Difference between revisions of "Aufgaben:Exercise 4.3Z: Dirac-shaped "2D-PDF""

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID257__Sto_Z_4_3.png|right|frame|Dirac-shaped 2D PDF]]
+
[[File:P_ID257__Sto_Z_4_3.png|right|frame|Dirac-shaped 2D– PDF]]
The graph shows the two-dimensional probability density function $f_{xy}(x, y)$  of the two discrete random variables  $x$  and  $y$ .  
+
The graph shows the two-dimensional probability density function $f_{xy}(x, y)$  of two discrete random variables  $x$,  $y$.  
*This 2D PDF consists of eight Dirac points, marked by crosses.  The numerical values indicate the corresponding probabilities.
+
*This 2D–PDF consists of eight Dirac points,   marked by crosses.   
*It can be seen that both  $x$  and  $y$  can take all integer values between the limits  $-2$  and  $+2$  .
+
*The numerical values indicate the corresponding probabilities.
 +
*It can be seen that both  $x$  and  $y$  can take all integer values between the limits  $-2$  and  $+2$.
 
*The variances of the two random variables are given as follows:    $\sigma_x^2 = 2$,   $\sigma_y^2 = 1.4$.  
 
*The variances of the two random variables are given as follows:    $\sigma_x^2 = 2$,   $\sigma_y^2 = 1.4$.  
<br>
 
 
 
  
  
Line 18: Line 16:
 
Hints:  
 
Hints:  
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables|Two-Dimensional Random Variables]].
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables|Two-Dimensional Random Variables]].
*Reference is made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable|Moments of a Discrete Random Variable]]
+
*Reference is also made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Moments_of_a_Discrete_Random_Variable|Moments of a Discrete Random Variable]]
 
   
 
   
  
Line 28: Line 26:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Which of the following statements are true regarding the random variable $x$&nbsp;?
+
{Which of the following statements are true regarding the random variable&nbsp; $x$?
 
|type="[]"}
 
|type="[]"}
 
+ The probabilities for&nbsp; $-2$,&nbsp; $-1$,&nbsp; &nbsp; $0$,&nbsp; $+1$&nbsp; and&nbsp; $+2$&nbsp; are equal.
 
+ The probabilities for&nbsp; $-2$,&nbsp; $-1$,&nbsp; &nbsp; $0$,&nbsp; $+1$&nbsp; and&nbsp; $+2$&nbsp; are equal.
 
+ The random variable&nbsp; $x$&nbsp; is mean-free&nbsp; $(m_x = 0)$.  
 
+ The random variable&nbsp; $x$&nbsp; is mean-free&nbsp; $(m_x = 0)$.  
- The probability&nbsp; ${\rm Pr}(x \le 1)$&nbsp; is&nbsp; $0.9$.
+
- The probability&nbsp; ${\rm Pr}(x \le 1)=0.9$.
  
  
{Which of the following statements are true with respect to the random variable&nbsp; $y$&nbsp;?
+
{Which of the following statements are true with respect to the random variable&nbsp; $y$?
 
|type="[]"}
 
|type="[]"}
 
- The probabilities for&nbsp; $-2$,&nbsp; $-1$,&nbsp; &nbsp; $0$,&nbsp; $+1$&nbsp; and&nbsp; $+2$&nbsp; are equal.
 
- The probabilities for&nbsp; $-2$,&nbsp; $-1$,&nbsp; &nbsp; $0$,&nbsp; $+1$&nbsp; and&nbsp; $+2$&nbsp; are equal.
 
+ The random variable&nbsp; $y$&nbsp; is mean-free&nbsp; $(m_y = 0)$.  
 
+ The random variable&nbsp; $y$&nbsp; is mean-free&nbsp; $(m_y = 0)$.  
+ The probability&nbsp; ${\rm Pr}(y \le 1)$&nbsp; is&nbsp; $0.9$.
+
+ The probability&nbsp; ${\rm Pr}(y \le 1)=0.9$.
  
  
{Calculate the value of the two-dimensional CDF at location&nbsp; $(+1, +1)$.
+
{Calculate the value of the two-dimensional cumulative distribution function&nbsp; $\rm (CDF)$&nbsp; at location&nbsp; $(+1, +1)$.
 
|type="{}"}
 
|type="{}"}
 
$F_{xy}(+1, +1) \ = \ $ { 0.8 3% }
 
$F_{xy}(+1, +1) \ = \ $ { 0.8 3% }
  
{Calculate the probability that&nbsp; $x \le 1$&nbsp; holds, conditioned on&nbsp; $y \le 1$&nbsp; simultaneously.
+
{Calculate the probability that&nbsp; $x \le 1$&nbsp; holds,&nbsp; conditioned on&nbsp; $y \le 1$&nbsp; simultaneously.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(x ≤ 1\hspace{0.05cm} | \hspace{0.05cm}y ≤ 1)\ = \ $ { 0.889 3% }
 
${\rm Pr}(x ≤ 1\hspace{0.05cm} | \hspace{0.05cm}y ≤ 1)\ = \ $ { 0.889 3% }
Line 56: Line 54:
  
  
{Calculate the correlation coefficient&nbsp; $\rho_{xy}$&nbsp; and give the equation of the correlation line&nbsp; $K(x)$&nbsp; What is its angle to&nbsp; $x$ axis?
+
{Calculate the correlation coefficient&nbsp; $\rho_{xy}$.&nbsp; Give the equation of the correlation line&nbsp; $K(x)$&nbsp; What is its angle to the&nbsp; $x$&ndash;axis?
 
|type="{}"}
 
|type="{}"}
 
$\rho_{xy}\ = \ $ { 0.707 3% }
 
$\rho_{xy}\ = \ $ { 0.707 3% }
Line 65: Line 63:
 
|type="[]"}
 
|type="[]"}
 
- The random variables&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are statistically independent.
 
- The random variables&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are statistically independent.
+ It can already be seen from the given 2D PDF that&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are statistically dependent on each other.
+
+ It can already be seen from the given 2D&ndash;PDF that&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are statistically dependent on each other.
 
+ From the calculated correlation coefficient&nbsp; $\rho_{xy}$&nbsp; one can conclude the statistical dependence between&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp;.
 
+ From the calculated correlation coefficient&nbsp; $\rho_{xy}$&nbsp; one can conclude the statistical dependence between&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp;.
  

Revision as of 17:06, 7 February 2022

Dirac-shaped 2D– PDF

The graph shows the two-dimensional probability density function $f_{xy}(x, y)$  of two discrete random variables  $x$,  $y$.

  • This 2D–PDF consists of eight Dirac points,  marked by crosses. 
  • The numerical values indicate the corresponding probabilities.
  • It can be seen that both  $x$  and  $y$  can take all integer values between the limits  $-2$  and  $+2$.
  • The variances of the two random variables are given as follows:   $\sigma_x^2 = 2$,   $\sigma_y^2 = 1.4$.



Hints:




Questions

1

Which of the following statements are true regarding the random variable  $x$?

The probabilities for  $-2$,  $-1$,    $0$,  $+1$  and  $+2$  are equal.
The random variable  $x$  is mean-free  $(m_x = 0)$.
The probability  ${\rm Pr}(x \le 1)=0.9$.

2

Which of the following statements are true with respect to the random variable  $y$?

The probabilities for  $-2$,  $-1$,    $0$,  $+1$  and  $+2$  are equal.
The random variable  $y$  is mean-free  $(m_y = 0)$.
The probability  ${\rm Pr}(y \le 1)=0.9$.

3

Calculate the value of the two-dimensional cumulative distribution function  $\rm (CDF)$  at location  $(+1, +1)$.

$F_{xy}(+1, +1) \ = \ $

4

Calculate the probability that  $x \le 1$  holds,  conditioned on  $y \le 1$  simultaneously.

${\rm Pr}(x ≤ 1\hspace{0.05cm} | \hspace{0.05cm}y ≤ 1)\ = \ $

5

Calculate the joint moment  $m_{xy}$  of the random variables  $x$  and  $y$.

$m_{xy}\ = \ $

6

Calculate the correlation coefficient  $\rho_{xy}$.  Give the equation of the correlation line  $K(x)$  What is its angle to the  $x$–axis?

$\rho_{xy}\ = \ $

$\theta_{y\hspace{0.05cm}→\hspace{0.05cm} x}\ = \ $

$\ \rm degrees$

7

Which of the following statements are true?

The random variables  $x$  and  $y$  are statistically independent.
It can already be seen from the given 2D–PDF that  $x$  and  $y$  are statistically dependent on each other.
From the calculated correlation coefficient  $\rho_{xy}$  one can conclude the statistical dependence between  $x$  and  $y$ .


Solution

(1)  Correct are the first two answers:

  • The marginal probability density function $f_{x}(x)$  is obtained from the 2D PDF $f_{xy}(x, y)$  by integration over  $y$.
  • For all possible values  $ x \in \{-2, -1, \ 0, +1, +2\}$  the probabilities are equal  $0.2$.
  • It holds  ${\rm Pr}(x \le 1)= 0.8$  and the mean is  $m_x = 0$.


Discrete marginal PDF $f_{y}(y)$

(2)  Correct are the proposed solutions 2 and 3:

  • By integration over  $x$  one obtains the PDF $f_{y}(y)$ sketched on the right.
  • Due to symmetry, the mean value  $m_y = 0$ is obtained.
  • The probability we are looking for is  ${\rm Pr}(y \le 1)= 0.9$.


(3)  By definition:

$$F_{xy}(r_x, r_y) = {\rm Pr} \big [(x \le r_x)\cap(y\le r_y)\big ].$$
  • For  $r_x = r_y = 1$  it follows:
$$F_{xy}(+1, +1) = {\rm Pr}\big [(x \le 1)\cap(y\le 1)\big ].$$
  • As can be seen from the 2D PDF on the details page, this probability is  ${\rm Pr}\big [(x \le 1)\cap(y\le 1)\big ]\hspace{0.15cm}\underline{=0.8}$.


(4)  For this, Bayes' theorem can also be used to write:

$$ \rm Pr(\it x \le \rm 1)\hspace{0.05cm} | \hspace{0.05cm} \it y \le \rm 1) = \frac{ \rm Pr\big [(\it x \le \rm 1)\cap(\it y\le \rm 1)\big ]}{ \rm Pr(\it y\le \rm 1)} = \it \frac{F_{xy} \rm (1, \rm 1)}{F_{y}\rm (1)}.$$
  • With the results from  (2)  and  (3)  it follows  $ \rm Pr(\it x \le \rm 1)\hspace{0.05cm} | \hspace{0.05cm} \it y \le \rm 1) = 0.8/0.9 = 8/9 \hspace{0.15cm}\underline{=0.889}$.


(5)  According to the definition, the common moment is:

$$m_{xy} = {\rm E}\big[x\cdot y \big] = \sum\limits_{i} {\rm Pr}( x_i \cap y_i)\cdot x_i\cdot y_i. $$
  • There remain five Dirac functions with  $x_i \cdot y_i \ne 0$:
$$m_{xy} = \rm 0.1\cdot (-2) (-1) + 0.2\cdot(-1) (-1)+ 0.2\cdot 1\cdot 1 + 0.1\cdot 2\cdot 1+ 0.1\cdot 2\cdot 2\hspace{0.15cm}\underline{=\rm 1.2}.$$


2D PDF and correlation line  $y = K(x)$

(6)  For the correlation coefficient:

$$\rho_{xy} = \frac{\mu_{xy}}{\sigma_x\cdot \sigma_y} = \frac{1.2}{\sqrt{2}\cdot\sqrt{1.4}}\hspace{0.15cm}\underline{=0.717}.$$
  • This takes into account that because  $m_x = m_y = 0$  the covariance  $\mu_{xy}$  is equal to the moment  $m_{xy}$  .
  • The equation of the correlation line is:
$$y=\frac{\sigma_y}{\sigma_x}\cdot \rho_{xy}\cdot x = \frac{\mu_{xy}}{\sigma_x^{\rm 2}}\cdot x = \rm 0.6\cdot \it x.$$
  • In the picture the straight line  $y = K(x)$  is drawn.  The angle between correlation straight line and  $x$-axis amounts to.
$$\theta_{y\hspace{0.05cm}→\hspace{0.05cm} x} = \arctan(0.6) \hspace{0.15cm}\underline{=31^\circ}.$$


(7)  The correct solutions are solutions 2 and 3:

  • If statistically independent, $f_{xy}(x, y) = f_{x}(x) \cdot f_{y}(y)$  should hold, which is not done here.
  • From correlatedness  $($follows from  $\rho_{xy} \ne 0)$  it is possible to directly infer statistical dependence,
  • because correlation means a special form of statistical dependence,
  • namely linear statistical dependence.