Difference between revisions of "Aufgaben:Exercise 5.2: Error Correlation Function"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models}}
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models}}
  
[[File:P_ID1854__Dig_A_5_2_version1.png|right|frame|Probabilities of error distances and ECF]]
+
[[File:P_ID1854__Dig_A_5_2_version1.png|right|frame|Error distance probability & error correlation function]]
 
For the characterization of digital channel models one uses among other things
 
For the characterization of digital channel models one uses among other things
* the error correlation function (ECF)
+
* the  "error correlation function"  $\rm (ECF)$
 
:$$\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu +
 
:$$\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu +
 
k}\big]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
 
k}\big]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
  
* the error distance probabilities
+
* the  "error distance probabilities"
 
:$${\rm Pr}( a =k)  \hspace{0.05cm}, \hspace{0.2cm} k \ge
 
:$${\rm Pr}( a =k)  \hspace{0.05cm}, \hspace{0.2cm} k \ge
 
1\hspace{0.05cm}.$$
 
1\hspace{0.05cm}.$$
  
 
Here denote:
 
Here denote:
* $〈e_{\rm \nu}〉$  is the error sequence with  $e_{\rm \nu} ∈ \{0, 1\}$.  
+
* $〈e_{\rm \nu}〉$  is the error sequence with  $e_{\rm \nu} ∈ \{0, 1\}$.
* $a$  indicates the error distance.
+
 +
* $a$  indicates the error distance with  $a_{\rm \nu} ∈ \{0, 1, 2, \text{...} \}$.
  
  
Two directly consecutive bit errors are thus characterized by the error distance  $a = 1$. 
+
Two directly consecutive symbol errors are thus characterized by the error distance  $a = 1$. 
  
 
The table shows exemplary values of the error distance probabilities  ${\rm Pr}(a = k)$  as well as the error correlation function  $\varphi_e(k)$.  
 
The table shows exemplary values of the error distance probabilities  ${\rm Pr}(a = k)$  as well as the error correlation function  $\varphi_e(k)$.  
Line 26: Line 27:
  
  
 
+
Note:  The exercise covers the subject matter of the chapter  [[Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models|"Parameters of Digital Channel Models"]].
 
 
''Note:''
 
* The exercise covers the subject matter of the chapter  [[Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models|"Parameters of Digital Channel Models"]].
 
 
   
 
   
  
Line 35: Line 33:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Which value results for the average error probability?
+
{Which value results for the mean error probability?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm M} \ = \ ${ 0.1 3% }
 
$p_{\rm M} \ = \ ${ 0.1 3% }
Line 43: Line 41:
 
${\rm E}\big[a\big] \ = \ ${ 10 3% }
 
${\rm E}\big[a\big] \ = \ ${ 10 3% }
  
{Calculate the value of the error correlation function (ECF) for&nbsp; $k = 1$.
+
{Calculate the value of the error correlation function&nbsp; $\rm (ECF)$&nbsp; for&nbsp; $k = 1$.
 
|type="{}"}
 
|type="{}"}
 
$\varphi_e(k = 1) \ = \ ${ 0.0309 3% }  
 
$\varphi_e(k = 1) \ = \ ${ 0.0309 3% }  
Line 54: Line 52:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The mean probability of error is equal to the ECF value for $k = 0$. Namely, because of $e_{\nu} &#8712; \{0, 1\}$:
+
'''(1)'''&nbsp; The mean error probability is equal to the ECF value for&nbsp; $k = 0$.&nbsp; Namely,&nbsp; because of&nbsp; $e_{\nu} &#8712; \{0, 1\}$:
 
:$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]=
 
:$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]=
 
p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1}
 
p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1}
Line 60: Line 58:
  
  
'''(2)'''&nbsp; The mean error distance is equal to the reciprocal of the mean error probability. That is:
+
'''(2)'''&nbsp; The mean&nbsp; $($or:&nbsp; "average"$)$&nbsp; error distance is equal to the reciprocal of the mean error probability.&nbsp; That is:
 
:$${\rm E}\big[a\big] = 1/p_{\rm M} \ \underline {= 10}.$$
 
:$${\rm E}\big[a\big] = 1/p_{\rm M} \ \underline {= 10}.$$
  
  
'''(3)'''&nbsp; According to the definition equation and [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Conditional_Probability| "Bayes' theorem"]], the following result is obtained:
+
'''(3)'''&nbsp; According to the definition equation and&nbsp; [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Conditional_Probability| "Bayes' theorem"]],&nbsp; the following result is obtained:
 
:$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm
 
:$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm
 
E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot
 
E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot
Line 72: Line 70:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*The first probability is equal to ${\rm Pr}(a = 1)$ and the second probability is equal to $p_{\rm M}$:
+
*The first probability is equal to&nbsp; ${\rm Pr}(a = 1)$&nbsp; and the second probability is equal to&nbsp; $p_{\rm M}$:
:$$\varphi_{e}(k = 1) = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309}
+
:$$\varphi_{e}(k = 1) = {\rm Pr}(a = 1) \cdot p_{\rm M} = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; The ECF value $\varphi_e(k = 2)$ can be interpreted (approximately) as follows:
+
'''(4)'''&nbsp; The ECF value&nbsp; $\varphi_e(k = 2)$&nbsp; can be interpreted&nbsp; (approximately)&nbsp; as follows:
 
:$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1
 
:$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M} \hspace{0.3cm}
+
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M} $$
\Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1
+
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1
 
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k
 
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k
 
= 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$
 
= 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$
  
This probability is composed of &nbsp;"At time $\nu+1$ an error occurs"&nbsp; and &nbsp;"At time $\nu+1$ there is no error":
+
*This probability is composed of &nbsp;"at time&nbsp; $\nu+1$&nbsp; an error occurs"&nbsp; and &nbsp;"at time&nbsp; $\nu+1$&nbsp; there is no error":
 
:$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} =
 
:$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} =
 
1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2)\hspace{0.3cm}
 
1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2)\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}{\rm Pr}( a =2)= 0.267 - 0.3091^2 \hspace{0.15cm}\underline {= 0.1715}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}{\rm Pr}( a =2)= 0.267 - 0.3091^2 \hspace{0.15cm}\underline {= 0.1715}\hspace{0.05cm}.$$
  
In the calculation, it was assumed that the individual error distances are statistically independent of each other.
+
*In the calculation,&nbsp; it was assumed that the individual error distances are statistically independent of each other.
*However, this assumption is valid only for a special class of channel models called "renewing".
+
#However,&nbsp; this assumption is valid only for a special class of channel models called&nbsp; "renewing".
*The bundle fault model considered here does not satisfy this condition.
+
#The burst error model considered here does not satisfy this condition.
*The actual probability&nbsp; ${\rm Pr}(a = 2) = 0.1675$&nbsp; therefore deviates slightly from the value calculated here&nbsp; $(0.1715)$.&nbsp;  
+
#The actual probability&nbsp; ${\rm Pr}(a = 2) = 0.1675$&nbsp; therefore deviates slightly from the value calculated here&nbsp; $(0.1715)$.&nbsp;  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
[[Category:Digital Signal Transmission: Exercises|^5.1 Digital Channel Models^]]
 
[[Category:Digital Signal Transmission: Exercises|^5.1 Digital Channel Models^]]

Latest revision as of 04:39, 18 September 2022

Error distance probability & error correlation function

For the characterization of digital channel models one uses among other things

  • the  "error correlation function"  $\rm (ECF)$
$$\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu + k}\big]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
  • the  "error distance probabilities"
$${\rm Pr}( a =k) \hspace{0.05cm}, \hspace{0.2cm} k \ge 1\hspace{0.05cm}.$$

Here denote:

  • $〈e_{\rm \nu}〉$  is the error sequence with  $e_{\rm \nu} ∈ \{0, 1\}$.
  • $a$  indicates the error distance with  $a_{\rm \nu} ∈ \{0, 1, 2, \text{...} \}$.


Two directly consecutive symbol errors are thus characterized by the error distance  $a = 1$. 

The table shows exemplary values of the error distance probabilities  ${\rm Pr}(a = k)$  as well as the error correlation function  $\varphi_e(k)$.

  • Some data are missing in the table.
  • These values are to be calculated from the given values.



Note:  The exercise covers the subject matter of the chapter  "Parameters of Digital Channel Models".


Questions

1

Which value results for the mean error probability?

$p_{\rm M} \ = \ $

2

Which value results for the mean error distance?

${\rm E}\big[a\big] \ = \ $

3

Calculate the value of the error correlation function  $\rm (ECF)$  for  $k = 1$.

$\varphi_e(k = 1) \ = \ $

4

What is the approximation for the probability of the error distance  $a = 2$?

${\rm Pr}(a = 2) \ = \ $


Solution

(1)  The mean error probability is equal to the ECF value for  $k = 0$.  Namely,  because of  $e_{\nu} ∈ \{0, 1\}$:

$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]= p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1} \hspace{0.05cm}.$$


(2)  The mean  $($or:  "average"$)$  error distance is equal to the reciprocal of the mean error probability.  That is:

$${\rm E}\big[a\big] = 1/p_{\rm M} \ \underline {= 10}.$$


(3)  According to the definition equation and  "Bayes' theorem",  the following result is obtained:

$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot (e_{\nu + 1}=1)]={\rm Pr}(e_{\nu + 1}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot {\rm Pr}(e_{\nu} = 1) \hspace{0.05cm}.$$
  • The first probability is equal to  ${\rm Pr}(a = 1)$  and the second probability is equal to  $p_{\rm M}$:
$$\varphi_{e}(k = 1) = {\rm Pr}(a = 1) \cdot p_{\rm M} = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309} \hspace{0.05cm}.$$


(4)  The ECF value  $\varphi_e(k = 2)$  can be interpreted  (approximately)  as follows:

$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M} $$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k = 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$
  • This probability is composed of  "at time  $\nu+1$  an error occurs"  and  "at time  $\nu+1$  there is no error":
$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}( a =2)= 0.267 - 0.3091^2 \hspace{0.15cm}\underline {= 0.1715}\hspace{0.05cm}.$$
  • In the calculation,  it was assumed that the individual error distances are statistically independent of each other.
  1. However,  this assumption is valid only for a special class of channel models called  "renewing".
  2. The burst error model considered here does not satisfy this condition.
  3. The actual probability  ${\rm Pr}(a = 2) = 0.1675$  therefore deviates slightly from the value calculated here  $(0.1715)$.