Difference between revisions of "Aufgaben:Exercise 4.8: Near-end and Far-end Crosstalk Disorders"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Kupfer–Doppelader }} right| :Auf dem <i>S</i><sub>0</sub>&nda…“)
 
m (Text replacement - "power spectral density" to "power-spectral density")
 
(25 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File: P_ID1817__LZI_A_4_8_neu.png|right|]]
+
[[File:EN_LZI_A_4_8.png|right|frame|Local and long-distance crosstalk]]
:Auf dem <i>S</i><sub>0</sub>&ndash;Bus bei ISDN werden die Daten getrennt nach Übertragungsrichtung auf einem Sternvierer übertragen. Das Empfangssignal eines ISDN&ndash;Geräts wird daher außer von Verbindungen auf anderen Adern auch durch Nebensprechen von seinem eigenen Sendesignal gestört.
+
On the&nbsp; $S_0$ bus at &nbsp;[[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|$\rm ISDN$]]&nbsp; ("Integrated Services Digital Networks"),&nbsp; data is transmitted separately according to transmission direction on a star quad.&nbsp; The received signal of an ISDN device is therefore disturbed not only by connections on other wires but also by crosstalk from its own transmitted signal.
  
:In dieser Aufgabe werden zwei ISDN&ndash;Terminals im Abstand von 50 m berechnet, wobei vorausgesetzt wird:
+
In this exercise,&nbsp; two ISDN terminals with &nbsp;$\text{50 m}$&nbsp; distance are considered,&nbsp; assuming:
 
+
* For the power-spectral density&nbsp; $\rm (PSD)$&nbsp; of the transmitter of each terminal,&nbsp; let&nbsp; ${\it\Phi}_{0} = 5 \cdot  10^{-9} \ \rm  W/Hz$&nbsp; be very simplified:
:* Für das Leistungsdichtespektrum (LDS) des Senders eines jeden Terminals gelte sehr stark vereinfacht mit <i>&Phi;</i><sub>0</sub> = 5 &middot; 10<sup>-9</sup> W/Hz:
 
 
:$${\it\Phi}_{s}(f)= \left\{ \begin{array}{c} {\it\Phi}_{0} \\
 
:$${\it\Phi}_{s}(f)= \left\{ \begin{array}{c} {\it\Phi}_{0} \\
 
  0  \end{array} \right.
 
  0  \end{array} \right.
\begin{array}{c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
+
\begin{array}{c}  {\rm{for}}  \\ {\rm{for}}
 
   \end{array}\begin{array}{*{20}c}
 
   \end{array}\begin{array}{*{20}c}
{  |f| \le f_0 = 100\,{\rm kHz} \hspace{0.05cm},}  \\
+
{  |f| \le f_0 = 100\:{\rm kHz} \hspace{0.05cm},}  \\
 
{ |f| > f_0\hspace{0.05cm}.}
 
{ |f| > f_0\hspace{0.05cm}.}
 
\end{array}$$
 
\end{array}$$
 
+
* The power transfer function on the&nbsp; $S_0$ bus &nbsp;$\text{(0.6 mm}$&nbsp; copper two&ndash;wire line, &nbsp;$\text{50 m)}$&nbsp; is to be approximated in the considered range &nbsp;$0 < |f| < 100 \ \rm kHz$&nbsp; as follows&nbsp;  (very simplified):
:* Die Leistungsübertragungsfunktion auf dem <i>S</i><sub>0</sub>&ndash;Bus (0.6 mm Kupfer&ndash;Zweidrahtleitung, 50 Meter) soll im betrachteten Bereich 0 < |<i>f</i>| < 100 kHz wie folgt angenähert werden (stark vereinfacht):
+
:$$|H_{\rm K}(f)|^2 = 0.9 - 0.04 \cdot \frac{|f|}{\rm 1 \ MHz}\hspace{0.05cm}.$$
:$$|H_{\rm K}(f)|^2 = 0.9 - 0.04 \cdot \frac{|f|}{{\rm MHz}}\hspace{0.05cm}.$$
+
* The near&ndash;end crosstalk power transfer function is given as follows&nbsp; $(\rm NEXT$ stands for&nbsp; "near&ndash;end crosstalk"$)$:
 
 
:* Die Nahnebensprech&ndash;Leistungsübertragungsfunktion ist wie folgt gegeben (NEXT steht dabei für <i>Near&ndash;End&ndash;Crosstalk</i>):
 
 
:$$|H_{\rm NEXT}(f)|^2 = \left ( K_{\rm NEXT} \cdot |f|\right )^{3/2}\hspace{0.05cm},\hspace{0.2cm}K_{\rm
 
:$$|H_{\rm NEXT}(f)|^2 = \left ( K_{\rm NEXT} \cdot |f|\right )^{3/2}\hspace{0.05cm},\hspace{0.2cm}K_{\rm
 
   NEXT} = 6 \cdot 10^{-10}\,{\rm s}
 
   NEXT} = 6 \cdot 10^{-10}\,{\rm s}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
:Die Grafik zeigt die betrachtete Systemkonfiguration. Mit zwei Doppeladern sind die Teilnehmer 1 und 2 verbunden (je eine in beide Richtungen), während auf zwei anderen Doppeladern (nicht im gleichen Sternvierer) eine Verbindung zwischen Teilnehmer 3 und Teilnehmer 4 besteht.
+
The diagram shows the system configuration under consideration.&nbsp;
 +
*Two twisted pairs connect subscribers &nbsp;$1$&nbsp; and &nbsp;$2$ &nbsp; (one in each direction),  
 +
*while on two other twisted pairs&nbsp; (not in the same star quad)&nbsp; there is a connection between subscriber &nbsp;$3$&nbsp; and subscriber &nbsp;$4$.&nbsp;
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Notes:''
 +
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern|Properties of Balanced Copper Pairs]].
 +
*It also refers to the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN-Basisanschluss|ISDN Basic Access]]&nbsp; in the book "Examples of Communication Systems".  
 +
  
:<b>Hinweis:</b> Die Aufgabe bezieht sich auf das Kapitel 4.3 in diesem Buch sowie auf das Kapitel 1.2 im Buch &bdquo;Beispiele von Nachrichtensystemen&rdquo;.
 
  
  
  
===Fragebogen===
+
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Der Sender <i>S</i><sub>1</sub> führt bei Empfänger <i>E</i><sub>2</sub> zu Nahnebensprechen.
+
- Transmitter &nbsp;$S_1$&nbsp; leads to near-end crosstalk at receiver &nbsp;$E_2$.&nbsp;
+ Der Sender <i>S</i><sub>2</sub> führt bei Empfänger <i>E</i><sub>2</sub> zu Nahnebensprechen.
+
+ Transmitter &nbsp;$S_2$&nbsp; leads to near-end crosstalk at receiver &nbsp;$E_2$.&nbsp;
- Der Sender <i>S</i><sub>3</sub> führt bei Empfänger <i>E</i><sub>2</sub> zu Nahnebensprechen.
+
- Transmitter &nbsp;$S_3$&nbsp; leads to near-end crosstalk at receiver &nbsp;$E_2$.&nbsp;
+ Nahnebensprechen ist unangenehmer als Fernnebensprechen.
+
+ Near-end crosstalk is more unpleasant than far-end crosstalk.
  
  
{Berechnen Sie die Sendeleistung mit der angegebenen vereinfachten Annahme.
+
{Calculate the transmission power using the simplified assumption given? &nbsp; (German:&nbsp; "Sendeleistung" &nbsp; &rArr; &nbsp; subscript&nbsp;  "S").
 
|type="{}"}
 
|type="{}"}
$P_S$ = { 1 3% } $\cdot 10^{-3}\ W$
+
$P_{\rm S} \ = \ $ { 1 3% } $\ \rm  mW$
  
  
{Wie groß ist die beim Empfänger ankommende Nutzleistung?
+
{What is the useful power arriving at the receiver? &nbsp; (German:&nbsp; "Empfangsleistung" &nbsp; &rArr; &nbsp; subscript&nbsp; "E").
 
|type="{}"}
 
|type="{}"}
$P_E$ = { 0.88 3% } $\cdot 10^{-3}\ W$
+
$P_{\rm E} \ = \ $ { 0.88 3% } $\ \rm  mW$
  
  
{Geben Sie die Leistung der Nebensprechstörung an.
+
{Specify the power of the crosstalk interference.&nbsp;Note:  &nbsp;$ 1 \ \rm nW = 10^{-9} \ \rm W$.
 
|type="{}"}
 
|type="{}"}
$P_\text{NEXT}$ = { 0.186 3% } $\cdot 10^{-9}\ W$
+
$P_\text{NEXT} \ = \ $ { 0.186 3% } $\ \rm  nW$
  
  
{Wie groß ist der Signal&ndash;zu&ndash;Nebensprech&ndash;Störabstand?
+
{What is the signal&ndash;to&ndash;crosstalk signal&ndash;to&ndash;noise ratio?
 
|type="{}"}
 
|type="{}"}
$10 \cdot \ lg\ P_E/P_\text{NEXT}$ = { 66.7 3% } $dB$
+
$\rm 10 \cdot \ lg\ {\it P}_E/{\it P}_\text{NEXT} \ = \ $ { 66.7 3% } $\ \rm  dB$
  
  
Line 65: Line 76:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Nebensprechen entsteht durch Kopplungen der übertragenen Signale auf benachbarte Doppeladern. Bei Nahnebensprechen (NEXT) befinden sich der störende Sender und der gestörte Empfänger am selben Ende der Leitung, bei Fernnebensprechen (FEXT) an unterschiedlichen Enden. Da aber auch die Störsignale auf der Kupferdoppelader sehr stark gedämpft werden, ist NEXT gegenüber FEXT stets der bei Weitem dominante Störeffekt.
+
'''(1)'''&nbsp; Crosstalk is caused by coupling of the transmitted signals to adjacent pairs of wires.
 +
*In the case of near&ndash;end crosstalk&nbsp; $\rm (NEXT)$,&nbsp; the interfering transmitter and the interfered receiver are at the same end of the line.
 +
* In the case of far&ndash;end crosstalk&nbsp; $\rm (FEXT)$,&nbsp; they are at different ends.
 +
*However,&nbsp; since the interfering signals are also very strongly attenuated on the copper wire pair,&nbsp; NEXT is always by far the more dominant interfering effect compared with FEXT.
 +
 
 +
 
 +
<u>Solutions 2 and 4</u>&nbsp; are correct:
 +
*Here,&nbsp; the receiver&nbsp; $E_2$&nbsp; is particularly disturbed by its own transmitter&nbsp; $S_2$,&nbsp; i.e. by near&ndash;end crosstalk.
 +
*The interference of&nbsp; $E_2$&nbsp; by&nbsp; $S_3$&nbsp; is far&ndash;end crosstalk,&nbsp; while&nbsp;  $S_1$&nbsp; provides the useful signal for&nbsp; $E_2$.
 +
 
  
:Richtig sind hier <u>die Lösungsvorschläge 2 und 4</u>. Der Empfänger <i>E</i><sub>2</sub> wird hier besonders durch seinen eigenen Sender <i>S</i><sub>2</sub>, also durch Nahnebensprechen gestört. Die Beeinträchtigung von <i>E</i><sub>2</sub> durch <i>S</i><sub>3</sub> ist Fernnebensprechen, während <i>S</i><sub>1</sub> für <i>E</i><sub>2</sub> das Nutzsignal bereitstellt.
 
  
:<b>2.</b>&nbsp;&nbsp;Die Sendeleistung ist gleich dem Integral über das Leistungsdichtespektrum:
+
'''(2)'''&nbsp; The transmit power is equal to the integral over the power-spectral density:
:$$P_{\rm S} = {\it\Phi}_{0} \cdot 2 f_0 = 5 \cdot 10^{-9}\,  {\rm W}/{\rm Hz} \cdot 2 \cdot 10^{5}\,{\rm Hz}\hspace{0.15cm}\underline{ = 10^{-3}\,{\rm W}}
+
:$$P_{\rm S} = {\it\Phi}_{0} \cdot 2 f_0 = 5 \cdot 10^{-9}\,  {\rm W}/{\rm Hz} \cdot 2 \cdot 10^{5}\,{\rm Hz}\hspace{0.15cm}\underline{ = 1\,{\rm mW}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
:<b>3.</b>&nbsp;&nbsp;Für die Empfangsleistung gilt (ohne den Anteil durch Nahnebensprechen):
+
 
:$$P_{\rm E}  =  \int\limits_{-\infty}^{
+
 
 +
'''(3)'''&nbsp; The following applies to the received power&nbsp; (excluding the component due to near&ndash;end crosstalk):
 +
:$$P_{\rm E}  =  \int_{-\infty}^{
 
+\infty}  {\it\Phi}_{s}(f) \cdot |H_{\rm K}(f)|^2
 
+\infty}  {\it\Phi}_{s}(f) \cdot |H_{\rm K}(f)|^2
\hspace{0.1cm}{\rm d}f = 2 {\it\Phi}_{0} \cdot \int\limits_{0}^{
+
\hspace{0.1cm}{\rm d}f = 2 {\it\Phi}_{0} \cdot \int_{0}^{
 
f_0} \left [ 0.9 - 0.04 \cdot \frac{f}{f_0} \right ]
 
f_0} \left [ 0.9 - 0.04 \cdot \frac{f}{f_0} \right ]
\hspace{0.1cm}{\rm d}f = \\
+
\hspace{0.1cm}{\rm d}f $$
   =  2 {\it\Phi}_{0} \cdot \left [ 0.9 \cdot f_0 - \frac{0.04}{2} \cdot \frac{f_0^2}{f_0} \right ] = 2 {\it\Phi}_{0} \cdot 0.88 =  
+
:$$\Rightarrow \hspace{0.3cm}P_{\rm E}   =   
  0.88 \cdot P_{\rm S}\hspace{0.15cm}\underline{ = 0.88 \cdot 10^{-3}\,{\rm W}}
+
    2 {\it\Phi}_{0} \cdot \left [ 0.9 \cdot f_0 - \frac{0.04}{2} \cdot \frac{f_0^2}{f_0} \right ] = 2 {\it\Phi}_{0} \cdot 0.88 =  
 +
  0.88 \cdot P_{\rm S}\hspace{0.15cm}\underline{ = 0.88 \,{\rm mW}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
:<b>4.</b>&nbsp;&nbsp;Für diesen störenden Leistungsanteil erhält man
+
 
:$$P_{\rm NEXT}  =  \int\limits_{-\infty}^{
+
 
 +
'''(4)'''&nbsp; For the interfering power component of the crosstalk interference one obtains
 +
:$$P_{\rm NEXT}  =  \int_{-\infty}^{
 
+\infty}  {\it\Phi}_{s}(f) \cdot |H_{\rm NEXT}(f)|^2
 
+\infty}  {\it\Phi}_{s}(f) \cdot |H_{\rm NEXT}(f)|^2
\hspace{0.1cm}{\rm d}f = 2 {\it\Phi}_{0} \cdot K_{\rm NEXT}^{3/2}
+
\hspace{0.1cm}{\rm d}f = 2 {\it\Phi}_{0} \cdot {K_{\rm NEXT}\hspace{0.01cm}}^{3/2}
\cdot \int\limits_{0}^{ f_0} f^{3/2}
+
\cdot \int_{0}^{ f_0} f^{3/2}
\hspace{0.1cm}{\rm d}f = \\
+
\hspace{0.1cm}{\rm d}f $$
   =  \frac{4}{5} \cdot {\it\Phi}_{0} \cdot K_{\rm NEXT}^{3/2} \cdot f_0^{5/2}
+
:$$\Rightarrow \hspace{0.3cm} P_{\rm NEXT} 
 +
   =  \frac{4}{5} \cdot {\it\Phi}_{0} \cdot {K_{\rm NEXT}\hspace{0.01cm}}^{3/2} \cdot f_0^{5/2}
 
  = 0.8 \cdot 5 \cdot  10^{-9}\,  \frac{\rm W}{\rm Hz}
 
  = 0.8 \cdot 5 \cdot  10^{-9}\,  \frac{\rm W}{\rm Hz}
 
  \cdot \left ( 6 \cdot 10^{-10}\,{\rm s}\right )^{3/2} \cdot
 
  \cdot \left ( 6 \cdot 10^{-10}\,{\rm s}\right )^{3/2} \cdot
  \left ( 10^{5}\,{\rm Hz}\right )^{5/2} = \\\\
+
  \left ( 10^{5}\,{\rm Hz}\right )^{5/2}  
   =  \hspace{0.15cm}\underline{0.186 \cdot 10^{-9}\,{\rm W}}
+
= {0.186 \cdot 10^{-9}\,{\rm W}}
 +
\hspace{0.05cm}
 +
   =  \hspace{0.15cm}\underline{0.186 \,{\rm nW}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
:<b>5.</b>&nbsp;&nbsp;Das Verhältnis <i>P</i><sub>E</sub>/<i>P</i><sub>NEXT</sub> ist ca. 4.73 &middot; 10<sup>6</sup>. Daraus ergibt sich der logarithmische Wert zu
+
 
:$$10 \cdot {\rm lg}\hspace{0.15cm} \frac{P_{\rm E}}{P_{\rm NEXT}} =
+
'''(5)'''&nbsp; &nbsp; ${P_{\rm E}}/{P_{\rm NEXT}} \approx 4.73 \cdot 10^{6}$&nbsp; is valid,&nbsp; resulting in the logarithmic value of
 +
:$$10 \cdot {\rm lg}\hspace{0.15cm} {P_{\rm E}}/{P_{\rm NEXT}} =
 
10 \cdot {\rm lg}\hspace{0.15cm}
 
10 \cdot {\rm lg}\hspace{0.15cm}
  4.73 \cdot 10^{6}
+
  (4.73 \cdot 10^{6})
 
\hspace{0.15cm}\underline{= 66.7\,\,{\rm dB}}
 
\hspace{0.15cm}\underline{= 66.7\,\,{\rm dB}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 108: Line 136:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.3 Kupfer–Doppelader^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.3 Balanced Copper Twisted Pair^]]

Latest revision as of 13:41, 17 February 2022

Local and long-distance crosstalk

On the  $S_0$ bus at  $\rm ISDN$  ("Integrated Services Digital Networks"),  data is transmitted separately according to transmission direction on a star quad.  The received signal of an ISDN device is therefore disturbed not only by connections on other wires but also by crosstalk from its own transmitted signal.

In this exercise,  two ISDN terminals with  $\text{50 m}$  distance are considered,  assuming:

  • For the power-spectral density  $\rm (PSD)$  of the transmitter of each terminal,  let  ${\it\Phi}_{0} = 5 \cdot 10^{-9} \ \rm W/Hz$  be very simplified:
$${\it\Phi}_{s}(f)= \left\{ \begin{array}{c} {\it\Phi}_{0} \\ 0 \end{array} \right. \begin{array}{c} {\rm{for}} \\ {\rm{for}} \end{array}\begin{array}{*{20}c} { |f| \le f_0 = 100\:{\rm kHz} \hspace{0.05cm},} \\ { |f| > f_0\hspace{0.05cm}.} \end{array}$$
  • The power transfer function on the  $S_0$ bus  $\text{(0.6 mm}$  copper two–wire line,  $\text{50 m)}$  is to be approximated in the considered range  $0 < |f| < 100 \ \rm kHz$  as follows  (very simplified):
$$|H_{\rm K}(f)|^2 = 0.9 - 0.04 \cdot \frac{|f|}{\rm 1 \ MHz}\hspace{0.05cm}.$$
  • The near–end crosstalk power transfer function is given as follows  $(\rm NEXT$ stands for  "near–end crosstalk"$)$:
$$|H_{\rm NEXT}(f)|^2 = \left ( K_{\rm NEXT} \cdot |f|\right )^{3/2}\hspace{0.05cm},\hspace{0.2cm}K_{\rm NEXT} = 6 \cdot 10^{-10}\,{\rm s} \hspace{0.05cm}.$$

The diagram shows the system configuration under consideration. 

  • Two twisted pairs connect subscribers  $1$  and  $2$   (one in each direction),
  • while on two other twisted pairs  (not in the same star quad)  there is a connection between subscriber  $3$  and subscriber  $4$. 





Notes:




Questions

1

Which of the following statements are true?

Transmitter  $S_1$  leads to near-end crosstalk at receiver  $E_2$. 
Transmitter  $S_2$  leads to near-end crosstalk at receiver  $E_2$. 
Transmitter  $S_3$  leads to near-end crosstalk at receiver  $E_2$. 
Near-end crosstalk is more unpleasant than far-end crosstalk.

2

Calculate the transmission power using the simplified assumption given?   (German:  "Sendeleistung"   ⇒   subscript  "S").

$P_{\rm S} \ = \ $

$\ \rm mW$

3

What is the useful power arriving at the receiver?   (German:  "Empfangsleistung"   ⇒   subscript  "E").

$P_{\rm E} \ = \ $

$\ \rm mW$

4

Specify the power of the crosstalk interference. Note:  $ 1 \ \rm nW = 10^{-9} \ \rm W$.

$P_\text{NEXT} \ = \ $

$\ \rm nW$

5

What is the signal–to–crosstalk signal–to–noise ratio?

$\rm 10 \cdot \ lg\ {\it P}_E/{\it P}_\text{NEXT} \ = \ $

$\ \rm dB$


Solution

(1)  Crosstalk is caused by coupling of the transmitted signals to adjacent pairs of wires.

  • In the case of near–end crosstalk  $\rm (NEXT)$,  the interfering transmitter and the interfered receiver are at the same end of the line.
  • In the case of far–end crosstalk  $\rm (FEXT)$,  they are at different ends.
  • However,  since the interfering signals are also very strongly attenuated on the copper wire pair,  NEXT is always by far the more dominant interfering effect compared with FEXT.


Solutions 2 and 4  are correct:

  • Here,  the receiver  $E_2$  is particularly disturbed by its own transmitter  $S_2$,  i.e. by near–end crosstalk.
  • The interference of  $E_2$  by  $S_3$  is far–end crosstalk,  while  $S_1$  provides the useful signal for  $E_2$.


(2)  The transmit power is equal to the integral over the power-spectral density:

$$P_{\rm S} = {\it\Phi}_{0} \cdot 2 f_0 = 5 \cdot 10^{-9}\, {\rm W}/{\rm Hz} \cdot 2 \cdot 10^{5}\,{\rm Hz}\hspace{0.15cm}\underline{ = 1\,{\rm mW}} \hspace{0.05cm}.$$


(3)  The following applies to the received power  (excluding the component due to near–end crosstalk):

$$P_{\rm E} = \int_{-\infty}^{ +\infty} {\it\Phi}_{s}(f) \cdot |H_{\rm K}(f)|^2 \hspace{0.1cm}{\rm d}f = 2 {\it\Phi}_{0} \cdot \int_{0}^{ f_0} \left [ 0.9 - 0.04 \cdot \frac{f}{f_0} \right ] \hspace{0.1cm}{\rm d}f $$
$$\Rightarrow \hspace{0.3cm}P_{\rm E} = 2 {\it\Phi}_{0} \cdot \left [ 0.9 \cdot f_0 - \frac{0.04}{2} \cdot \frac{f_0^2}{f_0} \right ] = 2 {\it\Phi}_{0} \cdot 0.88 = 0.88 \cdot P_{\rm S}\hspace{0.15cm}\underline{ = 0.88 \,{\rm mW}} \hspace{0.05cm}.$$


(4)  For the interfering power component of the crosstalk interference one obtains

$$P_{\rm NEXT} = \int_{-\infty}^{ +\infty} {\it\Phi}_{s}(f) \cdot |H_{\rm NEXT}(f)|^2 \hspace{0.1cm}{\rm d}f = 2 {\it\Phi}_{0} \cdot {K_{\rm NEXT}\hspace{0.01cm}}^{3/2} \cdot \int_{0}^{ f_0} f^{3/2} \hspace{0.1cm}{\rm d}f $$
$$\Rightarrow \hspace{0.3cm} P_{\rm NEXT} = \frac{4}{5} \cdot {\it\Phi}_{0} \cdot {K_{\rm NEXT}\hspace{0.01cm}}^{3/2} \cdot f_0^{5/2} = 0.8 \cdot 5 \cdot 10^{-9}\, \frac{\rm W}{\rm Hz} \cdot \left ( 6 \cdot 10^{-10}\,{\rm s}\right )^{3/2} \cdot \left ( 10^{5}\,{\rm Hz}\right )^{5/2} = {0.186 \cdot 10^{-9}\,{\rm W}} \hspace{0.05cm} = \hspace{0.15cm}\underline{0.186 \,{\rm nW}} \hspace{0.05cm}.$$


(5)    ${P_{\rm E}}/{P_{\rm NEXT}} \approx 4.73 \cdot 10^{6}$  is valid,  resulting in the logarithmic value of

$$10 \cdot {\rm lg}\hspace{0.15cm} {P_{\rm E}}/{P_{\rm NEXT}} = 10 \cdot {\rm lg}\hspace{0.15cm} (4.73 \cdot 10^{6}) \hspace{0.15cm}\underline{= 66.7\,\,{\rm dB}} \hspace{0.05cm}.$$