Difference between revisions of "Aufgaben:Exercise 4.6: Quantization Characteristics"

From LNTwww
 
(19 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Pulscodemodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Pulse_Code_Modulation
 
}}
 
}}
  
[[File:P_ID1623__Mod_Z_4_5.png|right|]]
+
[[File:EN_Mod_A_4_6_neu.png|right|frame|Non-linear quantization characteristics]]
Es wird die nichtlineare Quantisierung betrachtet und es gilt weiterhin das Systemmodell gemäß [http://en.lntwww.de/Aufgaben:4.5_Nichtlineare_Quantisierung Aufgabe A4.5]. Die Grafik zeigt zwei Kompressorkennlinien $q_K(q_A)$:
+
Non-linear quantization is considered.  The system model according to  [[Aufgaben:Exercise_4.5:_Non-Linear_Quantization| Exercise 4.5]] still applies.  
:* Rot eingezeichnet ist die sogenannte A–Kennlinie, die vom CCITT für das Standardsystem PCM 30/32 empfohlen wurde. Für $0 ≤ q_A ≤ 1$ gilt:
 
$$q_{\rm K}(q_{\rm A}) = \left\{ \begin{array}{l} \frac{1 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A})} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \\ \frac{A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A}} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \end{array} \right.\quad \begin{array}{*{10}c} {\frac{1}{A} \le q_{\rm A} \le 1} \hspace{0.05cm}, \\ \\ {q_{\rm A} < \frac{1}{A}} \hspace{0.05cm}. \\ \end{array}$$
 
:* Der blau–gestrichelte Kurvenzug gilt für die sog. 13–Segment–Kennlinie. Diese ergibt sich aus der A–Kennlinie durch stückweise Linearisierung; sie wird in der Aufgabe A4.5 ausführlich behandelt.
 
  
Für die durchgehend rot gezeichnete A-Kennlinie ist der Quantisierungsparameter A = 100 gewählt. Mit dem vom CCITT vorgeschlagenen Wert A = 87.56 ergibt sich näherungsweise der gleiche Verlauf. Für die beiden weiteren Kurven gilt $A = A_1$ (oberer Kurvenzug) bzw. $A = A_2$ (punktierte Kurve), wobei für $A_1$ bzw. $A_2$ die beiden möglichen Zahlenwerte 50 und 200 vorgegeben sind. In der Teilaufgabe c) sollen Sie entscheiden, welche Kurve zu welchem Wert gehört.
+
The graph shows two compressor characteristics &nbsp;$q_{\rm K}(q_{\rm A})$:
 +
* Drawn in red is the so-called&nbsp; "'''A-characteristic'''" recommended by the CCITT&nbsp; ("Comité Consultatif International Téléphonique et Télégraphique")&nbsp; for the standard system PCM 30/32.&nbsp; For &nbsp;$0 ≤ q_{\rm A} ≤ 1$&nbsp; applies here:
 +
:$$q_{\rm K}(q_{\rm A}) = \left\{ \begin{array}{l} \frac{1 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A})} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \\ \frac{A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A}} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \end{array} \right.\quad \begin{array}{*{10}c} {{1}/{A} \le q_{\rm A} \le 1} \hspace{0.05cm}, \\ \\ {q_{\rm A} < {1}/{A}} \hspace{0.05cm}. \\ \end{array}$$
 +
* The blue-dashed curve applies to the so-called&nbsp; "'''13-segment characteristic'''".&nbsp; This is obtained from the A-characteristic by piecewise linearization;&nbsp; it is treated in detail in the&nbsp; [[Aufgaben:Exercise_4.5:_Non-Linear_Quantization| Exercise 4.5]]&nbsp;.
  
'''Hinweis:''' Die Aufgabe bezieht sich auf die [http://en.lntwww.de/Modulationsverfahren/Pulscodemodulation#Nichtlineare_Quantisierung_.281.29 letzte Theorieseite] von Kapitel 4.1.
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The Exercise belongs to the chapter&nbsp; [[Modulation_Methods/Pulse_Code_Modulation|"Pulse Code Modulation"]].
 +
*Reference is made in particular to the page&nbsp; [[Modulation_Methods/Pulse_Code_Modulation#Compression_and_expansion|"Compression and Expansion"]].
 +
*For the A-characteristic drawn in solid red,&nbsp; the quantization parameter &nbsp;$A = 100$&nbsp; is chosen.&nbsp; With the value &nbsp;$A = 87.56$&nbsp; suggested by CCITT,&nbsp; a similar curve is obtained.
 +
*For the other two curves,
 +
:*&nbsp;$A = A_1$&nbsp; (dash&ndash;dotted curve) and
 +
:*&nbsp;$A = A_2$&nbsp; (dotted curve),&nbsp;
 +
 
 +
where for &nbsp;$A_1$&nbsp; and &nbsp;$A_2$&nbsp; the two possible numerical values &nbsp;$50$&nbsp; and &nbsp;$200$&nbsp; are given.&nbsp; In the subtask&nbsp; '''(3)'''&nbsp; you are to decide which curve belongs to which numerical value.
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Argumente sprechen für die nichtlineare Quantisierung?
+
{What are the arguments for non-linear quantization?
 
|type="[]"}
 
|type="[]"}
- Das größere SNR – auch bei gleichwahrscheinlichen Amplituden.  
+
- The larger SNR &ndash; even with equally likely amplitudes.  
+ Bei Audio sind kleine Amplituden wahrscheinlicher als große.
+
+ For audio,&nbsp; small amplitudes are more likely than large ones.
+ Die Verfälschung kleiner Amplituden ist subjektiv störender.
+
+ The distortion of small amplitudes is subjectively more disturbing.
  
{Welche Unterschiede gibt es zwischen der A– und der 13–Segment–Kennlinie?
+
{What are the differences between the&nbsp; "A-characteristic" and the&nbsp; "13-segment characteristic"?
 
|type="[]"}
 
|type="[]"}
+ Die A–Kennlinie beschreibt einen kontinuierlichen Verlauf.
+
+ The A-characteristic curve describes a continuous course.
+ Die 13–Seg–Kurve nähert die A–Kennlinie stückweise linear an.
+
+ The 13-segment curve approximates the A-characteristic linearly piece by piece.
- Bei der Realisierung zeigt die A–Kennlinie wesentliche Vorteile.
+
- In the realization,&nbsp; the A-characteristic shows significant advantages.
  
{Lässt sich allein aus $q_A = 1 ⇒  q_K = 1$ der Parameter A ableiten?
+
{Can the parameter &nbsp;$A$&nbsp; be derived from &nbsp;$q_{\rm A} = 1$ &nbsp; &nbsp; $q_{\rm K} = 1$&nbsp; alone?
|type="[]"}
+
|type="()"}
- ja
+
- Yes.
+ nein
+
+ No.
  
{Lässt sich A bestimmen, wenn man vorgibt, dass der Übergang zwischen den beiden Bereichen kontinuierlich sein soll?  
+
{Can the parameter &nbsp;$A$&nbsp; be determined if we specify that the transition between the two domains should be continuous?  
|type="[]"}
+
|type="()"}
- ja
+
- Yes.
+ nein
+
+ No.
  
{Bestimmen Sie A aus der Bedingung $q_K(q_A = 1/2) = 0.875$.
+
{Determine the parameter &nbsp;$A$&nbsp; from the condition &nbsp;$q_{\rm K}(q_{\rm A} = 1/2) = 0.8756$.
 
|type="{}"}
 
|type="{}"}
$q_K(q_A = 1/2) = 0.875:  A$ = { 94 3% }  
+
$A \ = \ $ { 94 3% }  
 
 
{Welche Parameterwerte werden für die weiteren Kurven verwendet?
 
|type="[]"}
 
- Es gilt $A_1 = 50$ und $A_2 = 200$.
 
+ Es gilt $A_1 = 200$ und $A_2 = 50$.
 
  
 +
{What parameter values were used for the other curves?
 +
|type="()"}
 +
- It holds &nbsp;$A_1 = 50$&nbsp; and &nbsp;$A_2 = 200$.
 +
+ It holds &nbsp;$A_1 = 200$&nbsp; and &nbsp;$A_2 = 50$.
  
  
Line 54: Line 69:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Die Impulsantwort $h_K(t)$ ergibt sich als das Empfangssignal r(t), wenn am Eingang ein Diracimpuls anliegt ⇒ $s(t) = δ(t)$. Daraus folgt
+
 
$$ h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>statements 2 and 3</u>:
Richtig ist also der Lösungsvorschlag 1.
+
*Signal distortion of soft sounds or in speech pauses is subjectively perceived as more disturbing than e.g. additional noise in heavy metal.  
 +
*In terms of quantization noise or SNR,&nbsp; however,&nbsp; there is no improvement due to non-linear quantization if an uniformly distribution of the amplitude values is assumed.
 +
*However,&nbsp; if one considers that in speech and music signals smaller amplitudes occur much more frequently than large &nbsp; &rArr; &nbsp; "Laplace distribution",&nbsp; non-linear quantization also results in a better SNR.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Correct are the&nbsp;<u>statements 1 and 2</u>:
 +
*Due to the linearization in the individual segments,&nbsp; the interval width of the various quantization levels is constant in these for the&nbsp; "13-segment characteristic",&nbsp; which has a favorable effect in realization.
 +
*In contrast,&nbsp; with the non-linear quantization according to the&nbsp; "A-characteristic",&nbsp; there are no quantization intervals of equal width.&nbsp; <br>This means: &nbsp; The statement 3 is false.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct is&nbsp; "<u>NO</u>":
 +
*For&nbsp; $q_{\rm A} = 1$&nbsp; one obtains independently of&nbsp; $A$&nbsp; the value&nbsp; $q_{\rm K} = 1$.
 +
*So with this specification alone&nbsp; $A$&nbsp; cannot be determined.
 +
 +
 
 +
 
 +
'''(4)'''&nbsp; Correct is again&nbsp; "<u>NO</u>":
 +
*For&nbsp; $q_{\rm A} = 1/A$&nbsp; both range equations yield the same value&nbsp; $q_{\rm K}= 1/[1 + \ln(A)]$.  
 +
*Also with this&nbsp; $A$&nbsp; cannot be determined.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; With this requirement&nbsp; $A$&nbsp; is now computable:
 +
:$$0.875 = \frac{1 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A/2)} {1
 +
\hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} =
 +
\frac{1\hspace{0.05cm}-\hspace{0.05cm} {\rm ln}(2)
 +
\hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A)} {1 \hspace{0.05cm}+
 +
\hspace{0.05cm}{\rm ln}(A )}\approx \frac{1-0.693
 +
\hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A)} {1 \hspace{0.05cm}+
 +
\hspace{0.05cm}{\rm ln}(A )}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}{\rm ln}(A) = \frac{0.875 - 0.307 } {1
 +
-0.875 }= 4.544 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} A \hspace{0.15cm}\underline {\approx
 +
94} \hspace{0.05cm}.$$
 +
 
  
  
'''2.''' Der Kanalfrequenzgang $H_K(f)$ ist definitionsgemäß die Fouriertransformierte der Impulsantwort $h_K(t)$. Mit dem Verschiebungssatz ergibt sich hierfür:
+
'''(6)'''&nbsp; Correct is&nbsp; <u>statement 2</u>:
$$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
+
*The curve for &nbsp;$A_1 = 200$&nbsp; lies above the curve with &nbsp;$A = 100$,&nbsp; the curve with &nbsp;$A_2 = 50$&nbsp; below.  
Der erste Lösungsvorschlag ist dementsprechend falsch im Gegensatz zu den beiden anderen: $H_K(f)$ ist komplexwertig und der Betrag ist periodisch mit $1/τ$, wie die nachfolgende Rechnung zeigt:
+
*This is shown by the following calculation for &nbsp;$q_{\rm A} = 0.5$:
$$|H_{\rm K}(f)|^2 = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 =$$
+
:$$A= 100\text{:}\hspace{0.2cm} q_{\rm K}= \frac{1 + \ln(100) - \ln(2)}{1 + \ln(100)}=
$$ =  \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau)$$
+
\frac{1+4.605- 0.693} {1 +4.605}\approx
$$\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = \sqrt { 0.52 + 0.48 \cdot \cos(2 \pi f \tau) } \hspace{0.05cm}.$$
+
0.876 \hspace{0.05cm},$$
Für $f = 0$ ist $|H_K(f)| = 1$. Im jeweiligen Frequenzabstand $1/τ$ wiederholt sich dieser Wert.
+
:$$A= 200\text{:}\hspace{0.2cm} q_{\rm K}= \frac{1+5.298- 0.693} {1 +5.298}\approx
 +
0.890 \hspace{0.05cm},$$
 +
:$$A= 50\text{:}\hspace{0.4cm} q_{\rm K}= \frac{1+3.912- 0.693} {1 +3.912}\approx
 +
0.859 \hspace{0.05cm}.$$
  
  
'''3.'''  Wir setzen zunächst vereinbarungsgemäß K = 1. Insgesamt kommt man über vier Wege von $s(t)$ zum Ausgangssignal $b(t)$. Um die vorgegebene $h_{KR}(t)$–Gleichung zu erfüllen, muss entweder $τ_0 = 0$ gelten oder $τ_1 = 0$. Mit $τ_0 = 0$ erhält man für die Impulsantwort:
 
$$h_{\rm KR}(t)  =  0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) +$$
 
$$ +  0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
 
Um die „Hauptenergie” auf einen Zeitpunkt bündeln zu können, müsste dann $τ_1 = τ$ gewählt werden. Mit $h_0 = 0.6$ und $h_1 = 0.4$ erhält man dann $A_0 ≠ A_2$:
 
$$ h_{\rm KR}(t) = 0.36 \cdot \delta (t ) +0.48 \cdot \delta (t - \tau) + 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 
Dagegen ergibt sich mit $h_0 = 0.6$, $h_1 = 0.4$, $τ_0 = τ$ und $τ_1 = 0$:
 
$$h_{\rm KR}(t)  =  0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) +$$
 
$$  +  0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)=$$
 
$$ =  0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}.$$
 
Hier ist die Zusatzbedingung $A_0 = A_2$ erfüllt. Somit lautet das gesuchte Ergebnis:
 
$$\underline{\tau_0 = \tau = 1\,{\rm \mu s} \hspace{0.05cm},\hspace{0.2cm}\tau_1 =0} \hspace{0.05cm}.$$
 
  
'''4.''' Für den Normierungsfaktor muss gelten:
 
$$ K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52} \hspace{0.15cm}\underline {\approx 1.923} \hspace{0.05cm}.$$
 
Damit erhält man für die gemeinsame Impulsantwort (es gilt 0.24/0.52 = 6/13):
 
$$ h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 
 
'''5.''' Für das Empfangssignal $r(t)$ und für das RAKE–Ausgangssignal $b(t)$ gilt:
 
$$r(t)  =  0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm \mu s})\hspace{0.05cm},$$
 
$$b(t)  =  \frac{6}{13} \cdot s(t) + 1.00 \cdot s (t - 1\,{\rm \mu s}) + \frac{6}{13} \cdot s (t - 2\,{\rm \mu s}) \hspace{0.05cm}.$$
 
Richtig sind die Aussagen 1 und 4, wie die folgende Grafik zeigt. Die Überhöhung des Ausgangssignals  ⇒  $b(t) > 1$ ist auf den Normierungsfaktor K = 25/13 zurückzuführen. Mit K = 1 wäre der Maximalwert von $b(t)$ tatsächlich 1.
 
[[File:P_ID1902__Mod_Z_5_5e.png]]
 
  
  
Line 98: Line 130:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.1 Pulscodemodulation^]]
+
[[Category:Modulation Methods: Exercises|^4.1 Pulse Code Modulation^]]

Latest revision as of 16:01, 11 April 2022

Non-linear quantization characteristics

Non-linear quantization is considered.  The system model according to  Exercise 4.5 still applies.

The graph shows two compressor characteristics  $q_{\rm K}(q_{\rm A})$:

  • Drawn in red is the so-called  "A-characteristic" recommended by the CCITT  ("Comité Consultatif International Téléphonique et Télégraphique")  for the standard system PCM 30/32.  For  $0 ≤ q_{\rm A} ≤ 1$  applies here:
$$q_{\rm K}(q_{\rm A}) = \left\{ \begin{array}{l} \frac{1 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A})} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \\ \frac{A \hspace{0.05cm}\cdot \hspace{0.05cm}q_{\rm A}} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} \\ \end{array} \right.\quad \begin{array}{*{10}c} {{1}/{A} \le q_{\rm A} \le 1} \hspace{0.05cm}, \\ \\ {q_{\rm A} < {1}/{A}} \hspace{0.05cm}. \\ \end{array}$$
  • The blue-dashed curve applies to the so-called  "13-segment characteristic".  This is obtained from the A-characteristic by piecewise linearization;  it is treated in detail in the  Exercise 4.5 .




Hints:

  • The Exercise belongs to the chapter  "Pulse Code Modulation".
  • Reference is made in particular to the page  "Compression and Expansion".
  • For the A-characteristic drawn in solid red,  the quantization parameter  $A = 100$  is chosen.  With the value  $A = 87.56$  suggested by CCITT,  a similar curve is obtained.
  • For the other two curves,
  •  $A = A_1$  (dash–dotted curve) and
  •  $A = A_2$  (dotted curve), 

where for  $A_1$  and  $A_2$  the two possible numerical values  $50$  and  $200$  are given.  In the subtask  (3)  you are to decide which curve belongs to which numerical value.



Questions

1

What are the arguments for non-linear quantization?

The larger SNR – even with equally likely amplitudes.
For audio,  small amplitudes are more likely than large ones.
The distortion of small amplitudes is subjectively more disturbing.

2

What are the differences between the  "A-characteristic" and the  "13-segment characteristic"?

The A-characteristic curve describes a continuous course.
The 13-segment curve approximates the A-characteristic linearly piece by piece.
In the realization,  the A-characteristic shows significant advantages.

3

Can the parameter  $A$  be derived from  $q_{\rm A} = 1$   ⇒   $q_{\rm K} = 1$  alone?

Yes.
No.

4

Can the parameter  $A$  be determined if we specify that the transition between the two domains should be continuous?

Yes.
No.

5

Determine the parameter  $A$  from the condition  $q_{\rm K}(q_{\rm A} = 1/2) = 0.8756$.

$A \ = \ $

6

What parameter values were used for the other curves?

It holds  $A_1 = 50$  and  $A_2 = 200$.
It holds  $A_1 = 200$  and  $A_2 = 50$.


Solution

(1)  Correct are the  statements 2 and 3:

  • Signal distortion of soft sounds or in speech pauses is subjectively perceived as more disturbing than e.g. additional noise in heavy metal.
  • In terms of quantization noise or SNR,  however,  there is no improvement due to non-linear quantization if an uniformly distribution of the amplitude values is assumed.
  • However,  if one considers that in speech and music signals smaller amplitudes occur much more frequently than large   ⇒   "Laplace distribution",  non-linear quantization also results in a better SNR.


(2)  Correct are the statements 1 and 2:

  • Due to the linearization in the individual segments,  the interval width of the various quantization levels is constant in these for the  "13-segment characteristic",  which has a favorable effect in realization.
  • In contrast,  with the non-linear quantization according to the  "A-characteristic",  there are no quantization intervals of equal width. 
    This means:   The statement 3 is false.


(3)  Correct is  "NO":

  • For  $q_{\rm A} = 1$  one obtains independently of  $A$  the value  $q_{\rm K} = 1$.
  • So with this specification alone  $A$  cannot be determined.


(4)  Correct is again  "NO":

  • For  $q_{\rm A} = 1/A$  both range equations yield the same value  $q_{\rm K}= 1/[1 + \ln(A)]$.
  • Also with this  $A$  cannot be determined.


(5)  With this requirement  $A$  is now computable:

$$0.875 = \frac{1 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A/2)} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )} = \frac{1\hspace{0.05cm}-\hspace{0.05cm} {\rm ln}(2) \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A)} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )}\approx \frac{1-0.693 \hspace{0.05cm}+\hspace{0.05cm} {\rm ln}(A)} {1 \hspace{0.05cm}+ \hspace{0.05cm}{\rm ln}(A )}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm ln}(A) = \frac{0.875 - 0.307 } {1 -0.875 }= 4.544 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} A \hspace{0.15cm}\underline {\approx 94} \hspace{0.05cm}.$$


(6)  Correct is  statement 2:

  • The curve for  $A_1 = 200$  lies above the curve with  $A = 100$,  the curve with  $A_2 = 50$  below.
  • This is shown by the following calculation for  $q_{\rm A} = 0.5$:
$$A= 100\text{:}\hspace{0.2cm} q_{\rm K}= \frac{1 + \ln(100) - \ln(2)}{1 + \ln(100)}= \frac{1+4.605- 0.693} {1 +4.605}\approx 0.876 \hspace{0.05cm},$$
$$A= 200\text{:}\hspace{0.2cm} q_{\rm K}= \frac{1+5.298- 0.693} {1 +5.298}\approx 0.890 \hspace{0.05cm},$$
$$A= 50\text{:}\hspace{0.4cm} q_{\rm K}= \frac{1+3.912- 0.693} {1 +3.912}\approx 0.859 \hspace{0.05cm}.$$