Difference between revisions of "Aufgaben:Exercise 4.8: Near-end and Far-end Crosstalk Disorders"

From LNTwww
m (Text replacement - "”" to """)
m (Text replacement - "power spectral density" to "power-spectral density")
 
(9 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:EN_LZI_A_4_8.png|right|frame|Zum Nah– und Fernnebensprechen]]
+
[[File:EN_LZI_A_4_8.png|right|frame|Local and long-distance crosstalk]]
Auf dem  $S_0$–Bus bei  [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|$\rm ISDN$]]  (''Integrated Services Digital Networks'')  werden die Daten getrennt nach Übertragungsrichtung auf einem Sternvierer übertragen.  Das Empfangssignal eines ISDN–Geräts wird daher außer von Verbindungen auf anderen Adern auch durch Nebensprechen von seinem eigenen Sendesignal gestört.
+
On the  $S_0$ bus at  [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|$\rm ISDN$]]  ("Integrated Services Digital Networks"),  data is transmitted separately according to transmission direction on a star quad.  The received signal of an ISDN device is therefore disturbed not only by connections on other wires but also by crosstalk from its own transmitted signal.
  
In dieser Aufgabe werden zwei ISDN–Terminals im Abstand von  $\text{50 m}$  betrachtet, wobei vorausgesetzt wird:
+
In this exercise,  two ISDN terminals with  $\text{50 m}$  distance are considered,  assuming:
* Für das Leistungsdichtespektrum (LDS) des Senders eines jeden Terminals gelte  mit  ${\it\Phi}_{0} = 5 \cdot  10^{-9} \ \rm  W/Hz$  sehr stark vereinfacht:
+
* For the power-spectral density  $\rm (PSD)$  of the transmitter of each terminal,  let  ${\it\Phi}_{0} = 5 \cdot  10^{-9} \ \rm  W/Hz$  be very simplified:
 
:$${\it\Phi}_{s}(f)= \left\{ \begin{array}{c} {\it\Phi}_{0} \\
 
:$${\it\Phi}_{s}(f)= \left\{ \begin{array}{c} {\it\Phi}_{0} \\
 
  0  \end{array} \right.
 
  0  \end{array} \right.
\begin{array}{c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
+
\begin{array}{c}  {\rm{for}}  \\ {\rm{for}}
 
   \end{array}\begin{array}{*{20}c}
 
   \end{array}\begin{array}{*{20}c}
 
{  |f| \le f_0 = 100\:{\rm kHz} \hspace{0.05cm},}  \\
 
{  |f| \le f_0 = 100\:{\rm kHz} \hspace{0.05cm},}  \\
 
{ |f| > f_0\hspace{0.05cm}.}
 
{ |f| > f_0\hspace{0.05cm}.}
 
\end{array}$$
 
\end{array}$$
* Die Leistungsübertragungsfunktion auf dem&nbsp; $S_0$&ndash;Bus &nbsp;$\text{(0.6 mm}$&nbsp; Kupfer&ndash;Zweidrahtleitung, &nbsp;$\text{50 m)}$&nbsp; soll im betrachteten Bereich &nbsp;$0 < |f| < 100 \ \rm kHz$&nbsp; wie folgt (stark vereinfacht) angenähert werden:
+
* The power transfer function on the&nbsp; $S_0$ bus &nbsp;$\text{(0.6 mm}$&nbsp; copper two&ndash;wire line, &nbsp;$\text{50 m)}$&nbsp; is to be approximated in the considered range &nbsp;$0 < |f| < 100 \ \rm kHz$&nbsp; as follows&nbsp; (very simplified):
 
:$$|H_{\rm K}(f)|^2 = 0.9 - 0.04 \cdot \frac{|f|}{\rm 1 \ MHz}\hspace{0.05cm}.$$
 
:$$|H_{\rm K}(f)|^2 = 0.9 - 0.04 \cdot \frac{|f|}{\rm 1 \ MHz}\hspace{0.05cm}.$$
* Die Nahnebensprech&ndash;Leistungsübertragungsfunktion ist wie folgt gegeben&nbsp; $(\rm NEXT$ steht dabei für ''Near&ndash;End&ndash;Crosstalk''$)$:
+
* The near&ndash;end crosstalk power transfer function is given as follows&nbsp; $(\rm NEXT$ stands for&nbsp; "near&ndash;end crosstalk"$)$:
 
:$$|H_{\rm NEXT}(f)|^2 = \left ( K_{\rm NEXT} \cdot |f|\right )^{3/2}\hspace{0.05cm},\hspace{0.2cm}K_{\rm
 
:$$|H_{\rm NEXT}(f)|^2 = \left ( K_{\rm NEXT} \cdot |f|\right )^{3/2}\hspace{0.05cm},\hspace{0.2cm}K_{\rm
 
   NEXT} = 6 \cdot 10^{-10}\,{\rm s}
 
   NEXT} = 6 \cdot 10^{-10}\,{\rm s}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Die Grafik zeigt die betrachtete Systemkonfiguration.&nbsp; Mit zwei Doppeladern sind die Teilnehmer &nbsp;$1$&nbsp; und &nbsp;$2$&nbsp; verbunden (je eine in beide Richtungen), während auf zwei anderen Doppeladern (nicht im gleichen Sternvierer) eine Verbindung zwischen Teilnehmer &nbsp;$3$&nbsp; und Teilnehmer &nbsp;$4$&nbsp; besteht.
+
The diagram shows the system configuration under consideration.&nbsp;  
 +
*Two twisted pairs connect subscribers &nbsp;$1$&nbsp; and &nbsp;$2$ &nbsp; (one in each direction),  
 +
*while on two other twisted pairs&nbsp; (not in the same star quad)&nbsp; there is a connection between subscriber &nbsp;$3$&nbsp; and subscriber &nbsp;$4$.&nbsp;
  
  
Line 31: Line 33:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum Kapitel&nbsp;  [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern|Eigenschaften von Kupfer–Doppeladern]]&nbsp; im vorliegenden Buch.
+
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern|Properties of Balanced Copper Pairs]].
*Es bezieht sich aber auch auf das Kapitel&nbsp; [[Examples_of_Communication_Systems/ISDN-Basisanschluss|ISDN-Basisanschluss]]&nbsp; im Buch "Beispiele von Nachrichtensystemen".  
+
*It also refers to the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN-Basisanschluss|ISDN Basic Access]]&nbsp; in the book "Examples of Communication Systems".  
 
   
 
   
  
Line 40: Line 42:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Der Sender &nbsp;$S_1$&nbsp; führt bei Empfänger &nbsp;$E_2$&nbsp; zu Nahnebensprechen.
+
- Transmitter &nbsp;$S_1$&nbsp; leads to near-end crosstalk at receiver &nbsp;$E_2$.&nbsp;
+ Der Sender &nbsp;$S_2$&nbsp; führt bei Empfänger &nbsp;$E_2$&nbsp; zu Nahnebensprechen.
+
+ Transmitter &nbsp;$S_2$&nbsp; leads to near-end crosstalk at receiver &nbsp;$E_2$.&nbsp;
- Der Sender &nbsp;$S_3$&nbsp; führt bei Empfänger &nbsp;$E_2$&nbsp; zu Nahnebensprechen.
+
- Transmitter &nbsp;$S_3$&nbsp; leads to near-end crosstalk at receiver &nbsp;$E_2$.&nbsp;
+ Nahnebensprechen ist unangenehmer als Fernnebensprechen.
+
+ Near-end crosstalk is more unpleasant than far-end crosstalk.
  
  
{Berechnen Sie die Sendeleistung mit der angegebenen vereinfachten Annahme.
+
{Calculate the transmission power using the simplified assumption given? &nbsp; (German:&nbsp; "Sendeleistung" &nbsp; &rArr; &nbsp; subscript&nbsp;  "S").
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $  { 1 3% } $\ \rm  mW$
 
$P_{\rm S} \ = \ $  { 1 3% } $\ \rm  mW$
  
  
{Wie groß ist die beim Empfänger ankommende Nutzleistung?
+
{What is the useful power arriving at the receiver? &nbsp; (German:&nbsp; "Empfangsleistung" &nbsp; &rArr; &nbsp; subscript&nbsp; "E").
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm E} \ = \ $ { 0.88 3% } $\ \rm  mW$
 
$P_{\rm E} \ = \ $ { 0.88 3% } $\ \rm  mW$
  
  
{Geben Sie die Leistung der Nebensprechstörung an.&nbsp; Es gilt &nbsp;$ 1 \ \rm nW = 10^{-9} \ \rm W$.
+
{Specify the power of the crosstalk interference.&nbsp;Note:  &nbsp;$ 1 \ \rm nW = 10^{-9} \ \rm W$.
 
|type="{}"}
 
|type="{}"}
 
$P_\text{NEXT} \ = \ $ { 0.186 3% }  $\ \rm  nW$
 
$P_\text{NEXT} \ = \ $ { 0.186 3% }  $\ \rm  nW$
  
  
{Wie groß ist der Signal&ndash;zu&ndash;Nebensprech&ndash;Störabstand?
+
{What is the signal&ndash;to&ndash;crosstalk signal&ndash;to&ndash;noise ratio?
 
|type="{}"}
 
|type="{}"}
 
$\rm 10 \cdot \ lg\ {\it P}_E/{\it P}_\text{NEXT} \ = \ $ { 66.7 3% } $\ \rm  dB$
 
$\rm 10 \cdot \ lg\ {\it P}_E/{\it P}_\text{NEXT} \ = \ $ { 66.7 3% } $\ \rm  dB$
Line 74: Line 76:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Nebensprechen entsteht durch Kopplungen der übertragenen Signale auf benachbarte Doppeladern.  
+
'''(1)'''&nbsp; Crosstalk is caused by coupling of the transmitted signals to adjacent pairs of wires.
*Bei Nahnebensprechen (NEXT) befinden sich der störende Sender und der gestörte Empfänger am selben Ende der Leitung, bei Fernnebensprechen (FEXT) an unterschiedlichen Enden.  
+
*In the case of near&ndash;end crosstalk&nbsp; $\rm (NEXT)$,&nbsp; the interfering transmitter and the interfered receiver are at the same end of the line.
*Da aber auch die Störsignale auf der Kupferdoppelader sehr stark gedämpft werden, ist NEXT gegenüber FEXT stets der bei weitem dominantere Störeffekt.
+
* In the case of far&ndash;end crosstalk&nbsp; $\rm (FEXT)$,&nbsp; they are at different ends.
 +
*However,&nbsp; since the interfering signals are also very strongly attenuated on the copper wire pair,&nbsp; NEXT is always by far the more dominant interfering effect compared with FEXT.
  
  
Richtig sind hier die <u>Lösungsvorschläge 2 und 4</u>:  
+
<u>Solutions 2 and 4</u>&nbsp; are correct:  
*Der Empfänger $E_2$ wird hier besonders durch seinen eigenen Sender $S_2$, also durch Nahnebensprechen gestört.  
+
*Here,&nbsp; the receiver&nbsp; $E_2$&nbsp; is particularly disturbed by its own transmitter&nbsp; $S_2$,&nbsp; i.e. by near&ndash;end crosstalk.
*Die Beeinträchtigung von $E_2$ durch $S_3$ ist Fernnebensprechen, während $S_1$ für $E_2$ das Nutzsignal bereitstellt.
+
*The interference of&nbsp; $E_2$&nbsp; by&nbsp; $S_3$&nbsp; is far&ndash;end crosstalk,&nbsp; while&nbsp;  $S_1$&nbsp; provides the useful signal for&nbsp; $E_2$.
  
  
  
'''(2)'''&nbsp; Die Sendeleistung ist gleich dem Integral über das Leistungsdichtespektrum:
+
'''(2)'''&nbsp; The transmit power is equal to the integral over the power-spectral density:
 
:$$P_{\rm S} = {\it\Phi}_{0} \cdot 2 f_0 = 5 \cdot 10^{-9}\,  {\rm W}/{\rm Hz} \cdot 2 \cdot 10^{5}\,{\rm Hz}\hspace{0.15cm}\underline{ = 1\,{\rm mW}}
 
:$$P_{\rm S} = {\it\Phi}_{0} \cdot 2 f_0 = 5 \cdot 10^{-9}\,  {\rm W}/{\rm Hz} \cdot 2 \cdot 10^{5}\,{\rm Hz}\hspace{0.15cm}\underline{ = 1\,{\rm mW}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 93: Line 96:
  
  
'''(3)'''&nbsp; Für die Empfangsleistung gilt (ohne den Anteil durch Nahnebensprechen):
+
'''(3)'''&nbsp; The following applies to the received power&nbsp; (excluding the component due to near&ndash;end crosstalk):
 
:$$P_{\rm E}  =  \int_{-\infty}^{
 
:$$P_{\rm E}  =  \int_{-\infty}^{
 
+\infty}  {\it\Phi}_{s}(f) \cdot |H_{\rm K}(f)|^2
 
+\infty}  {\it\Phi}_{s}(f) \cdot |H_{\rm K}(f)|^2
Line 106: Line 109:
  
  
'''(4)'''&nbsp; Für den störenden Leistungsanteil der Nebensprechstörung erhält man
+
'''(4)'''&nbsp; For the interfering power component of the crosstalk interference one obtains
 
:$$P_{\rm NEXT}  =  \int_{-\infty}^{
 
:$$P_{\rm NEXT}  =  \int_{-\infty}^{
 
+\infty}  {\it\Phi}_{s}(f) \cdot |H_{\rm NEXT}(f)|^2
 
+\infty}  {\it\Phi}_{s}(f) \cdot |H_{\rm NEXT}(f)|^2
Line 123: Line 126:
  
  
'''(5)'''&nbsp; Es gilt&nbsp; ${P_{\rm E}}/{P_{\rm NEXT}} \approx 4.73 \cdot 10^{6}$.&nbsp; Daraus ergibt sich der logarithmische Wert zu
+
'''(5)'''&nbsp; &nbsp; ${P_{\rm E}}/{P_{\rm NEXT}} \approx 4.73 \cdot 10^{6}$&nbsp; is valid,&nbsp; resulting in the logarithmic value of
 
:$$10 \cdot {\rm lg}\hspace{0.15cm} {P_{\rm E}}/{P_{\rm NEXT}} =
 
:$$10 \cdot {\rm lg}\hspace{0.15cm} {P_{\rm E}}/{P_{\rm NEXT}} =
 
10 \cdot {\rm lg}\hspace{0.15cm}
 
10 \cdot {\rm lg}\hspace{0.15cm}
Line 133: Line 136:
  
  
[[Category:Linear and Time-Invariant Systems: Exercises|^4.3 Kupfer–Doppelader^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.3 Balanced Copper Twisted Pair^]]

Latest revision as of 13:41, 17 February 2022

Local and long-distance crosstalk

On the  $S_0$ bus at  $\rm ISDN$  ("Integrated Services Digital Networks"),  data is transmitted separately according to transmission direction on a star quad.  The received signal of an ISDN device is therefore disturbed not only by connections on other wires but also by crosstalk from its own transmitted signal.

In this exercise,  two ISDN terminals with  $\text{50 m}$  distance are considered,  assuming:

  • For the power-spectral density  $\rm (PSD)$  of the transmitter of each terminal,  let  ${\it\Phi}_{0} = 5 \cdot 10^{-9} \ \rm W/Hz$  be very simplified:
$${\it\Phi}_{s}(f)= \left\{ \begin{array}{c} {\it\Phi}_{0} \\ 0 \end{array} \right. \begin{array}{c} {\rm{for}} \\ {\rm{for}} \end{array}\begin{array}{*{20}c} { |f| \le f_0 = 100\:{\rm kHz} \hspace{0.05cm},} \\ { |f| > f_0\hspace{0.05cm}.} \end{array}$$
  • The power transfer function on the  $S_0$ bus  $\text{(0.6 mm}$  copper two–wire line,  $\text{50 m)}$  is to be approximated in the considered range  $0 < |f| < 100 \ \rm kHz$  as follows  (very simplified):
$$|H_{\rm K}(f)|^2 = 0.9 - 0.04 \cdot \frac{|f|}{\rm 1 \ MHz}\hspace{0.05cm}.$$
  • The near–end crosstalk power transfer function is given as follows  $(\rm NEXT$ stands for  "near–end crosstalk"$)$:
$$|H_{\rm NEXT}(f)|^2 = \left ( K_{\rm NEXT} \cdot |f|\right )^{3/2}\hspace{0.05cm},\hspace{0.2cm}K_{\rm NEXT} = 6 \cdot 10^{-10}\,{\rm s} \hspace{0.05cm}.$$

The diagram shows the system configuration under consideration. 

  • Two twisted pairs connect subscribers  $1$  and  $2$   (one in each direction),
  • while on two other twisted pairs  (not in the same star quad)  there is a connection between subscriber  $3$  and subscriber  $4$. 





Notes:




Questions

1

Which of the following statements are true?

Transmitter  $S_1$  leads to near-end crosstalk at receiver  $E_2$. 
Transmitter  $S_2$  leads to near-end crosstalk at receiver  $E_2$. 
Transmitter  $S_3$  leads to near-end crosstalk at receiver  $E_2$. 
Near-end crosstalk is more unpleasant than far-end crosstalk.

2

Calculate the transmission power using the simplified assumption given?   (German:  "Sendeleistung"   ⇒   subscript  "S").

$P_{\rm S} \ = \ $

$\ \rm mW$

3

What is the useful power arriving at the receiver?   (German:  "Empfangsleistung"   ⇒   subscript  "E").

$P_{\rm E} \ = \ $

$\ \rm mW$

4

Specify the power of the crosstalk interference. Note:  $ 1 \ \rm nW = 10^{-9} \ \rm W$.

$P_\text{NEXT} \ = \ $

$\ \rm nW$

5

What is the signal–to–crosstalk signal–to–noise ratio?

$\rm 10 \cdot \ lg\ {\it P}_E/{\it P}_\text{NEXT} \ = \ $

$\ \rm dB$


Solution

(1)  Crosstalk is caused by coupling of the transmitted signals to adjacent pairs of wires.

  • In the case of near–end crosstalk  $\rm (NEXT)$,  the interfering transmitter and the interfered receiver are at the same end of the line.
  • In the case of far–end crosstalk  $\rm (FEXT)$,  they are at different ends.
  • However,  since the interfering signals are also very strongly attenuated on the copper wire pair,  NEXT is always by far the more dominant interfering effect compared with FEXT.


Solutions 2 and 4  are correct:

  • Here,  the receiver  $E_2$  is particularly disturbed by its own transmitter  $S_2$,  i.e. by near–end crosstalk.
  • The interference of  $E_2$  by  $S_3$  is far–end crosstalk,  while  $S_1$  provides the useful signal for  $E_2$.


(2)  The transmit power is equal to the integral over the power-spectral density:

$$P_{\rm S} = {\it\Phi}_{0} \cdot 2 f_0 = 5 \cdot 10^{-9}\, {\rm W}/{\rm Hz} \cdot 2 \cdot 10^{5}\,{\rm Hz}\hspace{0.15cm}\underline{ = 1\,{\rm mW}} \hspace{0.05cm}.$$


(3)  The following applies to the received power  (excluding the component due to near–end crosstalk):

$$P_{\rm E} = \int_{-\infty}^{ +\infty} {\it\Phi}_{s}(f) \cdot |H_{\rm K}(f)|^2 \hspace{0.1cm}{\rm d}f = 2 {\it\Phi}_{0} \cdot \int_{0}^{ f_0} \left [ 0.9 - 0.04 \cdot \frac{f}{f_0} \right ] \hspace{0.1cm}{\rm d}f $$
$$\Rightarrow \hspace{0.3cm}P_{\rm E} = 2 {\it\Phi}_{0} \cdot \left [ 0.9 \cdot f_0 - \frac{0.04}{2} \cdot \frac{f_0^2}{f_0} \right ] = 2 {\it\Phi}_{0} \cdot 0.88 = 0.88 \cdot P_{\rm S}\hspace{0.15cm}\underline{ = 0.88 \,{\rm mW}} \hspace{0.05cm}.$$


(4)  For the interfering power component of the crosstalk interference one obtains

$$P_{\rm NEXT} = \int_{-\infty}^{ +\infty} {\it\Phi}_{s}(f) \cdot |H_{\rm NEXT}(f)|^2 \hspace{0.1cm}{\rm d}f = 2 {\it\Phi}_{0} \cdot {K_{\rm NEXT}\hspace{0.01cm}}^{3/2} \cdot \int_{0}^{ f_0} f^{3/2} \hspace{0.1cm}{\rm d}f $$
$$\Rightarrow \hspace{0.3cm} P_{\rm NEXT} = \frac{4}{5} \cdot {\it\Phi}_{0} \cdot {K_{\rm NEXT}\hspace{0.01cm}}^{3/2} \cdot f_0^{5/2} = 0.8 \cdot 5 \cdot 10^{-9}\, \frac{\rm W}{\rm Hz} \cdot \left ( 6 \cdot 10^{-10}\,{\rm s}\right )^{3/2} \cdot \left ( 10^{5}\,{\rm Hz}\right )^{5/2} = {0.186 \cdot 10^{-9}\,{\rm W}} \hspace{0.05cm} = \hspace{0.15cm}\underline{0.186 \,{\rm nW}} \hspace{0.05cm}.$$


(5)    ${P_{\rm E}}/{P_{\rm NEXT}} \approx 4.73 \cdot 10^{6}$  is valid,  resulting in the logarithmic value of

$$10 \cdot {\rm lg}\hspace{0.15cm} {P_{\rm E}}/{P_{\rm NEXT}} = 10 \cdot {\rm lg}\hspace{0.15cm} (4.73 \cdot 10^{6}) \hspace{0.15cm}\underline{= 66.7\,\,{\rm dB}} \hspace{0.05cm}.$$