4.3)]]
+
[[File:P_ID716__Sig_A_4_3.png|250px|right|frame|Pointer diagram of a harmonic]]
  
Wir betrachten ein analytisches Signal x+(t), welches durch das gezeichnete Diagramm in der komplexen Ebene festgelegt ist. Je nach Wahl der Signalparameter ergeben sich daraus drei physikalische BP–Signale x1(t), x2(t) und x3(t), die sich durch verschiedene Startpunkte Si = xi(t = 0) unterscheiden (blauer, grüner und roter Punkt). Zudem seien auch die Winkelgeschwindigkeiten der drei Konstellationen unterschiedlich:
+
We consider an analytical signal  $x_+(t)$, which is defined by the drawn diagram in the complex plane.  Depending on the choice of signal parameters, this results in three physical band-pass signals  $x_1(t)$,  $x_2(t)$  and  $x_3(t)$, which differ by different starting points  $S_i = x_i(t = 0)$.  
*Das analytische Signal x1+(t) beginnt bei S1 = 3 V. Die Winkelgeschwindigkeit ist ω1 = π · 104 1/s.
 
*Das Signal x2+(t) beginnt beim grünen Startpunkt S2 = j · 3 V und dreht gegenüber x1+(t) mit doppelter Winkelgeschwindigkeit (ω2 = 2 · ω1).
 
*Das Signal x3+(t) beginnt beim rot markierten Ausgangspunkt S3 = 3 V · exp(–jπ/3) und dreht mit gleicher Geschwindigkeit wie das Signal x2+(t).
 
  
 +
In addition, the angular velocities of the three constellations  (blue, green and red point)  are also different:
 +
*The (blue) analytical signal  $x_{1+}(t)$  starts at  $S_1 = 3 \ \rm V$.  The angular velocity is  $\omega_1 = \pi \cdot 10^{4} \ 1/\text{s}$.
 +
*The signal  $x_{2+}(t)$  starts at the green starting point  $S_2 = {\rm j} \cdot 3 \ \text{V}$  and, compared to  $x_{1+}(t)$ , rotates with twice the angular velocity  ⇒   $\omega_2 = 2 \cdot \omega_1$.
 +
*The signal $x_{3+}(t)$ starts at the red starting point  $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi /3}$  and rotates with same speed as the signal  $x_{2+}(t)$.
  
Hinweis: Die Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 4.2.
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]].
 +
*The interactive applet  [[Applets:Physical_Signal_%26_Analytic_Signal|Physical and Analytical Signal]]  illustrates the topic covered here.
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Amplituden aller betrachteten Signale?
+
{What are the amplitudes of all signals considered?
 
|type="{}"}
 
|type="{}"}
$A=$ { 3 } V
+
$A\ = \ $ { 3 3% } &nbsp;$\text{V}$
  
{Welche Werte besitzen Frequenz und Phase des Signals x1(t)?
+
{What are the frequency and phase values of the signal&nbsp; $x_1(t)$?
 
|type="{}"}
 
|type="{}"}
$f_1 =$ { 5 } kHz
+
$f_1\ = \ $ { 5 3% } &nbsp;$\text{kHz}$
$\phi_1 = $ { 0 } Grad
+
$\varphi_1\ = \ $ { 0. } &nbsp;$\text{deg}$
  
{Welche Werte besitzen Frequenz und Phase des Signals x2(t)?
+
{What are the frequency and phase values of the signal&nbsp; $x_2(t)$?
 
|type="{}"}
 
|type="{}"}
$f_2 = $ { 10 } kHz
+
$f_2\ = \ $ { 10 3% } &nbsp;$\text{kHz}$
$\phi_2 { -90 } Grad
+
$\varphi_2\ = \ $  { -91--89 } &nbsp;$\text{deg}$
  
{Welche Werte besitzen Frequenz und Phase des Signals x3(t)?
+
{What are the frequency and phase values of the signal &nbsp; $x_3(t)$?
 
|type="{}"}
 
|type="{}"}
$f_3 = $ { 10 } kHz
+
$f_3\ = \ $ { 10 3% } &nbsp;$\text{kHz}$
$\phi_3 { 60 } Grad
+
$\varphi_3\ = \ $  { 60 3% } &nbsp;$\text{deg}$
  
{Nach welcher Zeit t1 ist das analytische Signal erstmalig wieder gleich dem Startwert x3+(t = 0)?
+
{After what time&nbsp; $t_1$&nbsp; is the analytical signal&nbsp; $x_{3+}(t)$&nbsp; for the first time again equal to the initial value&nbsp; $x_{3+}(t = 0)$?
 
|type="{}"}
 
|type="{}"}
$t_1 = $ { 0.1 3% } ms
+
$t_1\ = \ $ { 0.1 3% } &nbsp;$\text{ms}$
  
{Nach welcher Zeit t2 ist das physikalische Signal x3(t) zum ersten Mal wieder so groß wie zum Zeitpunkt t = 0?
+
{After what time&nbsp; $t_2$&nbsp; is the physical signal&nbsp; $x_3(t)$&nbsp; for the first time again as large as at time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
$t_2 = $ { 0.033 3% } ms
+
$t_2\ = \ $ { 0.033 3% } &nbsp;$\text{ms}$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''a) Die Amplitude der harmonischen Schwingung ist gleich der Zeigerlänge. Für alle Signale gilt A = 3V.
+
'''(1)'''&nbsp; The amplitude of the harmonic oscillation is equal to the pointer length.&nbsp; For all signals&nbsp; $A \; \underline{= 3 \ \text{V}}$.
bDie gesuchte Frequenz ergibt sich zu f1 = ω1/() = 5 kHz. Die Phase kann aus S1 = 3V · exp(–j · φ1) ermittelt werden und ergibt sich zu φ1 = 0, d.h. es ist
+
 
 +
 
 +
'''(2)'''&nbsp; The sought frequency is given by&nbsp; $f_1 = \omega_1/(2\pi ) \; \underline{= 5 \ \text{kHz}}$.  
 +
*The phase can be determined from&nbsp; $S_1 = 3 \ \text{V} \cdot \text{e}^{–\text{j} \hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_1}$&nbsp; and is&nbsp; $\varphi_1 \; \underline{= 0}$.  
 +
*In total this gives
 
   
 
   
$$x_1(t) = 3\hspace{0.05cm}{\rm V}
+
:$$x_1(t) = 3\hspace{0.05cm}{\rm V}
 
  \cdot  {\cos} ( 2 \pi \cdot {\rm 5 \hspace{0.05cm} kHz}\cdot t) .$$
 
  \cdot  {\cos} ( 2 \pi \cdot {\rm 5 \hspace{0.05cm} kHz}\cdot t) .$$
  
cWegen ω2 = 2ω1 beträgt nun die Frequenz f2 = 2 · f1 = 10 kHz. Die Phase ergibt sich mit dem Startzeitpunkt S2 zu exp(–j · φ2) = j, das heißt φ2 = –π/2 (–90°). Somit lautet die Zeitfunktion:
+
 
 +
'''(3)'''&nbsp; Because of&nbsp; $\omega_2 = 2\cdot \omega_1$&nbsp;, the frequency is now&nbsp; $f_2 = 2 \cdot f_1 \; \underline{= 10 \ \text{kHz}}$.  
 +
*The phase is obtained with the starting time&nbsp; $S_2$&nbsp; at&nbsp; $\text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\varphi_2} = \text{j}$ &nbsp; &rArr; &nbsp; $\varphi_2 \; \underline{= -\pi /2 \; (-90^{\circ})}$.  
 +
*Thus the time function is:
 
   
 
   
$$x_2(t) = 3\hspace{0.05cm}{\rm V}
+
:$$x_2(t) = 3\hspace{0.05cm}{\rm V}
 
  \cdot  {\cos} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t + 90^\circ) = -3\hspace{0.05cm}{\rm V}
 
  \cdot  {\cos} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t + 90^\circ) = -3\hspace{0.05cm}{\rm V}
 
  \cdot  {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).$$
 
  \cdot  {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).$$
  
Dieses Signal ist somit „minus–sinusförmig”, was auch direkt am Zeigerdiagramm abgelesen werden kann. Der Realteil von x2+(t) zum Zeitpunkt t = 0 ist 0. Da der Zeiger entgegen dem Uhrzeigersinn dreht, ergibt sich zunächst ein negativer Realteil. Nach einer viertel Umdrehung ist x2(T/4) = –3V. Dreht man nochmals in Schritten von 90° entgegen dem Uhrzeigersinn weiter, so ergeben sich die Signalwerte 0V, 3V und 0V.
+
This signal is "minus-sine", which can also be read directly from the pointer diagram:
d) Diese Teilaufgabe kann analog zu den Fragen b) und c) gelöst werden: f3 = 10 kHz, φ3 = 60°.
+
*The real part of&nbsp; $x_{2+}(t)$&nbsp; at time&nbsp; $t = 0$&nbsp; is zero.&nbsp; Since the pointer turns counterclockwise, the real part is negative at first.
eDer Zeiger benötigt für eine Umdrehung genau die Periodendauer T3 = 1/f3 = 0.1 ms (= t1).
+
*After a quarter turn,&nbsp; $x_2(T/4) = - 3 \ \text{V}$.  
fDas analytische Signal startet bei S3 = 3V · e– j60°. Dreht das Signal um 120° weiter, so ergibt sich genau der gleiche Realteil. Es gilt dann mit t2 = t1/3 = 0.033 ms folgende Beziehung:
+
*If one continues to turn counterclockwise in steps of&nbsp; $90^\circ$, the signal values&nbsp; $0 \ \text{V}$,&nbsp; $3 \ \text{V}$&nbsp; and&nbsp; $0 \ \text{V}$ result.
 +
 
 +
 
 +
'''(4)'''&nbsp; This sub-task can be solved analogously to sub-tasks&nbsp; '''(2)'''&nbsp; and '''(3)''' : &nbsp;
 +
:$$f_3  \; \underline{= 10 \ \text{kHz}}, \ \varphi_3 \; \underline{= 60^\circ}.$$
 +
 
 +
 
 +
'''(5)'''&nbsp; The pointer requires exactly the period&nbsp; $T_3 = 1/f_3  \; \underline{= 0.1 \ \text{ms}} \;(= t_1)$ for one rotation.
 +
 
 +
 
 +
'''(6)'''&nbsp; The analytical signal starts at&nbsp; $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}60^{\circ}}$.
 +
*If the signal rotates further by&nbsp; $120^\circ$,&nbsp; exactly the same real part results.
 +
*The following relationship then applies with&nbsp; $t_2 = t_1/3 \; \underline{= 0.033 \ \text{ms}} $&nbsp;:
 
   
 
   
$$x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V}
+
:$$x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V}
 
  \cdot  {\cos} ( 60^\circ) = 1.5\hspace{0.05cm}{\rm V}
 
  \cdot  {\cos} ( 60^\circ) = 1.5\hspace{0.05cm}{\rm V}
 
  .$$
 
  .$$
Line 72: Line 103:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^4.2 Analytical Signal and its Spectral Function^]]

Latest revision as of 16:02, 6 May 2021

Pointer diagram of a harmonic

We consider an analytical signal  $x_+(t)$, which is defined by the drawn diagram in the complex plane.  Depending on the choice of signal parameters, this results in three physical band-pass signals  $x_1(t)$,  $x_2(t)$  and  $x_3(t)$, which differ by different starting points  $S_i = x_i(t = 0)$.

In addition, the angular velocities of the three constellations  (blue, green and red point)  are also different:

  • The (blue) analytical signal  $x_{1+}(t)$  starts at  $S_1 = 3 \ \rm V$.  The angular velocity is  $\omega_1 = \pi \cdot 10^{4} \ 1/\text{s}$.
  • The signal  $x_{2+}(t)$  starts at the green starting point  $S_2 = {\rm j} \cdot 3 \ \text{V}$  and, compared to  $x_{1+}(t)$ , rotates with twice the angular velocity  ⇒   $\omega_2 = 2 \cdot \omega_1$.
  • The signal $x_{3+}(t)$ starts at the red starting point  $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi /3}$  and rotates with same speed as the signal  $x_{2+}(t)$.





Hints:


Questions

1

What are the amplitudes of all signals considered?

$A\ = \ $

 $\text{V}$

2

What are the frequency and phase values of the signal  $x_1(t)$?

$f_1\ = \ $

 $\text{kHz}$
$\varphi_1\ = \ $

 $\text{deg}$

3

What are the frequency and phase values of the signal  $x_2(t)$?

$f_2\ = \ $

 $\text{kHz}$
$\varphi_2\ = \ $

 $\text{deg}$

4

What are the frequency and phase values of the signal   $x_3(t)$?

$f_3\ = \ $

 $\text{kHz}$
$\varphi_3\ = \ $

 $\text{deg}$

5

After what time  $t_1$  is the analytical signal  $x_{3+}(t)$  for the first time again equal to the initial value  $x_{3+}(t = 0)$?

$t_1\ = \ $

 $\text{ms}$

6

After what time  $t_2$  is the physical signal  $x_3(t)$  for the first time again as large as at time  $t = 0$?

$t_2\ = \ $

 $\text{ms}$


Solution

(1)  The amplitude of the harmonic oscillation is equal to the pointer length.  For all signals  $A \; \underline{= 3 \ \text{V}}$.


(2)  The sought frequency is given by  $f_1 = \omega_1/(2\pi ) \; \underline{= 5 \ \text{kHz}}$.

  • The phase can be determined from  $S_1 = 3 \ \text{V} \cdot \text{e}^{–\text{j} \hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_1}$  and is  $\varphi_1 \; \underline{= 0}$.
  • In total this gives
$$x_1(t) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi \cdot {\rm 5 \hspace{0.05cm} kHz}\cdot t) .$$


(3)  Because of  $\omega_2 = 2\cdot \omega_1$ , the frequency is now  $f_2 = 2 \cdot f_1 \; \underline{= 10 \ \text{kHz}}$.

  • The phase is obtained with the starting time  $S_2$  at  $\text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\varphi_2} = \text{j}$   ⇒   $\varphi_2 \; \underline{= -\pi /2 \; (-90^{\circ})}$.
  • Thus the time function is:
$$x_2(t) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t + 90^\circ) = -3\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).$$

This signal is "minus-sine", which can also be read directly from the pointer diagram:

  • The real part of  $x_{2+}(t)$  at time  $t = 0$  is zero.  Since the pointer turns counterclockwise, the real part is negative at first.
  • After a quarter turn,  $x_2(T/4) = - 3 \ \text{V}$.
  • If one continues to turn counterclockwise in steps of  $90^\circ$, the signal values  $0 \ \text{V}$,  $3 \ \text{V}$  and  $0 \ \text{V}$ result.


(4)  This sub-task can be solved analogously to sub-tasks  (2)  and (3) :  

$$f_3 \; \underline{= 10 \ \text{kHz}}, \ \varphi_3 \; \underline{= 60^\circ}.$$


(5)  The pointer requires exactly the period  $T_3 = 1/f_3 \; \underline{= 0.1 \ \text{ms}} \;(= t_1)$ for one rotation.


(6)  The analytical signal starts at  $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}60^{\circ}}$.

  • If the signal rotates further by  $120^\circ$,  exactly the same real part results.
  • The following relationship then applies with  $t_2 = t_1/3 \; \underline{= 0.033 \ \text{ms}} $ :
$$x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 60^\circ) = 1.5\hspace{0.05cm}{\rm V} .$$