Difference between revisions of "Aufgaben:Exercise 4.5: On the Extrinsic L-values again"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Kanalcodierung" to "Category:Channel Coding: Exercises")
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Soft–in Soft–out Decoder}}
+
{{quiz-Header|Buchseite=Channel_Coding/Soft-in_Soft-Out_Decoder}}
  
[[File:P_ID3026__KC_A_4_5_v2.png|right|frame|Tabelle nach dem ersten  $L_{\rm E}(i)$–Ansatz]]
+
[[File:P_ID3026__KC_A_4_5_v2.png|right|frame|Table for first  $L_{\rm E}(i)$  approach]]
Wir gehen wie im&nbsp; [[Channel_Coding/Soft%E2%80%93in_Soft%E2%80%93out_Decoder#Zur_Berechnung_der_extrinsischen_L.E2.80.93Werte|Theorieteil]]&nbsp; vom&nbsp; <i>Single Parity&ndash;check Code</i> &nbsp; $\rm SPC \, (3, \, 2, \, 2)$&nbsp; aus. Die möglichen Codeworte sind&nbsp; $\underline{x} \hspace{-0.01cm}\in \hspace{-0.01cm}
+
We assume as in the&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder#Calculation_of_extrinsic_log_likelihood_ratios|"theory section"]]&nbsp; the&nbsp; "single parity&ndash;check code" &nbsp; $\rm SPC \, (3, \, 2, \, 2)$.&nbsp;  
 +
 
 +
The possible code words are&nbsp; $\underline{x} \hspace{-0.01cm}\in \hspace{-0.01cm}
 
\{ \underline{x}_0,\hspace{0.05cm}
 
\{ \underline{x}_0,\hspace{0.05cm}
 
\underline{x}_1,\hspace{0.05cm}
 
\underline{x}_1,\hspace{0.05cm}
 
\underline{x}_2,\hspace{0.05cm}
 
\underline{x}_2,\hspace{0.05cm}
\underline{x}_3\}$&nbsp; mit
+
\underline{x}_3\}$&nbsp; with
:$$\underline{x}_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (0\hspace{-0.03cm},\hspace{0.05cm}0\hspace{-0.03cm},\hspace{0.05cm}0)\hspace{0.35cm}{\rm bzw. } \hspace{0.35cm}
+
:$$\underline{x}_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (0\hspace{-0.03cm},\hspace{0.05cm}0\hspace{-0.03cm},\hspace{0.05cm}0)\hspace{0.35cm}{\rm resp. } \hspace{0.35cm}
 
\underline{x}_0 \hspace{-0.05cm}=\hspace{-0.05cm} (+1\hspace{-0.03cm},\hspace{-0.05cm}+1\hspace{-0.03cm},\hspace{-0.05cm}+1)\hspace{0.05cm},$$
 
\underline{x}_0 \hspace{-0.05cm}=\hspace{-0.05cm} (+1\hspace{-0.03cm},\hspace{-0.05cm}+1\hspace{-0.03cm},\hspace{-0.05cm}+1)\hspace{0.05cm},$$
:$$\underline{x}_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (0\hspace{-0.03cm},\hspace{0.05cm}1\hspace{-0.03cm},\hspace{0.05cm}1)\hspace{0.35cm}{\rm bzw. } \hspace{0.35cm}
+
:$$\underline{x}_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (0\hspace{-0.03cm},\hspace{0.05cm}1\hspace{-0.03cm},\hspace{0.05cm}1)\hspace{0.35cm}{\rm resp. } \hspace{0.35cm}
 
\underline{x}_1 \hspace{-0.05cm}=\hspace{-0.05cm} (+1\hspace{-0.03cm},\hspace{-0.05cm}-1\hspace{-0.03cm},\hspace{-0.05cm}-1)\hspace{0.05cm},$$
 
\underline{x}_1 \hspace{-0.05cm}=\hspace{-0.05cm} (+1\hspace{-0.03cm},\hspace{-0.05cm}-1\hspace{-0.03cm},\hspace{-0.05cm}-1)\hspace{0.05cm},$$
:$$\underline{x}_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1\hspace{-0.03cm},\hspace{0.05cm}0\hspace{-0.03cm},\hspace{0.05cm}1)\hspace{0.35cm}{\rm bzw. } \hspace{0.35cm}
+
:$$\underline{x}_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1\hspace{-0.03cm},\hspace{0.05cm}0\hspace{-0.03cm},\hspace{0.05cm}1)\hspace{0.35cm}{\rm resp. } \hspace{0.35cm}
 
\underline{x}_2 \hspace{-0.05cm}=\hspace{-0.05cm} (-1\hspace{-0.03cm},\hspace{-0.05cm}+1\hspace{-0.03cm},\hspace{-0.05cm}-1)\hspace{0.05cm},$$
 
\underline{x}_2 \hspace{-0.05cm}=\hspace{-0.05cm} (-1\hspace{-0.03cm},\hspace{-0.05cm}+1\hspace{-0.03cm},\hspace{-0.05cm}-1)\hspace{0.05cm},$$
:$$\underline{x}_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1\hspace{-0.03cm},\hspace{0.05cm}1\hspace{-0.03cm},\hspace{0.05cm}0)\hspace{0.35cm}{\rm bzw. } \hspace{0.35cm}
+
:$$\underline{x}_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1\hspace{-0.03cm},\hspace{0.05cm}1\hspace{-0.03cm},\hspace{0.05cm}0)\hspace{0.35cm}{\rm resp. } \hspace{0.35cm}
 
\underline{x}_3 \hspace{-0.05cm}=\hspace{-0.05cm} (-1\hspace{-0.03cm},\hspace{-0.05cm}-1\hspace{-0.03cm},\hspace{-0.05cm}+1)\hspace{0.05cm}.$$
 
\underline{x}_3 \hspace{-0.05cm}=\hspace{-0.05cm} (-1\hspace{-0.03cm},\hspace{-0.05cm}-1\hspace{-0.03cm},\hspace{-0.05cm}+1)\hspace{0.05cm}.$$
  
In der Aufgabe verwenden wir meist die zweite (bipolare) Darstellung der Codesymbole: &nbsp; $x_i &#8712; \{+1, -1\}$.
+
In the exercise we mostly use the second (bipolar) representation of the code symbols: &nbsp;  
 +
:$$x_i &#8712; \{+1, -1\}.$$
  
*Es ist nicht so, dass der&nbsp; $\rm SPC \, (3, \, 2, \, 2)$&nbsp; von großem praktischen Interesse wäre, da zum Beispiel bei&nbsp; <i>Hard Decision</i>&nbsp; wegen&nbsp; $d_{\rm min} = 2$&nbsp; nur ein Fehler erkannt und kein einziger korrigiert werden kann. Der Code ist aber wegen des überschaubaren Aufwands für Übungs&ndash; und Demonstrationszwecke gut geeignet.
+
Note:
*Mit&nbsp; ''iterativer symbolweiser Decodierung''&nbsp; kann man auch einen Fehler korrigieren. Beim vorliegenden Code müssen die extrinsischen&nbsp; $L$&ndash;Werte&nbsp; $\underline{L}_{\rm E} = \big (L_{\rm E}(1), \ L_{\rm E}(2), \ L_{\rm E}(3)\big )$&nbsp; entsprechend der folgenden Gleichung berechnet werden.
+
#It is not that the&nbsp; $\rm SPC \, (3, \, 2, \, 2)$&nbsp; would be of much practical interest,&nbsp; since,&nbsp; for example,&nbsp; in&nbsp; "hard decision"&nbsp; because of&nbsp; $d_{\rm min} = 2$&nbsp; only one error can be detected and none can be corrected.  
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} \right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm}  \hspace{0.05cm}\right ]}.$$
+
#However,&nbsp; the code is well suited for demonstration purposes because of the manageable effort involved.
 +
#With&nbsp; "iterative symbol-wise decoding"&nbsp; one can also correct one error.  
 +
#In the present code,&nbsp; the extrinsic&nbsp; $L$&ndash;values&nbsp; $\underline{L}_{\rm E} = \big (L_{\rm E}(1), \ L_{\rm E}(2), \ L_{\rm E}(3)\big )$&nbsp; must be calculated according to the following equation:
 +
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \hspace{0.05cm} \right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} \hspace{0.05cm}  \hspace{0.05cm}\right ]}.$$
  
:Hierbei bezeichnet&nbsp; $\underline{x}^{(-1)}$&nbsp; alle Symbole mit Ausnahme von&nbsp; $x_i$&nbsp; und ist somit ein Vektor der Länge&nbsp; $n - 1 = 2$.
+
:Here&nbsp; $\underline{x}^{(-1)}$&nbsp; denotes all symbols except&nbsp; $x_i$&nbsp; and is thus a vector of length&nbsp; $n - 1 = 2$.
  
  
Als den&nbsp; '''ersten $L_{\rm E}(i)$&ndash;Ansatz'''&nbsp; bezeichnen wir die Vorgehensweise entsprechend den Gleichungen
+
&rArr; &nbsp; As the&nbsp; &raquo;'''first $L_{\rm E}(i)$ approach'''&laquo;&nbsp; we refer to the approach corresponding to the equations
 
:$$L_{\rm E}(1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \left [{\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) \right ] \hspace{0.05cm},$$
 
:$$L_{\rm E}(1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \left [{\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) \right ] \hspace{0.05cm},$$
 
:$$L_{\rm E}(2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \left [{\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) \right ] \hspace{0.05cm},$$
 
:$$L_{\rm E}(2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \left [{\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) \right ] \hspace{0.05cm},$$
 
:$$L_{\rm E}(3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \left [{\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) \right ] \hspace{0.05cm}.$$
 
:$$L_{\rm E}(3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \left [{\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) \right ] \hspace{0.05cm}.$$
  
'''(1)'''&nbsp; Dieser&nbsp; $L_{\rm E}(i)$&ndash;Ansatz liegt der obigen Ergebnistabelle (rote Einträge) zugrunde, wobei von folgenden Aposteriori&ndash;$L$&ndash;Werten ausgegangen wird:
+
'''(1)'''&nbsp; This&nbsp; $L_{\rm E}(i)$&nbsp; approach underlies the results table above&nbsp; $($red entries$)$,&nbsp; assuming the following a-posteriori $L$&ndash;values:
:$$\underline {L}_{\rm APP} = (+1.0\hspace{0.05cm},\hspace{0.05cm}+0.4\hspace{0.05cm},\hspace{0.05cm}-1.0)  \hspace{0.5cm}{\rm kurz\hspace{-0.1cm}:}\hspace{0.25cm}
+
:$$\underline {L}_{\rm APP} = (+1.0\hspace{0.05cm},\hspace{0.05cm}+0.4\hspace{0.05cm},\hspace{0.05cm}-1.0)  \hspace{0.5cm}\Rightarrow \hspace{0.5cm}
L_1 = +1.0\hspace{0.05cm},\hspace{0.05cm}
+
L_1 = +1.0\hspace{0.05cm},\hspace{0.15cm}
L_2 = +0.4\hspace{0.05cm},\hspace{0.05cm}  
+
L_2 = +0.4\hspace{0.05cm},\hspace{0.15cm}  
 
L_3 = -1.0\hspace{0.05cm}.$$
 
L_3 = -1.0\hspace{0.05cm}.$$
  
'''(2)'''&nbsp; Die extrinsischen&nbsp; $L$&ndash;Werte für die nullte Iteration ergeben sich zu&nbsp; (Herleitung in&nbsp; [[Aufgaben:Aufgabe_4.5Z:_Tangens_Hyperbolikus_und_Inverse|Aufgabe 4.5Z]]):  
+
'''(2)'''&nbsp; The extrinsic&nbsp; $L$&ndash;values for the zeroth iteration result in&nbsp; $($derivation in&nbsp; [[Aufgaben:Exercise_4.5Z:_Tangent_Hyperbolic_and_Inverse|$\text{Exercise 4.5Z})$]]:  
 
:$$L_{\rm E}(1) = -0.1829, \ L_{\rm E}(2) = -0.4337, \  L_{\rm E}(3) = +0.1829.$$  
 
:$$L_{\rm E}(1) = -0.1829, \ L_{\rm E}(2) = -0.4337, \  L_{\rm E}(3) = +0.1829.$$  
  
'''(3)'''&nbsp; Die Aposteriori&ndash;Werte zu Beginn der ersten Iteration sind somit
+
'''(3)'''&nbsp; The a-posteriori&nbsp; $L$&ndash;values at the beginning of the first iteration are thus
:$$\underline{L}^{(I=1)} = \underline{L}^{(I=0)}  + \underline{L}_{\hspace{0.02cm}\rm E}^{(I=0)}  =  
+
:$$\underline{L_{\rm APP} }^{(I=1)} = \underline{L_{\rm APP} }^{(I=0)}  + \underline{L}_{\hspace{0.02cm}\rm E}^{(I=0)}  =  
 
(+0.8171\hspace{0.05cm},\hspace{0.05cm}-0.0337\hspace{0.05cm},\hspace{0.05cm}-0.8171)  
 
(+0.8171\hspace{0.05cm},\hspace{0.05cm}-0.0337\hspace{0.05cm},\hspace{0.05cm}-0.8171)  
 
\hspace{0.05cm} .  $$
 
\hspace{0.05cm} .  $$
  
'''(4)'''&nbsp; Daraus ergeben sich die neuen extrinsischen Werte für die Iterationsschleife&nbsp; $I = 1$&nbsp; wie folgt:
+
'''(4)'''&nbsp; From this,&nbsp; the new extrinsic&nbsp; $L$&ndash;values for the iteration loop&nbsp; $I = 1$&nbsp; are as follows:
 
:$$L_{\rm E}(1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(-0.0337/2) \cdot {\rm tanh}(-0.8171/2) \big ] = 0.0130 = -L_{\rm E}(3)\hspace{0.05cm},$$
 
:$$L_{\rm E}(1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(-0.0337/2) \cdot {\rm tanh}(-0.8171/2) \big ] = 0.0130 = -L_{\rm E}(3)\hspace{0.05cm},$$
 
:$$L_{\rm E}(2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(+0.8171/2) \cdot {\rm tanh}(-0.8171/2) \big ]  = - 0.3023\hspace{0.05cm}.$$
 
:$$L_{\rm E}(2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(+0.8171/2) \cdot {\rm tanh}(-0.8171/2) \big ]  = - 0.3023\hspace{0.05cm}.$$
  
Weiter erkennt man aus der obigen Tabelle:
+
Further,&nbsp; one can see from the above table:
* Eine harte Entscheidung gemäß den Vorzeichen vor der ersten Iteration&nbsp; $(I = 0)$ scheitert, da&nbsp; $(+1, +1, -1)$&nbsp; kein gültiges&nbsp; $\rm SPC \, (3, \, 2, \, 2)$&ndash;Codewort ist.
+
* A hard decision according to the signs before the first iteration&nbsp; $(I = 0)$ fails,&nbsp; since&nbsp; $(+1, +1, -1)$&nbsp; is not a valid&nbsp; $\rm SPC \, (3, \, 2, \, 2)$&nbsp; code word.
* Aber schon nach&nbsp; $I = 1$&nbsp; Iterationen liefert eine harte Entscheidung ein gültiges Codewort, nämlich&nbsp; $\underline{x}_2 = (+1, -1, -1)$. Auch in späteren Grafiken sind die Zeilen mit erstmals richtigen HD&ndash;Entscheidungen blau hinterlegt.
+
 
* Harte Entscheidungen nach weiteren Iterationen&nbsp; $(I &#8805; 2)$&nbsp; führen jeweils zum gleichen Codewort&nbsp; $\underline{x}_2$. Diese Aussage gilt nicht nur für dieses Beispiel, sondern ganz allgemein.
+
* But already after&nbsp; $I = 1$&nbsp; iterations,&nbsp; a hard decision yields a valid code word,&nbsp; namely&nbsp; $\underline{x}_2 = (+1, -1, -1)$.  
 +
 
 +
*Also in later graphs,&nbsp; the rows with correct hard decisions for the first time are highlighted in blue.
 +
 
 +
* Hard decisions after further iterations&nbsp; $(I &#8805; 2)$&nbsp; each lead to the same code word&nbsp; $\underline{x}_2$. This statement is not only valid for this example, but in general.
 +
 
 +
 
 +
Besides,&nbsp; in this exercise we consider a&nbsp; &raquo;'''second $L_{\rm E}(i)$ approach'''&laquo;,&nbsp; which is given here for the example of the first symbol&nbsp; $(i = 1)$:
 +
:$${\rm sign} \big[L_{\rm E}(1)\big] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm sign} \big[L_{\rm E}(2)\big] \cdot {\rm sign} \big[L_{\rm E}(3)\big]\hspace{0.05cm},$$
 +
:$$|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \left ( |L_{\rm E}(2)|\hspace{0.05cm}, \hspace{0.05cm}|L_{\rm E}(3)| \right )  \hspace{0.05cm}.$$
 +
 
 +
This second approach is based on the assumption that the reliability of&nbsp; $L_{\rm E}(i)$&nbsp; is essentially determined by the most unreliable neighbor symbol.&nbsp; The better&nbsp; $($larger$)$&nbsp; the input log likelihood ratio is completely disregarded.  
 +
 
 +
Let us consider two examples for this:
 +
 
 +
 
 +
'''(1)'''&nbsp; For&nbsp; $L_2 = 1.0$&nbsp; and&nbsp; $L_3 = 5.0$&nbsp; we get
 +
* after the first approach: &nbsp; $L_{\rm E}(1) =2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(0.5) \cdot {\rm tanh}(2.5) \big ] =2 \cdot {\rm tanh}^{-1}(0.4559) = 0.984\hspace{0.05cm},$
  
 +
* according to the second approach: &nbsp; $|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \big ( 1.0\hspace{0.05cm}, \hspace{0.05cm}5.0 \big )  = 1.000 \hspace{0.05cm}.$
  
Daneben betrachten wir in dieser Aufgabe einen '''zweiten $L_{\rm E}(i)$&ndash;Ansatz''', der hier am Beispiel für das erste Symbol $(i = 1)$ angegeben wird:
 
:$${\rm sign} \big[L_{\rm E}(1)\big] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm sign} \big[L_{\rm E}(2)\big] \cdot {\rm sign} \big[L_{\rm E}(3)\big]\hspace{0.05cm},\hspace{0.8cm}
 
|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \left ( |L_{\rm E}(2)|\hspace{0.05cm}, \hspace{0.05cm}|L_{\rm E}(3)| \right )  \hspace{0.05cm}.$$
 
  
Dieser zweite Ansatz basiert auf der Annahme, dass die Zuverlässigkeit von&nbsp; $L_{\rm E}(i)$&nbsp; im wesentlichen durch das unzuverlässigste Nachbarsymbol bestimmt wird. Das bessere (größere) Eingangs&ndash;LLR wird dabei völlig außer Acht gelassen. &ndash; Betrachten wir hierzu zwei Beispiele:
+
'''(2)'''&nbsp; On the other hand one obtains for&nbsp; $L_2 = L_3 = 1.0$
 +
* according to the first approach: &nbsp; $L_{\rm E}(1) =2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(0.5) \cdot {\rm tanh}(0.5) \big ] =2 \cdot {\rm tanh}^{-1}(0.2135) = 0.433\hspace{0.05cm},$
  
'''(1)'''&nbsp; Für&nbsp; $L_2 = 1.0$&nbsp; und&nbsp; $L_3 = 5.0$&nbsp; ergibt sich beispielsweise
+
* according to the second approach: &nbsp; $|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \big ( 1.0\hspace{0.05cm}, \hspace{0.05cm}1.0 \big )  = 1.000 \hspace{0.05cm}.$
* nach dem ersten Ansatz: &nbsp; $L_{\rm E}(1) =2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(0.5) \cdot {\rm tanh}(2.5) \big ]  =2 \cdot {\rm tanh}^{-1}(0.4559) = 0.984\hspace{0.05cm},$
 
* nach dem zweiten Ansatz: &nbsp; $|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \big ( 1.0\hspace{0.05cm}, \hspace{0.05cm}5.0 \big )  = 1.000 \hspace{0.05cm}.$
 
  
  
'''(2)'''&nbsp; Dagegen erhält man für&nbsp; $L_2 = L_3 = 1.0$
+
One can see the clear discrepancy between the two approaches.&nbsp; The second approach&nbsp; $($approximation$)$&nbsp; is clearly more positive than the first&nbsp; $($correct$)$&nbsp; approach. However,&nbsp; it is actually only important that the iterations lead to the desired decoding result.
* nach dem ersten Ansatz: &nbsp; $L_{\rm E}(1) =2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(0.5) \cdot {\rm tanh}(0.5) \big ]  =2 \cdot {\rm tanh}^{-1}(0.2135) = 0.433\hspace{0.05cm},$
 
* nach dem zweiten Ansatz: &nbsp; $|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \big ( 1.0\hspace{0.05cm}, \hspace{0.05cm}1.0 \big )  = 1.000 \hspace{0.05cm}.$
 
  
  
Man erkennt die deutliche Diskrepanz zwischen beiden Ansätzen. Der zweite Ansatz (Näherung) ist deutlich positiver als der erste (richtige) Ansatz. Wichtig ist eigentlich aber nur, dass die Iterationen zum gewünschten Decodierergebnis führen.
 
  
  
  
 +
<u>Hints:</u>
 +
*The exercise belongs to the chapter&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder|"Soft&ndash;in Soft&ndash;out Decoder"]].
  
 +
*Referred to in particular&nbsp; [[Channel_Coding/Soft-in_Soft-Out_Decoder#Calculation_of_extrinsic_log_likelihood_ratios|"Calculation of extrinsic log likelihood ratios"]].
 +
 +
* Only the&nbsp; '''second solution approach'''&nbsp; is treated here.
  
''Hinweise:''
+
* For the first solution approach we refer to&nbsp; [[Aufgaben:Exercise_4.5Z:_Tangent_Hyperbolic_and_Inverse|$\text{Exercise 4.5Z}$]] .
* Die Aufgabe gehört zum Kapitel&nbsp; [[Channel_Coding/Soft%E2%80%93in_Soft%E2%80%93out_Decoder|Soft&ndash;in Soft&ndash;out Decoder]].
 
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Channel_Coding/Soft–in_Soft–out_Decoder#Zur_Berechnung_der_extrinsischen_L.E2.80.93Werte|Zur Berechnung der extrinsischen L&ndash;Werte]].
 
* Behandelt wird hier ausschließlich der&nbsp; '''zweite Lösungsansatz'''.
 
* Zum ersten Lösungsansatz verweisen wir auf die&nbsp; [[Aufgaben:Aufgabe_4.5Z:_Tangens_Hyperbolikus_und_Inverse|Aufgabe 4.5Z]] .
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Es gelte&nbsp; $\underline{L} = (+1.0, +0.4, -1.0)$. Ermitteln Sie die extrinsischen&nbsp; $L$&ndash;Werte nach dem '''zweiten&nbsp; $L_{\rm E}(i)$&ndash;Ansatz''' ohne vorherige Iteration&nbsp; $\underline{(I = 0)}$.
+
{It holds&nbsp; $\underline{L} = (+1.0, +0.4, -1.0)$.&nbsp; Determine the extrinsic&nbsp; $L$&ndash;values according to the&nbsp; '''second&nbsp; $L_{\rm E}(i)$&ndash;approach'''&nbsp; without previous iteration&nbsp; $\underline{(I = 0)}$.
 
|type="{}"}
 
|type="{}"}
 
$L_{\rm E}(1) \ = \ ${ -0.412--0.388 }
 
$L_{\rm E}(1) \ = \ ${ -0.412--0.388 }
Line 93: Line 111:
 
$L_{\rm E}(3) \ = \ ${ 0.4 3% }
 
$L_{\rm E}(3) \ = \ ${ 0.4 3% }
  
{Wie lauten die Aposteriori&ndash;$L$&ndash;Werte für die erste Iteration&nbsp; $\underline{(I = 1)}$?
+
{What are the a-posteriori $L$&ndash;values&nbsp; $L_i = L_{\rm APP} (i)$&nbsp; for the first iteration&nbsp; $\underline{(I = 1)}$?
 
|type="{}"}
 
|type="{}"}
$L_(1) \ = \ ${ 0.6 3% }
+
$L_1 \ = \ ${ 0.6 3% }
$L_(2) \ = \ ${ -0.618--0.582 }
+
$L_2 \ = \ ${ -0.618--0.582 }
$L_(3) \ = \ ${ -0.618--0.582 }
+
$L_3 \ = \ ${ -0.618--0.582 }
  
{Welcher der folgenden Aussagen gelten für&nbsp; $\underline{L} = (+1.0, +0.4, -1.0)$?
+
{Which of the following statements are true for&nbsp; $\underline{L} = (+1.0, +0.4, -1.0)$?
 
|type="[]"}
 
|type="[]"}
+ <i>Hard Decision</i>&nbsp; nach&nbsp; $I = 1$&nbsp; führt zum Codewort&nbsp; $\underline{x}_1 = (+1, -1, -1)$.
+
+ Hard decision&nbsp; after&nbsp; $I = 1$&nbsp; leads to the code word&nbsp; $\underline{x}_1 = (+1, -1, -1)$.
+ Daran ändert sich auch nach weiteren Iterationen nichts.
+
+ This does not change after further iterations.
- Weitere Iterationen erhöhen die Zuverlässigkeit für&nbsp; $\underline{x}_1$&nbsp; nicht.
+
- Further iterations do not increase the reliability for&nbsp; $\underline{x}_1$&nbsp;.
  
{Welche der folgenden Aussagen gelten für&nbsp; $\underline{L} = (+0.6, +1.0, -0.4)$?
+
{Which of the following statements are true for&nbsp; $\underline{L} = (+0.6, +1.0, -0.4)$?
 
|type="[]"}
 
|type="[]"}
+ Die iterative Decodierung führt zum Ergebnis&nbsp; $\underline{x}_0 = (+1, +1, +1)$.
+
+ The iterative decoding leads to the result&nbsp; $\underline{x}_0 = (+1, +1, +1)$.
- Die iterative Decodierung führt zum Ergebnis&nbsp; $\underline{x}_2 = (-1, +1, -1)$.
+
- The iterative decoding leads to the result&nbsp; $\underline{x}_2 = (-1, +1, -1)$.
+ Dieses Ergebnis liefert auch <i>Hard Decision</i> ab&nbsp; $I = 1$.
+
+ Hard decision also returns this result for&nbsp; $I \ge 1$.
  
{Welche der folgenden Aussagen gelten für&nbsp; $\underline{L} = (+0.6, +1.0, -0.8)$?
+
{Which of the following statements are true for&nbsp; $\underline{L} = (+0.6, +1.0, -0.8)$?
 
|type="[]"}
 
|type="[]"}
- Die iterative Decodierung führt zum Ergebnis&nbsp; $\underline{x}_0 = (+1, +1, +1)$.
+
- The iterative decoding leads to the result&nbsp; $\underline{x}_0 = (+1, +1, +1)$.
+ Die iterative Decodierung führt zum Ergebnis&nbsp; $\underline{x}_2 = (-1, +1, -1)$.
+
+ The iterative decoding leads to the result&nbsp; $\underline{x}_2 = (-1, +1, -1)$.
+ Dieses Ergebnis liefert auch <i>Hard Decision</i> ab&nbsp; $I = 1$.
+
+ Hard decision also returns this result for&nbsp; $I \ge 1$.
  
{Welche der folgenden Aussagen gelten für&nbsp; $\underline{L} = (+0.6, +1.0, -0.6)$?
+
{Which of the following statements are true for&nbsp; $\underline{L} = (+0.6, +1.0, -0.6)$?
 
|type="[]"}
 
|type="[]"}
- Die iterative Decodierung führt zum Ergebnis&nbsp; $\underline{x}_0 = (+1, +1, +1)$.
+
- Iterative decoding leads to the result&nbsp; $\underline{x}_0 = (+1, +1, +1)$.
- Die iterative Decodierung führt zum Ergebnis&nbsp; $\underline{x}_2 = (-1, +1, -1)$.
+
- The iterative decoding leads to the result&nbsp; $\underline{x}_2 = (-1, +1, -1)$.
+ Die iterative Decodierung führt hier nicht zum Ziel.
+
+ The iterative decoding does not lead to the result here.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID3027__KC_A_4_5a_v2.png|right|frame|Ergebnisse für&nbsp; $\underline{L}=(+1.0, +0.4, –1.0)$]]  
+
[[File:P_ID3027__KC_A_4_5a_v2.png|right|frame|Results for&nbsp; $\underline{L}=(+1.0, +0.4, –1.0)$]]  
'''(1)'''&nbsp; Entsprechend dem zweiten $L_{\rm E}(i)$&ndash;Ansatz gilt:
+
'''(1)'''&nbsp; According to the second&nbsp; $L_{\rm E}(i)$&nbsp; approach holds:
 
:$${\rm sign} [L_{\rm E}(1)] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm sign} [L_{\rm E}(2)] \cdot {\rm sign} [L_{\rm E}(3)] = -1 \hspace{0.05cm},$$
 
:$${\rm sign} [L_{\rm E}(1)] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm sign} [L_{\rm E}(2)] \cdot {\rm sign} [L_{\rm E}(3)] = -1 \hspace{0.05cm},$$
:$$|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \left ( |L_{\rm E}(2)|\hspace{0.05cm}, \hspace{0.05cm}|L_{\rm E}(3)| \right )  = {\rm Min} \left ( 0.4\hspace{0.05cm}, \hspace{0.05cm}1.0 \right ) = 0.4\hspace{0.3cm}
+
:$$|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \left ( |L_{\rm E}(2)|\hspace{0.05cm}, \hspace{0.05cm}|L_{\rm E}(3)| \right )  = {\rm Min} \left ( 0.4\hspace{0.05cm}, \hspace{0.05cm}1.0 \right ) = 0.4$$
\Rightarrow \hspace{0.3cm}L_{\rm E}(1) \hspace{0.15cm} \underline{-0.4}\hspace{0.05cm}.$$
+
:$$\Rightarrow \hspace{0.3cm}L_{\rm E}(1) \hspace{0.15cm} \underline{-0.4}\hspace{0.05cm}.$$
  
*In gleicher Weise erhält man:
+
*In the same way you get:
:$$L_{\rm E}(2) \hspace{0.15cm} \underline{-1.0}\hspace{0.05cm}, \hspace{0.3cm}
+
:$$L_{\rm E}(2) \hspace{0.15cm} \underline{-1.0}\hspace{0.05cm}, $$
L_{\rm E}(3) \hspace{0.15cm} \underline{+0.4}\hspace{0.05cm}.$$
+
:$$L_{\rm E}(3) \hspace{0.15cm} \underline{+0.4}\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Die Aposteriori&ndash;$L$&ndash;Werte zu Beginn der ersten Iteration $(I = 1)$ ergeben sich aus der Summe der bisherigen $L$&ndash;Werte (für $I = 0$) und den unter (1) berechneten extrinsischen Werten:
+
'''(2)'''&nbsp; The a-posteriori&nbsp; $L$&ndash;values at the beginning of the first iteration&nbsp; $(I = 1)$&nbsp; are the sum
 +
*of the previous&nbsp; $L$&ndash;values&nbsp; $($for&nbsp; $I = 0$)&nbsp;
 +
*and the extrinsic values calculated in subtask&nbsp; '''(1)''':
 
:$$L_1 = L_{\rm APP}(1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1.0 + (-0.4)\hspace{0.15cm} \underline{=+0.6}\hspace{0.05cm},$$
 
:$$L_1 = L_{\rm APP}(1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1.0 + (-0.4)\hspace{0.15cm} \underline{=+0.6}\hspace{0.05cm},$$
 
:$$L_2 = L_{\rm APP}(2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.4 + (-1.0)\hspace{0.15cm} \underline{=-0.6}\hspace{0.05cm},$$
 
:$$L_2 = L_{\rm APP}(2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.4 + (-1.0)\hspace{0.15cm} \underline{=-0.6}\hspace{0.05cm},$$
Line 143: Line 163:
  
  
'''(3)'''&nbsp; Wie aus obiger Tabelle hervorgeht, sind die <u>Lösungsvorschläge 1 und 2</u> richtig im Gegensatz zur Antwort 3:  
+
'''(3)'''&nbsp; As can be seen from the above table,&nbsp; the&nbsp; <u>solutions 1 and 2</u>&nbsp; are correct in contrast to answer 3:  
*Mit jeder neuen Iteration werden die Beträge von $L(1), \ L(2)$ und $L(3)$ signifikant größer.
+
*With each new iteration,&nbsp; the magnitudes of&nbsp; $L(1), \ L(2)$ and $L(3)$&nbsp; become significantly larger.
  
  
[[File:P_ID3030__KC_A_4_5d_v2.png|right|frame|Ergebnisse für&nbsp; $\underline{L}=(+0.6, +1.0, –0.4)$]]  
+
[[File:P_ID3030__KC_A_4_5d_v2.png|right|frame|Results for&nbsp; $\underline{L}=(+0.6, +1.0, –0.4)$]]  
'''(4)'''&nbsp; Wie aus nebenstehender Tabelle hervorgeht, sind <u>die Antworten 1 und 3</u> richtig:  
+
<br><br>
*Die Entscheidung fällt also für das Codewort $\underline{x}_0 = (+1, +1, +1)$.  
+
'''(4)'''&nbsp; As can be seen from the adjacent table,
*Ab $I = 1$ wäre dies auch die Entscheidung von <i>Hard Decision</i>.
+
&nbsp; the&nbsp; <u>answers 1 and 3</u>&nbsp; are correct:  
 +
*So the decision is made for the code word $\underline{x}_0 = (+1, +1, +1)$.
 +
 +
*From&nbsp; $I = 1$&nbsp; this would also be the decision of&nbsp; "hard decision".
 
<br clear=all>
 
<br clear=all>
[[File:P_ID3028__KC_A_4_5e_v2.png|right|frame|Ergebnisse für&nbsp; $\underline{L}=(+0.6, +1.0, –0.8)$]]
+
[[File:P_ID3028__KC_A_4_5e_v2.png|right|frame|Results for&nbsp; $\underline{L}=(+0.6, +1.0, –0.8)$]]
'''(5)'''&nbsp; Richtig sind die <u>Antworten 2 und 3</u>:
+
'''(5)'''&nbsp; Correct are the&nbsp; <u>answers 2 and 3</u>:
*Wegen $|L(3)| > |L(1)|$ gilt bereits ab $I = 1$: &nbsp; $L_1 < 0 \hspace{0.05cm},\hspace{0.2cm}
+
*Because of&nbsp; $|L(3)| > |L(1)|$&nbsp; the following is valid for $I /ge 1$: &nbsp; $L_1 < 0 \hspace{0.05cm},\hspace{0.2cm}
 
  L_2 > 0 \hspace{0.05cm},\hspace{0.2cm}
 
  L_2 > 0 \hspace{0.05cm},\hspace{0.2cm}
 
L_3 < 0 \hspace{0.05cm}.$
 
L_3 < 0 \hspace{0.05cm}.$
*Ab dieser Iterationsschleife liefert <i>Hard Decision</i> das Codewort $\underline{x}_2 = (-1, +1, -1)$.  
+
 
 +
*From this iteration loop,&nbsp; hard decision returns the code word&nbsp; $\underline{x}_2 = (-1, +1, -1)$.  
 
<br clear=all>
 
<br clear=all>
  [[File: P_ID3029__KC_A_4_5f_v1.png|right|frame|Ergebnisse für&nbsp; $\underline{L}=(+0.6, +1.0, –0.6)$]]  
+
  [[File: P_ID3029__KC_A_4_5f_v1.png|right|frame|Results for&nbsp; $\underline{L}=(+0.6, +1.0, –0.6)$]]  
'''(6)'''&nbsp; Richtig sind der <u>Lösungsvorschlag 3</u>:
+
'''(6)'''&nbsp; Correct is the&nbsp; <u>proposed solution 3</u>:
*Die nebenstehende Tabelle zeigt, dass unter der Voraussetzung $|L(1)| = |L(3)|$ ab der Iterationsschleife $I = 1$ alle extrinsischen $L$&ndash;Werte Null  sind.  
+
*The adjacent table shows that under the condition&nbsp; $|L(1)| = |L(3)|$,&nbsp; starting from the iteration loop&nbsp; $I = 1$,&nbsp; all extrinsic&nbsp; $L$&ndash;values are zero.  
*Damit bleiben die Aposteriori&ndash;$L$&ndash;Werte auch für $I > 1$ konstant gleich $\underline{L} = (0., +0.4, 0.)$, was keinem Codewort zugeordnet werden kann.
+
 
 +
*Thus,&nbsp; the a-posteriori&nbsp; $L$&ndash; values remain constantly equal to&nbsp; $\underline{L} = (0., +0.4, 0.)$&nbsp; even for&nbsp; $I > 1$,&nbsp; which cannot be assigned to any code word.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 17:06, 4 December 2022

Table for first  $L_{\rm E}(i)$  approach

We assume as in the  "theory section"  the  "single parity–check code"   $\rm SPC \, (3, \, 2, \, 2)$. 

The possible code words are  $\underline{x} \hspace{-0.01cm}\in \hspace{-0.01cm} \{ \underline{x}_0,\hspace{0.05cm} \underline{x}_1,\hspace{0.05cm} \underline{x}_2,\hspace{0.05cm} \underline{x}_3\}$  with

$$\underline{x}_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (0\hspace{-0.03cm},\hspace{0.05cm}0\hspace{-0.03cm},\hspace{0.05cm}0)\hspace{0.35cm}{\rm resp. } \hspace{0.35cm} \underline{x}_0 \hspace{-0.05cm}=\hspace{-0.05cm} (+1\hspace{-0.03cm},\hspace{-0.05cm}+1\hspace{-0.03cm},\hspace{-0.05cm}+1)\hspace{0.05cm},$$
$$\underline{x}_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (0\hspace{-0.03cm},\hspace{0.05cm}1\hspace{-0.03cm},\hspace{0.05cm}1)\hspace{0.35cm}{\rm resp. } \hspace{0.35cm} \underline{x}_1 \hspace{-0.05cm}=\hspace{-0.05cm} (+1\hspace{-0.03cm},\hspace{-0.05cm}-1\hspace{-0.03cm},\hspace{-0.05cm}-1)\hspace{0.05cm},$$
$$\underline{x}_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1\hspace{-0.03cm},\hspace{0.05cm}0\hspace{-0.03cm},\hspace{0.05cm}1)\hspace{0.35cm}{\rm resp. } \hspace{0.35cm} \underline{x}_2 \hspace{-0.05cm}=\hspace{-0.05cm} (-1\hspace{-0.03cm},\hspace{-0.05cm}+1\hspace{-0.03cm},\hspace{-0.05cm}-1)\hspace{0.05cm},$$
$$\underline{x}_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1\hspace{-0.03cm},\hspace{0.05cm}1\hspace{-0.03cm},\hspace{0.05cm}0)\hspace{0.35cm}{\rm resp. } \hspace{0.35cm} \underline{x}_3 \hspace{-0.05cm}=\hspace{-0.05cm} (-1\hspace{-0.03cm},\hspace{-0.05cm}-1\hspace{-0.03cm},\hspace{-0.05cm}+1)\hspace{0.05cm}.$$

In the exercise we mostly use the second (bipolar) representation of the code symbols:  

$$x_i ∈ \{+1, -1\}.$$

Note:

  1. It is not that the  $\rm SPC \, (3, \, 2, \, 2)$  would be of much practical interest,  since,  for example,  in  "hard decision"  because of  $d_{\rm min} = 2$  only one error can be detected and none can be corrected.
  2. However,  the code is well suited for demonstration purposes because of the manageable effort involved.
  3. With  "iterative symbol-wise decoding"  one can also correct one error.
  4. In the present code,  the extrinsic  $L$–values  $\underline{L}_{\rm E} = \big (L_{\rm E}(1), \ L_{\rm E}(2), \ L_{\rm E}(3)\big )$  must be calculated according to the following equation:
$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \hspace{0.05cm} \right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} \hspace{0.05cm} \hspace{0.05cm}\right ]}.$$
Here  $\underline{x}^{(-1)}$  denotes all symbols except  $x_i$  and is thus a vector of length  $n - 1 = 2$.


⇒   As the  »first $L_{\rm E}(i)$ approach«  we refer to the approach corresponding to the equations

$$L_{\rm E}(1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \left [{\rm tanh}(L_2/2) \cdot {\rm tanh}(L_3/2) \right ] \hspace{0.05cm},$$
$$L_{\rm E}(2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \left [{\rm tanh}(L_1/2) \cdot {\rm tanh}(L_3/2) \right ] \hspace{0.05cm},$$
$$L_{\rm E}(3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \left [{\rm tanh}(L_1/2) \cdot {\rm tanh}(L_2/2) \right ] \hspace{0.05cm}.$$

(1)  This  $L_{\rm E}(i)$  approach underlies the results table above  $($red entries$)$,  assuming the following a-posteriori $L$–values:

$$\underline {L}_{\rm APP} = (+1.0\hspace{0.05cm},\hspace{0.05cm}+0.4\hspace{0.05cm},\hspace{0.05cm}-1.0) \hspace{0.5cm}\Rightarrow \hspace{0.5cm} L_1 = +1.0\hspace{0.05cm},\hspace{0.15cm} L_2 = +0.4\hspace{0.05cm},\hspace{0.15cm} L_3 = -1.0\hspace{0.05cm}.$$

(2)  The extrinsic  $L$–values for the zeroth iteration result in  $($derivation in  $\text{Exercise 4.5Z})$:

$$L_{\rm E}(1) = -0.1829, \ L_{\rm E}(2) = -0.4337, \ L_{\rm E}(3) = +0.1829.$$

(3)  The a-posteriori  $L$–values at the beginning of the first iteration are thus

$$\underline{L_{\rm APP} }^{(I=1)} = \underline{L_{\rm APP} }^{(I=0)} + \underline{L}_{\hspace{0.02cm}\rm E}^{(I=0)} = (+0.8171\hspace{0.05cm},\hspace{0.05cm}-0.0337\hspace{0.05cm},\hspace{0.05cm}-0.8171) \hspace{0.05cm} . $$

(4)  From this,  the new extrinsic  $L$–values for the iteration loop  $I = 1$  are as follows:

$$L_{\rm E}(1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(-0.0337/2) \cdot {\rm tanh}(-0.8171/2) \big ] = 0.0130 = -L_{\rm E}(3)\hspace{0.05cm},$$
$$L_{\rm E}(2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(+0.8171/2) \cdot {\rm tanh}(-0.8171/2) \big ] = - 0.3023\hspace{0.05cm}.$$

Further,  one can see from the above table:

  • A hard decision according to the signs before the first iteration  $(I = 0)$ fails,  since  $(+1, +1, -1)$  is not a valid  $\rm SPC \, (3, \, 2, \, 2)$  code word.
  • But already after  $I = 1$  iterations,  a hard decision yields a valid code word,  namely  $\underline{x}_2 = (+1, -1, -1)$.
  • Also in later graphs,  the rows with correct hard decisions for the first time are highlighted in blue.
  • Hard decisions after further iterations  $(I ≥ 2)$  each lead to the same code word  $\underline{x}_2$. This statement is not only valid for this example, but in general.


Besides,  in this exercise we consider a  »second $L_{\rm E}(i)$ approach«,  which is given here for the example of the first symbol  $(i = 1)$:

$${\rm sign} \big[L_{\rm E}(1)\big] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm sign} \big[L_{\rm E}(2)\big] \cdot {\rm sign} \big[L_{\rm E}(3)\big]\hspace{0.05cm},$$
$$|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \left ( |L_{\rm E}(2)|\hspace{0.05cm}, \hspace{0.05cm}|L_{\rm E}(3)| \right ) \hspace{0.05cm}.$$

This second approach is based on the assumption that the reliability of  $L_{\rm E}(i)$  is essentially determined by the most unreliable neighbor symbol.  The better  $($larger$)$  the input log likelihood ratio is completely disregarded.

Let us consider two examples for this:


(1)  For  $L_2 = 1.0$  and  $L_3 = 5.0$  we get

  • after the first approach:   $L_{\rm E}(1) =2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(0.5) \cdot {\rm tanh}(2.5) \big ] =2 \cdot {\rm tanh}^{-1}(0.4559) = 0.984\hspace{0.05cm},$
  • according to the second approach:   $|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \big ( 1.0\hspace{0.05cm}, \hspace{0.05cm}5.0 \big ) = 1.000 \hspace{0.05cm}.$


(2)  On the other hand one obtains for  $L_2 = L_3 = 1.0$

  • according to the first approach:   $L_{\rm E}(1) =2 \cdot {\rm tanh}^{-1} \big [{\rm tanh}(0.5) \cdot {\rm tanh}(0.5) \big ] =2 \cdot {\rm tanh}^{-1}(0.2135) = 0.433\hspace{0.05cm},$
  • according to the second approach:   $|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \big ( 1.0\hspace{0.05cm}, \hspace{0.05cm}1.0 \big ) = 1.000 \hspace{0.05cm}.$


One can see the clear discrepancy between the two approaches.  The second approach  $($approximation$)$  is clearly more positive than the first  $($correct$)$  approach. However,  it is actually only important that the iterations lead to the desired decoding result.



Hints:

  • Only the  second solution approach  is treated here.



Questions

1

It holds  $\underline{L} = (+1.0, +0.4, -1.0)$.  Determine the extrinsic  $L$–values according to the  second  $L_{\rm E}(i)$–approach  without previous iteration  $\underline{(I = 0)}$.

$L_{\rm E}(1) \ = \ $

$L_{\rm E}(2) \ = \ $

$L_{\rm E}(3) \ = \ $

2

What are the a-posteriori $L$–values  $L_i = L_{\rm APP} (i)$  for the first iteration  $\underline{(I = 1)}$?

$L_1 \ = \ $

$L_2 \ = \ $

$L_3 \ = \ $

3

Which of the following statements are true for  $\underline{L} = (+1.0, +0.4, -1.0)$?

Hard decision  after  $I = 1$  leads to the code word  $\underline{x}_1 = (+1, -1, -1)$.
This does not change after further iterations.
Further iterations do not increase the reliability for  $\underline{x}_1$ .

4

Which of the following statements are true for  $\underline{L} = (+0.6, +1.0, -0.4)$?

The iterative decoding leads to the result  $\underline{x}_0 = (+1, +1, +1)$.
The iterative decoding leads to the result  $\underline{x}_2 = (-1, +1, -1)$.
Hard decision also returns this result for  $I \ge 1$.

5

Which of the following statements are true for  $\underline{L} = (+0.6, +1.0, -0.8)$?

The iterative decoding leads to the result  $\underline{x}_0 = (+1, +1, +1)$.
The iterative decoding leads to the result  $\underline{x}_2 = (-1, +1, -1)$.
Hard decision also returns this result for  $I \ge 1$.

6

Which of the following statements are true for  $\underline{L} = (+0.6, +1.0, -0.6)$?

Iterative decoding leads to the result  $\underline{x}_0 = (+1, +1, +1)$.
The iterative decoding leads to the result  $\underline{x}_2 = (-1, +1, -1)$.
The iterative decoding does not lead to the result here.


Solution

Results for  $\underline{L}=(+1.0, +0.4, –1.0)$

(1)  According to the second  $L_{\rm E}(i)$  approach holds:

$${\rm sign} [L_{\rm E}(1)] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm sign} [L_{\rm E}(2)] \cdot {\rm sign} [L_{\rm E}(3)] = -1 \hspace{0.05cm},$$
$$|L_{\rm E}(1)| \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Min} \left ( |L_{\rm E}(2)|\hspace{0.05cm}, \hspace{0.05cm}|L_{\rm E}(3)| \right ) = {\rm Min} \left ( 0.4\hspace{0.05cm}, \hspace{0.05cm}1.0 \right ) = 0.4$$
$$\Rightarrow \hspace{0.3cm}L_{\rm E}(1) \hspace{0.15cm} \underline{-0.4}\hspace{0.05cm}.$$
  • In the same way you get:
$$L_{\rm E}(2) \hspace{0.15cm} \underline{-1.0}\hspace{0.05cm}, $$
$$L_{\rm E}(3) \hspace{0.15cm} \underline{+0.4}\hspace{0.05cm}.$$


(2)  The a-posteriori  $L$–values at the beginning of the first iteration  $(I = 1)$  are the sum

  • of the previous  $L$–values  $($for  $I = 0$) 
  • and the extrinsic values calculated in subtask  (1):
$$L_1 = L_{\rm APP}(1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1.0 + (-0.4)\hspace{0.15cm} \underline{=+0.6}\hspace{0.05cm},$$
$$L_2 = L_{\rm APP}(2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.4 + (-1.0)\hspace{0.15cm} \underline{=-0.6}\hspace{0.05cm},$$
$$L_3 = L_{\rm APP}(3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (-1.0) + 0.4\hspace{0.15cm} \underline{=-0.6}\hspace{0.05cm}.$$


(3)  As can be seen from the above table,  the  solutions 1 and 2  are correct in contrast to answer 3:

  • With each new iteration,  the magnitudes of  $L(1), \ L(2)$ and $L(3)$  become significantly larger.


Results for  $\underline{L}=(+0.6, +1.0, –0.4)$



(4)  As can be seen from the adjacent table,   the  answers 1 and 3  are correct:

  • So the decision is made for the code word $\underline{x}_0 = (+1, +1, +1)$.
  • From  $I = 1$  this would also be the decision of  "hard decision".


Results for  $\underline{L}=(+0.6, +1.0, –0.8)$

(5)  Correct are the  answers 2 and 3:

  • Because of  $|L(3)| > |L(1)|$  the following is valid for $I /ge 1$:   $L_1 < 0 \hspace{0.05cm},\hspace{0.2cm} L_2 > 0 \hspace{0.05cm},\hspace{0.2cm} L_3 < 0 \hspace{0.05cm}.$
  • From this iteration loop,  hard decision returns the code word  $\underline{x}_2 = (-1, +1, -1)$.


Results for  $\underline{L}=(+0.6, +1.0, –0.6)$

(6)  Correct is the  proposed solution 3:

  • The adjacent table shows that under the condition  $|L(1)| = |L(3)|$,  starting from the iteration loop  $I = 1$,  all extrinsic  $L$–values are zero.
  • Thus,  the a-posteriori  $L$– values remain constantly equal to  $\underline{L} = (0., +0.4, 0.)$  even for  $I > 1$,  which cannot be assigned to any code word.