Difference between revisions of "Aufgaben:Exercise 4.5Z: Simple Phase Modulator"

From LNTwww
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion
+
{{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function
 
}}
 
}}
  
[[File:P_ID757__Sig_Z_4_5.png|right|frame|Modell des betrachteten Phasenmodulators]]
+
[[File:P_ID757__Sig_Z_4_5.png|right|frame|Model of the considered phase modulator]]
Die Grafik zeigt eine recht einfache Anordnung zur Approximation eines Phasenmodulators. Alle Signale seien hierbei dimensionslose Größen.
+
The diagram shows a quite simple arrangement for approximating a phase modulator.  All signals are dimensionless.
  
Das sinusförmige Nachrichtensignal  $q(t)$  der Frequenz  $f_{\rm N} = 10 \ \text{kHz}$  wird mit dem Signal  $m(t)$  multipliziert, das sich aus dem cosinusförmigen Trägersignal  $z(t)$  durch Phasenverschiebung um  $\phi = 90^\circ$  ergibt:
+
The sinusoidal source signal  $q(t)$  of frequency  $f_{\rm N} = 10 \ \text{kHz}$  is multiplied by the signal  $m(t)$, which results from the cosinusoidal carrier signal  $z(t)$  by phase shifting by  $\phi = 90^\circ$ :
 
:$$m(t) =  {\cos} (  \omega_{\rm T} \cdot t + 90^\circ).$$
 
:$$m(t) =  {\cos} (  \omega_{\rm T} \cdot t + 90^\circ).$$
  
Anschließend wird das Signal  $z(t)$  mit der Frequenz  $f_{\rm T} = 1 \ \text{MHz}$  noch direkt addiert.
+
Then the signal  $z(t)$  with the frequency  $f_{\rm T} = 1 \ \text{MHz}$  is still added directly.
  
Zur Abkürzung werden in dieser Aufgabe auch verwendet:  
+
For abbreviation purposes, this task also uses:
*die Differenzfrequenz  $f_{\rm \Delta} = f_{\rm T} - f_{\rm N} = 0.99 \ \text{MHz}$,  
+
*the difference frequency  $f_{\rm \Delta} = f_{\rm T} - f_{\rm N} = 0.99 \ \text{MHz}$,  
*die Summenfrequenz  $f_{\rm \Sigma} = f_{\rm T} + f_{\rm N} = 1.01\  \text{MHz}$,  
+
*the sum frequency  $f_{\rm \Sigma} = f_{\rm T} + f_{\rm N} = 1.01\  \text{MHz}$,  
*die beiden Kreisfrequenzen  $\omega_{\rm \Delta} = 2\pi \cdot f_{\rm \Delta}$  und  $\omega_{\rm \Sigma} = 2\pi \cdot f_{\rm \Sigma}$.
+
*the two circular frequencies  $\omega_{\rm \Delta} = 2\pi \cdot f_{\rm \Delta}$  and  $\omega_{\rm \Sigma} = 2\pi \cdot f_{\rm \Sigma}$.
  
  
Line 20: Line 20:
  
  
 
+
''Hints:''  
 
+
*This exercise belongs to the chapter  [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]].
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel  [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
 
 
   
 
   
*Berücksichtigen Sie die trigonomischen Umformungen
+
*Consider the trigonomic transformations
 
:$$\sin(\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \sin(\alpha - \beta) + {1}/{2} \cdot \sin(\alpha + \beta),$$
 
:$$\sin(\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \sin(\alpha - \beta) + {1}/{2} \cdot \sin(\alpha + \beta),$$
 
:$$\sin(\alpha) \cdot \sin (\beta)= {1}/{2} \cdot \cos(\alpha - \beta) - {1}/{2} \cdot \cos(\alpha + \beta).$$
 
:$$\sin(\alpha) \cdot \sin (\beta)= {1}/{2} \cdot \cos(\alpha - \beta) - {1}/{2} \cdot \cos(\alpha + \beta).$$
Line 31: Line 29:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Gleichungen beschreiben&nbsp; $s(t)$&nbsp; in richtiger Weise?
+
{Which of the following equations correctly describe&nbsp; $s(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
+ $s(t) = \cos(\omega_{\rm T} \cdot t) - q(t) \cdot \sin(\omega_{\rm T} \cdot t)$.
 
+ $s(t) = \cos(\omega_{\rm T} \cdot t) - q(t) \cdot \sin(\omega_{\rm T} \cdot t)$.
Line 42: Line 40:
  
  
{Berechnen Sie das äquivalente Tiefpass-Signal&nbsp; $s_{\rm TP}(t)$. Welche Inphase– und Quadtraturkomponente ergeben sich zum Zeitpunkt&nbsp; $t = 0$?
+
{Calculate the equivalent low-pass signal&nbsp; $s_{\rm TP}(t)$.&nbsp; What are the inphase and quadrature components at time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm I}(t = 0)\ = \ $  { 1 3% }
 
$s_{\rm I}(t = 0)\ = \ $  { 1 3% }
Line 48: Line 46:
  
  
{Welche der folgenden Aussagen treffen für die Ortskurve&nbsp; $s_{\rm TP}(t)$ zu?
+
{Which of the following statements are true for the "Locality Curve"&nbsp; $s_{\rm TP}(t)$ zu?
|type="[]"}
+
|type="()"}
- Die Ortskurve ist ein Kreisbogen.
+
- The locality curve is a circular arc.
- Die Ortskurve ist eine horizontale Gerade.
+
- The locality curve is a horizontal straight line.
+ Die Ortskurve ist eine vertikale Gerade.
+
+ The locality curve is a vertical straight line.
 +
 
  
 +
{Calculate the magnitude&nbsp; $a(t)$, in particular its maximum and minimum values.
  
{Berechnen Sie den Betrag&nbsp; $a(t)$, insbesondere dessen Maximal– und Minimalwert.
 
 
|type="{}"}
 
|type="{}"}
 
$a_{\rm max}\ = \ $ { 1.414 3% }
 
$a_{\rm max}\ = \ $ { 1.414 3% }
Line 61: Line 60:
  
  
{Wie lautet die Phasenfunktion&nbsp; $\phi(t)$. Wie groß ist deren Maximalwert?
+
{What is the phase function&nbsp; $\phi(t)$.&nbsp;  What is its maximum value?
 
|type="{}"}
 
|type="{}"}
$\phi_{\rm max}\ = \ $ { 45 3% } &nbsp;$\text{Grad}$
+
$\phi_{\rm max}\ = \ $ { 45 3% } &nbsp;$\text{deg}$
  
  
Line 69: Line 68:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Richtig sind <u>der erste und der letzte Vorschlag</u>:
+
'''(1)'''&nbsp;  <u>The first and last suggestions</u> are correct:
*Durch die Phasenverschiebung um $\phi = 90^\circ$ wird aus der Cosinus– die Minus–Sinusfunktion.  
+
*Due to the phase shift by&nbsp; $\phi = 90^\circ$&nbsp; the cosine function becomes the minus-sine function.
*Mit $q(t) = \sin(\omega_{\rm N} t)$ gilt:
+
*With&nbsp; $q(t) = \sin(\omega_{\rm N} t)$&nbsp; holds:
 
:$${s(t)}  =  \cos({ \omega_{\rm T}\hspace{0.05cm} t }) -  \sin({
 
:$${s(t)}  =  \cos({ \omega_{\rm T}\hspace{0.05cm} t }) -  \sin({
 
\omega_{\rm T}\hspace{0.05cm} t }) \cdot \sin({ \omega_{\rm
 
\omega_{\rm T}\hspace{0.05cm} t }) \cdot \sin({ \omega_{\rm
Line 81: Line 80:
  
  
'''(2)'''&nbsp;  Das Spektrum des analytischen Signals lautet:
+
 
 +
'''(2)'''&nbsp;  The spectrum of the analytical signal is:
 
:$$S_{\rm +}(f) = \delta (f - f_{\rm T}) - 0.5 \cdot \delta (f -
 
:$$S_{\rm +}(f) = \delta (f - f_{\rm T}) - 0.5 \cdot \delta (f -
 
f_{\rm \Delta})+ 0.5 \cdot \delta (f - f_{\rm \Sigma}) .$$
 
f_{\rm \Delta})+ 0.5 \cdot \delta (f - f_{\rm \Sigma}) .$$
Durch Verschiebung um $f_{\rm T}$ kommt man zum Spektrum des äquivalenten Tiefpass-Signals:
+
*By shitfing&nbsp; $f_{\rm T}$&nbsp; one arrives at the spectrum of the equivalent low-pass signal:
 
:$$S_{\rm TP}(f) = \delta (f ) - 0.5 \cdot \delta (f + f_{\rm N})+
 
:$$S_{\rm TP}(f) = \delta (f ) - 0.5 \cdot \delta (f + f_{\rm N})+
 
0.5 \cdot \delta (f - f_{\rm N}) .$$
 
0.5 \cdot \delta (f - f_{\rm N}) .$$
Dies führt zu der Zeitfunktion
+
*This leads to the time function
 
:$$s_{\rm TP}(t) = {\rm 1 } - 0.5 \cdot {\rm e}^{{-\rm
 
:$$s_{\rm TP}(t) = {\rm 1 } - 0.5 \cdot {\rm e}^{{-\rm
 
j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }+ 0.5 \cdot
 
j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }+ 0.5 \cdot
 
{\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }
 
{\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }
 
= 1 + {\rm j} \cdot \sin(\omega_{\rm N} \hspace{0.05cm} t ).$$
 
= 1 + {\rm j} \cdot \sin(\omega_{\rm N} \hspace{0.05cm} t ).$$
Zum Zeitpunkt $t = 0$ ist $s_{\rm TP}(t) = 1$, also reell. Somit gilt:
+
*At time&nbsp; $t = 0$ &nbsp; &rArr; &nbsp;  $s_{\rm TP}(t) = 1$, is real. Thus:
  
 
:* $s_{\rm I}(t = 0) = \text{Re}[s_{\rm TP}(t = 0)]\; \underline{= 1}$,
 
:* $s_{\rm I}(t = 0) = \text{Re}[s_{\rm TP}(t = 0)]\; \underline{= 1}$,
Line 99: Line 99:
  
  
[[File:P_ID762__Sig_Z_4_5_a.png|right|frame|Ortskurve eines einfachen Phasenmodulators]]
+
 
'''(3)'''&nbsp;  Die Ortskurve ist eine vertikale Gerade &nbsp; &rArr; &nbsp;  <u>Vorschlag 3</u> mit folgenden Werten:
+
[[File:P_ID762__Sig_Z_4_5_a.png|right|frame|Locality curve of a simple phase modulator]]
:$$s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} \mu s})
+
'''(3)'''&nbsp;  The locality curve is a vertical straight line &nbsp; &rArr; &nbsp;  <u>Proposition 3</u> with the following values:
 +
:$$s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} &micro; s})
 
= \text{ ...} = 1,$$
 
= \text{ ...} = 1,$$
:$$s_{\rm TP}(t = {\rm 25 \hspace{0.05cm} \mu s}) = s_{\rm TP}(t =
+
:$$s_{\rm TP}(t = {\rm 25 \hspace{0.05cm} &micro; s}) = s_{\rm TP}(t =
 
{\rm 125 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 + {\rm j},$$
 
{\rm 125 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 + {\rm j},$$
:$$s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} \mu s}) = s_{\rm TP}(t =
+
:$$s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} &micro; s}) = s_{\rm TP}(t =
 
{\rm 175 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 - {\rm j}.$$
 
{\rm 175 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 - {\rm j}.$$
  
  
'''(4)'''&nbsp;  Der Betrag (die Zeigerlänge) schwankt zwischen $a_{\rm max} = \sqrt{2}\; \underline{\approx 1.414}$ und $a_{\rm min} \;\underline{= 1}$. Es gilt:
+
'''(4)'''&nbsp;  The magnitude (the pointer length) varies between &nbsp; $a_{\rm max} = \sqrt{2}\; \underline{\approx 1.414}$&nbsp; and&nbsp; $a_{\rm min} \;\underline{= 1}$. It holds:
 
:$$a(t) = \sqrt{1 + \sin^2(\omega_{\rm N} \hspace{0.05cm} t )}.$$
 
:$$a(t) = \sqrt{1 + \sin^2(\omega_{\rm N} \hspace{0.05cm} t )}.$$
Bei idealer Phasenmodulation müsste dagegen die Hüllkurve $a(t)$ konstant sein.
+
With ideal phase modulation, on the other hand, the envelope&nbsp; $a(t)$&nbsp; would have to be constant.
  
  
'''(5)'''&nbsp;  Der Realteil ist stets $1$, der Imaginärteil gleich $\sin(\omega_{\rm N} \cdot t) $. Daraus folgt die Phasenfunktion:
+
'''(5)'''&nbsp;  The real part is always&nbsp; $1$, the imaginary part equal to&nbsp; $\sin(\omega_{\rm N} \cdot t) $.  
 +
*From this follows the phase function:
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N}
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N}
 
\hspace{0.05cm} t )\right)}.$$
 
\hspace{0.05cm} t )\right)}.$$
Der Maximalwert der Sinusfunktion ist $1$. Daraus folgt:
+
*The maximum value of the sine function is&nbsp; $1$. From this follows:
 
:$$\phi_{\rm max} = \arctan (1) \; \underline{= \pi /4 } \; \Rightarrow \; \underline{45^\circ}.$$  
 
:$$\phi_{\rm max} = \arctan (1) \; \underline{= \pi /4 } \; \Rightarrow \; \underline{45^\circ}.$$  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 123: Line 125:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^4.3 Equivalent LP Signal and its Spectral Function^]]

Latest revision as of 16:16, 24 May 2021

Model of the considered phase modulator

The diagram shows a quite simple arrangement for approximating a phase modulator.  All signals are dimensionless.

The sinusoidal source signal  $q(t)$  of frequency  $f_{\rm N} = 10 \ \text{kHz}$  is multiplied by the signal  $m(t)$, which results from the cosinusoidal carrier signal  $z(t)$  by phase shifting by  $\phi = 90^\circ$ :

$$m(t) = {\cos} ( \omega_{\rm T} \cdot t + 90^\circ).$$

Then the signal  $z(t)$  with the frequency  $f_{\rm T} = 1 \ \text{MHz}$  is still added directly.

For abbreviation purposes, this task also uses:

  • the difference frequency  $f_{\rm \Delta} = f_{\rm T} - f_{\rm N} = 0.99 \ \text{MHz}$,
  • the sum frequency  $f_{\rm \Sigma} = f_{\rm T} + f_{\rm N} = 1.01\ \text{MHz}$,
  • the two circular frequencies  $\omega_{\rm \Delta} = 2\pi \cdot f_{\rm \Delta}$  and  $\omega_{\rm \Sigma} = 2\pi \cdot f_{\rm \Sigma}$.



Hints:

  • Consider the trigonomic transformations
$$\sin(\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \sin(\alpha - \beta) + {1}/{2} \cdot \sin(\alpha + \beta),$$
$$\sin(\alpha) \cdot \sin (\beta)= {1}/{2} \cdot \cos(\alpha - \beta) - {1}/{2} \cdot \cos(\alpha + \beta).$$


Questions

1

Which of the following equations correctly describe  $s(t)$ ?

$s(t) = \cos(\omega_{\rm T} \cdot t) - q(t) \cdot \sin(\omega_{\rm T} \cdot t)$.
$s(t) = \cos(\omega_{\rm T} \cdot t) + q(t) \cdot \cos(\omega_{\rm T} \cdot t)$.
$s(t) = \cos(\omega_{\rm T} \cdot t) + 0.5 \sin(\omega_{\rm \Delta} \cdot t) + 0.5 \sin(\omega_{\rm \Sigma} \cdot t)$.
$s(t) = \cos(\omega_{\rm T} \cdot t) - 0.5 \cos(\omega_{\rm \Delta} \cdot t) + 0.5 \cos(\omega_{\rm \Sigma} \cdot t)$.

2

Calculate the equivalent low-pass signal  $s_{\rm TP}(t)$.  What are the inphase and quadrature components at time  $t = 0$?

$s_{\rm I}(t = 0)\ = \ $

$s_{\rm Q}(t = 0)\ = \ $

3

Which of the following statements are true for the "Locality Curve"  $s_{\rm TP}(t)$ zu?

The locality curve is a circular arc.
The locality curve is a horizontal straight line.
The locality curve is a vertical straight line.

4

Calculate the magnitude  $a(t)$, in particular its maximum and minimum values.

$a_{\rm max}\ = \ $

$a_{\rm min}\ = \ $

5

What is the phase function  $\phi(t)$.  What is its maximum value?

$\phi_{\rm max}\ = \ $

 $\text{deg}$


Solution

(1)  The first and last suggestions are correct:

  • Due to the phase shift by  $\phi = 90^\circ$  the cosine function becomes the minus-sine function.
  • With  $q(t) = \sin(\omega_{\rm N} t)$  holds:
$${s(t)} = \cos({ \omega_{\rm T}\hspace{0.05cm} t }) - \sin({ \omega_{\rm T}\hspace{0.05cm} t }) \cdot \sin({ \omega_{\rm N}\hspace{0.05cm} t }) = \cos({ \omega_{\rm T}\hspace{0.05cm} t }) - 0.5 \cdot \cos(({ \omega_{\rm T}-\omega_{\rm N})\hspace{0.05cm} t }) + 0.5 \cdot \cos(({ \omega_{\rm T}+\omega_{\rm N})\hspace{0.05cm} t }).$$


(2)  The spectrum of the analytical signal is:

$$S_{\rm +}(f) = \delta (f - f_{\rm T}) - 0.5 \cdot \delta (f - f_{\rm \Delta})+ 0.5 \cdot \delta (f - f_{\rm \Sigma}) .$$
  • By shitfing  $f_{\rm T}$  one arrives at the spectrum of the equivalent low-pass signal:
$$S_{\rm TP}(f) = \delta (f ) - 0.5 \cdot \delta (f + f_{\rm N})+ 0.5 \cdot \delta (f - f_{\rm N}) .$$
  • This leads to the time function
$$s_{\rm TP}(t) = {\rm 1 } - 0.5 \cdot {\rm e}^{{-\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }+ 0.5 \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t } = 1 + {\rm j} \cdot \sin(\omega_{\rm N} \hspace{0.05cm} t ).$$
  • At time  $t = 0$   ⇒   $s_{\rm TP}(t) = 1$, is real. Thus:
  • $s_{\rm I}(t = 0) = \text{Re}[s_{\rm TP}(t = 0)]\; \underline{= 1}$,
  • $s_{\rm Q}(t = 0) = \text{Ime}[s_{\rm TP}(t = 0)]\; \underline{= 0}$.


Locality curve of a simple phase modulator

(3)  The locality curve is a vertical straight line   ⇒   Proposition 3 with the following values:

$$s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} µ s}) = \text{ ...} = 1,$$
$$s_{\rm TP}(t = {\rm 25 \hspace{0.05cm} µ s}) = s_{\rm TP}(t = {\rm 125 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 + {\rm j},$$
$$s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} µ s}) = s_{\rm TP}(t = {\rm 175 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 - {\rm j}.$$


(4)  The magnitude (the pointer length) varies between   $a_{\rm max} = \sqrt{2}\; \underline{\approx 1.414}$  and  $a_{\rm min} \;\underline{= 1}$. It holds:

$$a(t) = \sqrt{1 + \sin^2(\omega_{\rm N} \hspace{0.05cm} t )}.$$

With ideal phase modulation, on the other hand, the envelope  $a(t)$  would have to be constant.


(5)  The real part is always  $1$, the imaginary part equal to  $\sin(\omega_{\rm N} \cdot t) $.

  • From this follows the phase function:
$$\phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N} \hspace{0.05cm} t )\right)}.$$
  • The maximum value of the sine function is  $1$. From this follows:
$$\phi_{\rm max} = \arctan (1) \; \underline{= \pi /4 } \; \Rightarrow \; \underline{45^\circ}.$$