Difference between revisions of "Digital Signal Transmission/Block Coding with 4B3T Codes"

From LNTwww
m (Text replacement - "[File:" to "[File:")
 
(28 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Codierte und mehrstufige Übertragung
+
|Untermenü=Coded and Multilevel Transmission
 
|Vorherige Seite=Redundanzfreie Codierung
 
|Vorherige Seite=Redundanzfreie Codierung
|Nächste Seite=Symbolweise Codierung mit Pseudoternärcodes
+
|Nächste Seite=Symbolwise_Coding_with_Pseudo_Ternary_Codes
 
}}
 
}}
  
  
== Allgemeine Beschreibung von Blockcodes ==
+
== General description of block codes ==
 
<br>
 
<br>
Bei &nbsp;'''Blockcodierung'''&nbsp; wird jeweils eine Sequenz von &nbsp;$m_q$&nbsp; binären Quellensymbolen &nbsp;$(M_q = 2)$&nbsp; durch einen Block von &nbsp;$m_c$&nbsp; Codesymbolen mit dem Symbolumfang &nbsp;$M_c$&nbsp; dargestellt. Um eine jede Quellensymbolfolge &nbsp;$\langle q_\nu \rangle$&nbsp; in eine andere Codesymbolfolge &nbsp;$\langle c_\nu \rangle$&nbsp; umsetzen zu können, muss folgende Bedingung erfüllt sein:
+
In &nbsp;'''block coding'''&nbsp; each sequence of &nbsp;$m_q$&nbsp; binary source symbols &nbsp;$(M_q = 2)$&nbsp; is represented by a block of &nbsp;$m_c$&nbsp; encoder symbols with symbol set size &nbsp;$M_c$.&nbsp; In order to convert each source symbol sequence &nbsp;$\langle q_\nu \rangle$&nbsp; into another encoder symbol sequence &nbsp;$\langle c_\nu \rangle$,&nbsp; the following condition must be satisfied:
 
:$$M_c^{\hspace{0.1cm}m_c} \ge
 
:$$M_c^{\hspace{0.1cm}m_c} \ge
 
M_q^{\hspace{0.1cm}m_q}\hspace{0.05cm}.$$
 
M_q^{\hspace{0.1cm}m_q}\hspace{0.05cm}.$$
  
*Bei den im letzten Kapitel behandelten &nbsp;[[Digitalsignal%C3%BCbertragung/Redundanzfreie_Codierung|redundanzfreien Codes]]&nbsp; gilt in dieser Gleichung das Gleichheitszeichen, wenn &nbsp;$M_q$&nbsp; eine Zweierpotenz ist.  
+
*For the &nbsp;[[Digital_Signal_Transmission/Redundancy-Free_Coding|"redundancy-free codes"]]&nbsp; discussed in the last chapter,&nbsp; the equal sign applies in this equation if &nbsp;$M_q$&nbsp; is a power of two.
*Mit dem Größerzeichen ergibt sich ein redundantes Digitalsignal, wobei die &nbsp;''relative Coderedundanz''&nbsp; wie folgt berechnet werden kann:
+
 
 +
*Using the greater sign results in a redundant digital signal,&nbsp; and the &nbsp;"relative encoder redundancy"&nbsp; can be calculated as follows:
 
:$$r_c = 1-  \frac{m_q \cdot {\rm log_2}\hspace{0.05cm} (M_q)}{m_c \cdot {\rm log_2} \hspace{0.05cm}(M_c)} > 0 \hspace{0.05cm}.$$
 
:$$r_c = 1-  \frac{m_q \cdot {\rm log_2}\hspace{0.05cm} (M_q)}{m_c \cdot {\rm log_2} \hspace{0.05cm}(M_c)} > 0 \hspace{0.05cm}.$$
  
 
+
The best known block code for transmission coding is the &nbsp; '''4B3T code''' &nbsp; with the code parameters
Der bekannteste Blockcode zur Übertragungscodierung ist der &nbsp;'''4B3T&ndash;Code'''&nbsp; mit den Codeparametern
 
 
:$$m_q = 4,\hspace{0.2cm}M_q = 2,\hspace{0.2cm}m_c =
 
:$$m_q = 4,\hspace{0.2cm}M_q = 2,\hspace{0.2cm}m_c =
 
3,\hspace{0.2cm}M_c = 3\hspace{0.05cm},$$
 
3,\hspace{0.2cm}M_c = 3\hspace{0.05cm},$$
  
der bereits in den 1970&ndash;er Jahren entwickelt wurde und beispielsweise bei &nbsp;[[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN| ISDN]]&nbsp; (<i>Integrated Services Digital Networks</i>&nbsp;) eingesetzt wird.  
+
which was developed in the 1970s and is used,&nbsp; for example,&nbsp; in &nbsp;[[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|"ISDN"]]&nbsp; ("Integrated Services Digital Networks").
 +
 
 +
Such a 4B3T code has the following properties:
 +
*Because of &nbsp;$m_q \cdot T_{\rm B} =  m_c \cdot T$,&nbsp; the symbol duration &nbsp;$T$&nbsp; of the ternary encoded  signal is larger than the bit duration &nbsp;$T_{\rm B}$&nbsp; of the binary source signal by a factor of &nbsp;$4/3$.&nbsp; This results in the favorable property that the bandwidth requirement is a quarter less than for redundancy-free binary transmission.
 +
 
 +
*The relative redundancy can be calculated with the above equation and results in &nbsp;$r_c \approx 16\%$.&nbsp; This redundancy is used in the 4B3T code to achieve DC freedom.
  
Ein 4B3T&ndash;Code besitzt folgende Eigenschaften:
+
*The 4B3T encoder signal can thus also be transmitted over a channel&nbsp; (German:&nbsp; "Kanal" &nbsp; &rArr;&nbsp; subscript:&nbsp; "K")&nbsp; with the property &nbsp;$H_{\rm K}(f= 0) = 0$&nbsp; without noticeable degradation.
*Wegen &nbsp;$m_q \cdot T_{\rm B} =  m_c \cdot T$&nbsp; ist die Symboldauer &nbsp;$T$&nbsp; des Codersignals um den Faktor &nbsp;$4/3$&nbsp; größer als die Bitdauer &nbsp;$T_{\rm B}$&nbsp; des binären Quellensignals. Daraus ergibt sich die günstige Eigenschaft, dass der Bandbreitenbedarf um ein Viertel geringer ist als bei redundanzfreier Binärübertragung.
 
*Die relative Redundanz kann mit obiger Gleichung berechnet werden und ergibt sich zu &nbsp;$r_c \approx 16\%$. Diese Redundanz wird beim 4B3T&ndash;Code dazu verwendet, um Gleichsignalfreiheit zu erzielen.
 
*Das 4B3T&ndash;codierte Signal kann somit ohne merkbare Beeinträchtigung auch über einen Kanal mit der Eigenschaft &nbsp;$H_{\rm K}(f)= 0) = 0$&nbsp; übertragen werden.
 
  
  
Die Umcodierung der sechzehn möglichen Binärblöcke in die entsprechenden Ternärblöcke könnte prinzipiell nach einer festen Codetabelle vorgenommen werden. Um die spektralen Eigenschaften dieser Codes weiter zu verbessern, werden bei den gebräuchlichen 4B3T&ndash;Codes, nämlich
+
The encoding of the sixteen possible binary blocks into the corresponding ternary blocks could in principle be performed according to a fixed code table. To further improve the spectral properties of these codes, the common 4B3T codes, viz.
  
*dem 4B3T&ndash;Code nach Jessop und Waters,<br>
+
#the 4B3T code according to Jessop and Waters,<br>
*dem MS43&ndash;Code (von: &nbsp;$\rm M$onitored $\rm S$um $\rm 4$B$\rm 3$T&ndash;Code),<br>
+
#the MS43 code (from: &nbsp;$\rm M$onitored $\rm S$um $\rm 4$B$\rm 3$T Code),<br>
*dem FoMoT&ndash;Code (von: &nbsp;$\rm Fo$ur $\rm Mo$de $\rm T$ernary),<br><br>
+
#the FoMoT code (from: &nbsp;$\rm Fo$ur $\rm Mo$de $\rm T$ernary),<br><br>
  
zwei oder mehrere Codetabellen verwendet, deren Auswahl von der &nbsp;<i>laufenden digitalen Summe</i>&nbsp; der Amplitudenkoeffizienten gesteuert wird. Das Prinzip wird auf der nächsten Seite erklärt.<br>
+
two or more code tables are used,&nbsp; the selection of which is controlled by the &nbsp;"running digital sum"&nbsp; of the amplitude coefficients.&nbsp; The principle is explained in the next section.<br>
  
  
== Laufende digitale Summe ==
+
== Running digital sum ==
 
<br>
 
<br>
Nach der Übertragung von &nbsp;<i>l</i>&nbsp; codierten Blöcken gilt für die &nbsp;''laufende digitalen Summe''&nbsp; mit den ternären Amplitudenkoeffizienten &nbsp;$a_\nu \in \{ -1, 0, +1\}$:
+
After the transmission of &nbsp;$l$&nbsp; coded blocks,&nbsp; the &nbsp;"running digital sum"&nbsp; with ternary amplitude coefficients &nbsp;$a_\nu \in \{ -1, \ 0, +1\}$:
[[File:P_ID1334__Dig_T_2_3_S2.png|right|frame|Codetabellen für drei 4B3T-Codes|class=fit]]
+
[[File:EN_Dig_T_2_3_S2.png|right|frame|Code tables for three 4B3T codes|class=fit]]
 
:$${\it \Sigma}_l = \sum_{\nu = 1}^{3 \hspace{0.02cm}\cdot
 
:$${\it \Sigma}_l = \sum_{\nu = 1}^{3 \hspace{0.02cm}\cdot
 
\hspace{0.05cm} l}\hspace{0.02cm} a_\nu \hspace{0.05cm}.$$
 
\hspace{0.05cm} l}\hspace{0.02cm} a_\nu \hspace{0.05cm}.$$
  
Die Auswahl der Tabelle zur Codierung des &nbsp;$(l + 1)$&ndash;ten Blocks erfolgt abhängig vom aktuellen Wert &nbsp;${\it \Sigma}_l$.
+
The selection of the table for encoding the &nbsp;$(l + 1)$&ndash;th block is done depending on the current &nbsp; ${\it \Sigma}_l$&nbsp; value.
 +
 
  
In der Tabelle sind die Codierregeln für die drei oben genannten 4B3T&ndash;Codes angegeben. Zur Vereinfachung der Schreibweise steht &bdquo;+&rdquo; für den Amplitudenkoeffizienten &bdquo;+1&rdquo; und &bdquo;&ndash;&rdquo; für den Koeffizienten &bdquo;&ndash;1&rdquo;.<br>
+
The table shows the coding rules for the three 4B3T codes mentioned above.&nbsp; To simplify the notation,
 +
*&nbsp; "+" stands for the amplitude coefficient "+1" and
 +
*&nbsp; "&ndash;" for the coefficient "&ndash;1".<br>
  
*Die zwei Codetabellen des Jessop&ndash;Waters&ndash;Codes sind so gewählt, dass die laufende digitale Summe &nbsp;${\it \Sigma}_l$&nbsp; stets zwischen $0$ und $5$ liegt.
 
  
+
You can see from the graph:
*Bei den beiden anderen Codes (MS43, FoMoT) erreicht man durch drei bzw. vier alternative Tabellen die Beschränkung der laufenden digitalen Summe auf den Wertebereich &nbsp;$0 \le {\it \Sigma}_l \le 3$.
+
#The two code tables of the Jessop&ndash;Waters code are selected in such a way that the running digital sum &nbsp;${\it \Sigma}_l$&nbsp; always lies between&nbsp; $0$&nbsp; and&nbsp; $5$.<br><br>
 +
#For the other two codes&nbsp; (MS43,&nbsp; FoMoT),&nbsp; the restriction of the running digital sum to the range &nbsp;$0 \le {\it \Sigma}_l \le 3$&nbsp; is achieved by three resp. four alternative tables.
 
<br Clear = all>
 
<br Clear = all>
== AKF und LDS der 4B3T–Codes==
+
== ACF and PSD of the 4B3T codes==
 
<br>
 
<br>
[[File:P_ID1335__Dig_T_2_3_S3_v1.png|right|frame|Markovdiagramm zur Analyse des 4B3T-Codes (FoMoT)|class=fit]]
+
The procedure for calculating the auto-correlation function&nbsp; $\rm (ACF)$&nbsp; and the power-spectral density&nbsp; $\rm (PSD)$&nbsp; is only outlined here in bullet points:
Die Vorgehensweise zur Berechnung von AKF und LDS wird hier nur stichpunktartig skizziert:
+
[[File:P_ID1335__Dig_T_2_3_S3_v1.png|right|frame|Markov diagram for the analysis of the 4B3T FoMoT code |class=fit]]
 +
 
 +
'''(1)''' &nbsp; The transition of the running digital sum from &nbsp;${\it \Sigma}_l$&nbsp; to &nbsp;${\it \Sigma}_{l+1}$&nbsp; is described by a homogeneous stationary first-order Markov chain with six&nbsp; $($Jessop&ndash;Waters$)$&nbsp; or four states&nbsp; $($MS43, FoMoT$)$.&nbsp;  For the FoMoT code, the Markov diagram sketched on the right applies.<br>
 +
 
 +
'''(2)''' &nbsp; The values at the arrows denote the transition probabilities &nbsp;${\rm Pr}({\it \Sigma}_{l+1}|{\it \Sigma}_{l})$,&nbsp; resulting from the respective code tables.&nbsp; The colors correspond to the backgrounds of the table on the last section.&nbsp; Due to the symmetry of the FoMoT Markov diagram,&nbsp; the four probabilities are all the same:
 +
:$${\rm Pr}({\it \Sigma}_{l} = 0) = \text{...} = {\rm Pr}({\it \Sigma}_{l} = 3) = 1/4.$$
 +
 
 +
'''(3)''' &nbsp; The auto-correlation function&nbsp; $\varphi_a(\lambda) = {\rm E}\big [a_\nu \cdot a_{\nu+\lambda}\big ]$&nbsp; of the amplitude coefficients can be determined from this diagram.&nbsp; Simpler than the analytical calculation,&nbsp; which requires a very large computational effort,&nbsp; is the simulative determination of the ACF values by computer.<br>
 +
 
  
'''(1)''' &nbsp; Der Übergang der laufenden digitalen Summe von &nbsp;${\it \Sigma}_l$&nbsp; nach &nbsp;${\it \Sigma}_{l+1}$&nbsp; wird durch eine homogene stationäre Markovkette erster Ordnung mit sechs (Jessop&ndash;Waters) bzw. vier Zuständen (MS43, FoMoT) beschrieben.  Für den FoMoT&ndash;Code gilt das rechts skizzierte Markovdiagramm.<br>
+
Fourier transforming the ACF yields the power-spectral density &nbsp;${\it \Phi}_a(f)$&nbsp; of the amplitude coefficients corresponding to the following graph from&nbsp; [TS87]<ref>Tröndle, K.; Söder, G.:&nbsp; Optimization of Digital Transmission Systems.&nbsp; Boston – London: Artech House, 1987,&nbsp; ISBN:&nbsp; 0-89006-225-0.</ref>.&nbsp; The outlined PSD was determined for the FoMoT code,&nbsp; whose Markov diagram is shown above.&nbsp; The differences between the individual 4B3T codes are not particularly pronounced.&nbsp; Thus,&nbsp; for the MS43 code &nbsp;${\rm E}\big [a_\nu^2 \big ] \approx 0.65$&nbsp; and for the other two 4B3T codes&nbsp; (Jessop/Waters, MS43) &nbsp; ${\rm E}\big [a_\nu^2 \big ] \approx 0.69$. <br>
 +
The statements of this graph can be summarized as follows:
  
 +
[[File:EN_Dig_T_2_4_S3b_v23.png|right|frame|Power-spectral density (of amplitude coefficients) of 4B3T compared to redundancy-free and AMI coding|class=fit]]
  
'''(2)''' &nbsp; Die Werte an den Pfeilen kennzeichnen die Übergangswahrscheinlichkeiten &nbsp;${\rm Pr}({\it \Sigma}_{l+1}|{\it \Sigma}_{l})$, die sich aus den jeweiligen Codetabellen ergeben. Die Farben korrespondieren zu den Hinterlegungen der Tabelle auf der letzten Seite. Aufgrund der Symmetrie des FoMoT&ndash;Markovdiagramms sind die vier Wahrscheinlichkeiten alle gleich:
+
*The graph shows the power-spectral density &nbsp;${\it \Phi}_a(f)$&nbsp; of the amplitude coefficients &nbsp;$a_\nu$&nbsp; of the 4B3T code &nbsp; &rArr; &nbsp; red curve.
:$${\rm Pr}({\it \Sigma}_{l} = 0) = \text{...} = {\rm Pr}({\it \Sigma}_{l} = 3) = 1/4.$$
+
 +
*The PSD &nbsp;${\it \Phi}_s(f)$&nbsp; including the transmission pulse is obtained by multiplying by &nbsp;$1/T \cdot |G_s(f)|^2$ &nbsp; &rArr&nbsp; ${\it \Phi}_a(f)$&nbsp; must be multiplied by a &nbsp;$\rm sinc^2$ function, if &nbsp;$g_s(t)$&nbsp; describes a rectangular pulse.<br>
  
 +
*Redundancy-free binary or ternary coding results in a constant &nbsp;${\it \Phi}_a(f)$&nbsp; in each case,&nbsp; the magnitude of which depends on the number &nbsp;$M$&nbsp; of levels&nbsp;  (different signal power).
  
'''(3)''' &nbsp; Die Autokorrelationsfunktion (AKF)&nbsp; $\varphi_a(\lambda) = {\rm E}\big [a_\nu \cdot a_{\nu+\lambda}\big ]$&nbsp; der Amplitudenkoeffizienten kann aus diesem Diagramm ermittelt werden. Einfacher als die analytische Berechnung, die eines sehr großen Rechenaufwands bedarf, ist die simulative Bestimmung der AKF&ndash;Werte mittels Computer.<br>
+
*In contrast,&nbsp; the 4B3T power-spectral density has zeros at &nbsp;$f = 0$&nbsp; and multiples of &nbsp;$f = 1/T$.&nbsp; <br>
  
 +
*The zero point at &nbsp;$f = 0$&nbsp; has the advantage that the 4B3T signal can also be transmitted without major losses via a so-called&nbsp; "telephone channel",&nbsp; which is not suitable for a DC signal due to transformers.<br>
  
Durch Fouriertransformation der AKF kommt man zum Leistungsdichtespektrum (LDS) &nbsp;${\it \Phi}_a(f)$&nbsp; der Amplitudenkoeffizienten entsprechend der folgenden Grafik aus [ST85]<ref name ='ST85'>Söder, G.; Tröndle, K.: <i>Digitale Übertragungssysteme - Theorie, Optimierung & Dimensionierung der Basisbandsysteme</i>. Berlin – Heidelberg: Springer, 1985.</ref>. Das skizzierte LDS wurde für den FoMoT&ndash;Code ermittelt, dessen Markovdiagramm oben dargestellt ist. Die Unterschiede der einzelnen 4B3T&ndash;Codes sind nicht sonderlich ausgeprägt. So gilt für den MS43&ndash;Code &nbsp;${\rm E}\big [a_\nu^2 \big ] \approx 0.65$&nbsp; und für die beiden anderen 4B3T-Codes (Jessop/Waters, MS43) &nbsp;${\rm E}\big [a_\nu^2 \big ] \approx  0.69$. <br>
+
*The zero point at &nbsp;$f = 1/T$&nbsp; has the disadvantage that this makes clock recovery at the receiver more difficult.&nbsp; Outside of these zeros,&nbsp; the 4B3T codes have a flatter &nbsp;${\it \Phi}_a(f)$&nbsp; than the  &nbsp;[[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes#Properties_of_the_AMI_code|"AMI code"]]&nbsp; discussed in the next chapter&nbsp; (blue curve), which is advantageous.<br>
[[File:P_ID1336__Dig_T_2_3_S3b_v1.png|right|frame|Leistungsdichtespektrum (der Ampltudenkoeffizienten) von 4B3T im Vergleich zu redundanzfreier und AMI-Codierung|class=fit]]
 
Die Aussagen dieser Grafik kann man  wie folgt zusammenfassen:
 
  
*Die Grafik zeigt das LDS &nbsp;${\it \Phi}_a(f)$&nbsp; der Amplitudenkoeffizienten &nbsp;$a_\nu$&nbsp; des 4B3T-Codes &nbsp; &rArr; &nbsp; rote Kurve.
+
*The reason for the flatter PSD curve at medium frequencies as well as the steeper drop towards the zeros is that for the 4B3T codes up to five &nbsp;$+1$&nbsp; coefficients&nbsp; (resp. &nbsp;$-1$ coefficients)&nbsp; can follow each other.&nbsp; With the AMI code,&nbsp; these symbols occur only in isolation.<br>
*Das LDS &nbsp;${\it \Phi}_s(f)$&nbsp; unter Einbeziehung des Sendegrundimpulses erhält man durch Multiplikation mit &nbsp;$1/T \cdot |G_s(f)|^2$. Beispielsweise muss man &nbsp;${\it \Phi}_a(f)$&nbsp; mit einer &nbsp;$\rm si^2$&ndash;Funktion multiplizieren, wenn &nbsp;$g_s(t)$&nbsp;  einen Rechteckimpuls beschreibt.<br>
 
*Bei redundanzfreier Binär&ndash; oder Ternärcodierung ergibt sich jeweils ein konstantes &nbsp;${\it \Phi}_a(f)$, dessen Höhe von der Stufenzahl &nbsp;$M$&nbsp; abhängt (unterschiedliche Signalleistung).
 
*Dagegen weist das 4B3T&ndash;Leistungsdichtespektrum Nullstellen bei &nbsp;$f = 0$&nbsp; und Vielfachen von &nbsp;$f = 1/T$&nbsp; auf.<br>
 
*Die Nullstelle bei &nbsp;$f = 0$&nbsp; hat den Vorteil, dass das 4B3T&ndash;Signal ohne große Einbußen auch über einen so genannten ''Telefonkanal''&nbsp; übertragen werden kann, der aufgrund von Übertragern für ein Gleichsignal nicht geeignet ist.<br>
 
*Die Nullstelle bei &nbsp;$f = 1/T$&nbsp; hat den Nachteil, dass dadurch die Taktrückgewinnung am Empfänger erschwert wird. Außerhalb dieser Nullstellen weisen die 4B3T&ndash;Codes ein flacheres &nbsp;${\it \Phi}_a(f)$&nbsp; auf  als der im nächsten Kapitel behandelte  &nbsp;[[Digitalsignalübertragung/Symbolweise_Codierung_mit_Pseudoternärcodes#Eigenschaften_des_AMI-Codes|AMI&ndash;Code]]&nbsp; (blaue Kurve), was von Vorteil ist.<br>
 
*Der Grund für den flacheren LDS&ndash;Verlauf bei mittleren Frequenzen sowie den steileren Abfall zu den Nullstellen hin ist, dass bei den 4B3T&ndash;Codes bis zu fünf &nbsp;$+1$&ndash; bzw. &nbsp;$-1$&ndash;Koeffizienten aufeinanderfolgen können. Beim AMI&ndash;Code treten diese Symbole nur isoliert auf.<br>
 
  
  
  
== Fehlerwahrscheinlichkeit der 4B3T-Codes==
+
== Error probability of the 4B3T codes==
 
<br>
 
<br>
Wir betrachten nun die Symbolfehlerwahrscheinlichkeit bei Verwendung des 4B3T&ndash;Codes im Vergleich zu redundanzfreier Binär&ndash; und Ternärcodierung, wobei folgende Voraussetzungen gelten sollen:
+
We now consider the symbol error probability when using the 4B3T code in comparison with redundancy-free binary and ternary coding, subject to the following conditions:
*Der Systemvergleich erfolgt zunächst unter der Nebenbedingung der &bdquo;Spitzenwertbegrenzung&rdquo;. Deshalb verwenden wir den rechteckförmigen Sendegrundimpuls, der hierfür optimal ist.<br>
+
[[File:EN_Dig_T_2_3_S4.png|right|frame|Eye diagram for redundancy-free and 4B3T coding|class=fit]]
  
*Der Gesamtfrequenzgang zeigt einen Cosinus&ndash;Rolloff mit bestmöglichem Rolloff&ndash;Faktor &nbsp;$r = 0.8$. Die Rauschleistung &nbsp;$\sigma_d^2$&nbsp; ist somit um &nbsp;$12\%$&nbsp; größer als beim Matched-Filter (globales Optimum), siehe Grafik auf der Seite &nbsp;[[Digitalsignal%C3%BCbertragung/Optimierung_der_Basisband%C3%BCbertragungssysteme#Optimierung_des_Rolloff.E2.80.93Faktors_bei_Spitzenwertbegrenzung| Optimierung des Rolloff-Faktors bei Spitzenwertbegrenzung]]&nbsp; im dritten Hauptkapitel.
+
*The system comparison is first made under the constraint of&nbsp; "peak limitation".&nbsp; Therefore,&nbsp; we use the rectangular basic transmission pulse,&nbsp; which is optimal for this purpose.<br>
  
 +
*The overall frequency response shows a cosine rolloff with best possible rolloff factor &nbsp;$r = 0.8$.&nbsp; The noise power &nbsp;$\sigma_d^2$&nbsp; is thus &nbsp;$12\%$&nbsp; larger than with the matched filter&nbsp; (global optimum),&nbsp; see graph in the section &nbsp;[[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Optimization_of_the_rolloff_factor_with_peak_limitation|"Optimization of the rolloff factor with peak limitation"]]&nbsp; in the third main chapter.
  
Die folgende Grafik zeigt die &nbsp;[[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_unter_Berücksichtigung_von_Impulsinterferenzen#Definition_und_Aussagen_des_Augendiagramms|Augendiagramme]]&nbsp; (mit Rauschen) der drei zu vergleichenden Systeme und enthält zusätzlich in Zeile &nbsp;$\rm A$&nbsp; die Gleichungen zur Berechnung der Fehlerwahrscheinlichkeit. Bei jedem Diagramm sind ca. &nbsp;2000&nbsp; Augenlinien gezeichnet.
 
  
[[File:P_ID1338__Dig_T_2_3_S4_v2.png|center|frame|Augendiagramm bei redundanzfreier bzw. 4B3T-Codierung|class=fit]]
+
The graph shows the &nbsp;[[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Definition_and_statements_of_the_eye_diagram|"eye diagrams"]]&nbsp; (with noise) of the three systems to be compared.&nbsp; It also contains&nbsp; $($in row &nbsp;$\rm A)$&nbsp; the equations for calculating the symbol error probability.&nbsp; Approximately &nbsp;2000&nbsp; eye lines are drawn for each diagram.
  
Die beiden ersten Zeilen der Tabelle beschreiben den Systemvergleich bei Spitzenwertbegrenzung. Für das Binärsystem ergibt sich die Rauschleistung (unter Berücksichtigung der &nbsp;$12\%$&ndash;Erhöhung) zu
+
The first two rows of the table describe the system comparison at peak limitation.&nbsp; For the binary system&nbsp; (first column),&nbsp; the noise power&nbsp; (taking into account the &nbsp;$12\%$ increase)&nbsp; is given by
 
:$$\sigma_d^2 = 1.12 \cdot  {N_0}/({2 \cdot T}) =  0.56 \cdot  {N_0}/{T} = \sigma_1^2 \hspace{0.05cm}.$$
 
:$$\sigma_d^2 = 1.12 \cdot  {N_0}/({2 \cdot T}) =  0.56 \cdot  {N_0}/{T} = \sigma_1^2 \hspace{0.05cm}.$$
  
Für das Augendiagramm und die nachfolgenden Berechnungen ist jeweils ein &bdquo;Störabstand&rdquo; von &nbsp;$10 \cdot \lg \hspace{0.05cm}(s_0^2 \cdot T/N_0) = 13 \ \rm dB$&nbsp; zugrunde gelegt. Damit erhält man:
+
For the eye diagram and the following calculations, a signal-to-noise ratio of &nbsp;$10 \cdot \lg \hspace{0.05cm}(s_0^2 \cdot T/N_0) = 13 \ \rm dB$&nbsp; is assumed in each case. This gives:
 
:$$10 \cdot {\rm lg } \hspace{0.1cm}{s_0^2 \cdot T}/{N_0} = 13 \, {\rm dB } \hspace{0.3cm}
 
:$$10 \cdot {\rm lg } \hspace{0.1cm}{s_0^2 \cdot T}/{N_0} = 13 \, {\rm dB } \hspace{0.3cm}
 
  \Rightarrow \hspace{0.3cm}{s_0^2 \cdot T}/{N_0} = 10^{1.3} \approx 20 \hspace{0.3cm}
 
  \Rightarrow \hspace{0.3cm}{s_0^2 \cdot T}/{N_0} = 10^{1.3} \approx 20 \hspace{0.3cm}
Line 105: Line 115:
 
  \Rightarrow \hspace{0.3cm}{ \sigma_1}/{s_0}\approx 0.167 \hspace{0.05cm}.$$
 
  \Rightarrow \hspace{0.3cm}{ \sigma_1}/{s_0}\approx 0.167 \hspace{0.05cm}.$$
  
In der Zeile &nbsp;$\rm B$&nbsp; ist die dazugehörige Symbolfehlerwahrscheinlichkeit
+
Row &nbsp;$\rm B$&nbsp; shows the associated symbol error probability
&nbsp;$p_{\rm S} \approx {\rm Q}(s_0/\sigma_1) \approx {\rm Q}(6) = 10^{-9}$&nbsp; angegeben.
+
&nbsp;$p_{\rm S} \approx {\rm Q}(s_0/\sigma_1) \approx {\rm Q}(6) = 10^{-9}$.&nbsp;  
  
Die beiden weiteren Augendiagramme lassen sich wie folgt interpretieren:
+
The two other eye diagrams can be interpreted as follows:
*Beim redundanzfreien Ternärsystem ist die Augenöffnung nur halb so groß wie beim Binärsystem und die Rauschleistung &nbsp;$\sigma_2^2$&nbsp; ist um den Faktor &nbsp;$\log_2 \hspace{0.05cm}(3)$&nbsp; kleiner als &nbsp;$\sigma_1^2$.
+
*For the redundancy-free ternary system,&nbsp; the eye opening is only half as large as in the binary case,&nbsp; and the noise power &nbsp;$\sigma_2^2$&nbsp; is smaller than &nbsp;$\sigma_1^2$ by a factor of &nbsp;$\log_2 \hspace{0.05cm}(3)$.&nbsp; The factor &nbsp;$4/3$&nbsp; in front of the Q&ndash;function takes into account that the ternary&nbsp; "0"&nbsp; can be  falsified in both directions.&nbsp; This results in the following numerical values:
*Der Faktor &nbsp;$4/3$&nbsp; vor der Q&ndash;Funktion berücksichtigt, dass die ternäre &bdquo;0&rdquo; in beiden Richtungen verfälscht werden kann. Damit ergeben sich folgende Zahlenwerte:
 
 
:$$\frac{ \sigma_2}{s_0}\hspace{-0.05cm} =\hspace{-0.05cm} \frac{ \sigma_1/s_0}{\sqrt{{\rm log_2} (3)}}\hspace{-0.05cm} =\hspace{-0.05cm}\frac{ 0.167}{1.259}
 
:$$\frac{ \sigma_2}{s_0}\hspace{-0.05cm} =\hspace{-0.05cm} \frac{ \sigma_1/s_0}{\sqrt{{\rm log_2} (3)}}\hspace{-0.05cm} =\hspace{-0.05cm}\frac{ 0.167}{1.259}
 
  \approx 0.133 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm S}\hspace{-0.05cm}=\hspace{-0.05cm} {4}/{3} \cdot {\rm Q}\left (\frac{ 0.5}{0.133}\right)\approx
 
  \approx 0.133 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm S}\hspace{-0.05cm}=\hspace{-0.05cm} {4}/{3} \cdot {\rm Q}\left (\frac{ 0.5}{0.133}\right)\approx
 
  {4}/{3} \cdot {\rm Q}(3.76) \hspace{-0.05cm}= \hspace{-0.05cm}1.1 \cdot 10^{-4} .$$
 
  {4}/{3} \cdot {\rm Q}(3.76) \hspace{-0.05cm}= \hspace{-0.05cm}1.1 \cdot 10^{-4} .$$
*Der 4B3T&ndash;Code liefert noch etwas ungünstigere Ergebnisse, da hier bei gleicher Augenöffnung die Rauschleistung &nbsp;$(\sigma_3^2)$&nbsp; weniger stark vermindert wird als beim redundanzfreien Ternärcode &nbsp;$(\sigma_2^2)$:
+
*The 4B3T code yields even slightly less favorable results, since here the noise power &nbsp;$(\sigma_3^2)$&nbsp; is reduced less than in the redundancy-free ternary code &nbsp;$(\sigma_2^2)$ for the same eye opening:
 
:$$\frac{ \sigma_3}{s_0} = \frac{ \sigma_1/s_0}{\sqrt{4/3}} =\frac{ 0.167}{1.155}
 
:$$\frac{ \sigma_3}{s_0} = \frac{ \sigma_1/s_0}{\sqrt{4/3}} =\frac{ 0.167}{1.155}
 
  \approx 0.145  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm S}= {4}/{3} \cdot {\rm Q}\left (\frac{ 0.5}{0.145}\right)\approx
 
  \approx 0.145  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm S}= {4}/{3} \cdot {\rm Q}\left (\frac{ 0.5}{0.145}\right)\approx
 
  {4}/{3} \cdot {\rm Q}(3.45) =  3.7 \cdot 10^{-4} \hspace{0.05cm}.$$
 
  {4}/{3} \cdot {\rm Q}(3.45) =  3.7 \cdot 10^{-4} \hspace{0.05cm}.$$
  
Die Symbolfehlerwahrscheinlichkeiten bei Leistungsbegrenzung sind für &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) = 13 \ \rm dB$&nbsp; in der Zeile $\rm C$ angegeben:
+
 
*Beim Binärsystem mit NRZ&ndash;Rechteckimpulsen wird &nbsp;$p_{\rm S}$&nbsp; gegenüber der Zeile &nbsp;$\rm B$&nbsp; wegen &nbsp;$E_{\rm B} = s_0^2 \cdot T$&nbsp; nicht verändert:<br>
+
$\text{Row C: &nbsp;  Symbol error probabilities under power limitation}$&nbsp;
:$$p_\text{S, Leistungsbegrenzung} = p_\text{S, Spitzenwertbegrenzung} \approx 10^{-9}.$$
+
 
*Für die beiden Ternärcodes gilt &nbsp;${\rm E}\big [a_\nu^2\big ] \approx 2/3$. Deshalb kann hier die Amplitude um den Faktor &nbsp;$\sqrt{(3/2)} \approx 1.225$&nbsp; vergrößert werden.
+
&nbsp; &nbsp; &rArr; &nbsp; Thereby is given the rectangular basic transmission pulse&nbsp; $g_{s}(t)$&nbsp; and  &nbsp;$10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) = 13 \ \rm dB$:
* Für den redundanzfreien Ternärcode erhält man damit bei Leistungsbegrenzung eine um mehr als den Faktor &nbsp;$4$&nbsp; kleinere Fehlerwahrscheinlichkeit als bei Spitzenwertbegrenzung (vgl. die Zeilen &nbsp;$\rm B$&nbsp; und &nbsp;$\rm C$&nbsp; in obiger Tabelle):
+
*For the&nbsp; '''redundancy-free binary system'''&nbsp; with NRZ rectangular pulses, &nbsp;$p_{\rm S}$&nbsp; is not changed with respect to row &nbsp;$\rm B$&nbsp; because of &nbsp;$E_{\rm B} = s_0^2 \cdot T$:&nbsp; <br>
:$$p_\text{S, Leistungsbegrenzung} = 4/3 \cdot  {\rm Q}(1.225 \cdot 3.76) \approx 2.9 \cdot 10^{-5}  \approx 0.26 \cdot p_\text{S, Spitzenwertbegrenzung} .$$
+
:$$p_\text{S, power limitation} = p_\text{S, peak limitation} \approx 10^{-9}.$$
*Ähnliches (und sogar noch verstärkt) gilt auch für den 4B3T-Code:  
+
*For the two ternary codes, &nbsp;${\rm E}\big [a_\nu^2\big ] \approx 2/3$.&nbsp; Therefore,&nbsp; the amplitude can here  be increased by a factor of &nbsp;$\sqrt{(3/2)} \approx 1.225$.&nbsp;
:$$p_\text{S, Leistungsbegrenzung} = 4/3 \cdot  {\rm Q}(1.225 \cdot 3.45) \approx 1.5 \cdot 10^{-5} \approx 0.04 \cdot p_\text{S, Spitzenwertbegrenzung}.$$
+
 +
* For the&nbsp; '''redundancy-free ternary code''',&nbsp; one thus obtains with power limitation an error probability smaller by factor &nbsp;$ 4$&nbsp; than with peak limitation $($cf. rows &nbsp;$\rm B$&nbsp; and &nbsp;$\rm C)$:
 +
:$$p_\text{S, power limitation} = 4/3 \cdot  {\rm Q}(1.225 \cdot 3.76) \approx 2.9 \cdot 10^{-5}  \approx 0.26 \cdot p_\text{S, peak limitation} .$$
 +
*A similar&nbsp;  (and even stronger)&nbsp; result holds for the&nbsp; '''4B3T code''':
 +
:$$p_\text{S, power limitation} = 4/3 \cdot  {\rm Q}(1.225 \cdot 3.45) \approx 1.5 \cdot 10^{-5} \approx 0.04 \cdot p_\text{S, peak limitation}.$$
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:2.6 Modifizierter MS43-Code|Aufgabe 2.6: Modifizierter MS43-Code]]
+
[[Aufgaben:Exercise_2.6:_Modified_MS43_Code|Exercise 2.6: Modified MS43 Code]]
  
[[Aufgaben:2.6Z_4B3T-Code_nach_Jessop_und_Waters|Aufgabe 2.6Z: 4B3T-Code nach Jessop und Waters]]
+
[[Aufgaben:Exercise_2.6Z:_4B3T_Code_according_to_Jessop_and_Waters|Exercise 2.6Z: 4B3T Code according to Jessop and Waters]]
  
==Quellenverzeichnis==
+
==References==
  
 
<references/>
 
<references/>

Latest revision as of 17:19, 24 August 2022


General description of block codes


In  block coding  each sequence of  $m_q$  binary source symbols  $(M_q = 2)$  is represented by a block of  $m_c$  encoder symbols with symbol set size  $M_c$.  In order to convert each source symbol sequence  $\langle q_\nu \rangle$  into another encoder symbol sequence  $\langle c_\nu \rangle$,  the following condition must be satisfied:

$$M_c^{\hspace{0.1cm}m_c} \ge M_q^{\hspace{0.1cm}m_q}\hspace{0.05cm}.$$
  • For the  "redundancy-free codes"  discussed in the last chapter,  the equal sign applies in this equation if  $M_q$  is a power of two.
  • Using the greater sign results in a redundant digital signal,  and the  "relative encoder redundancy"  can be calculated as follows:
$$r_c = 1- \frac{m_q \cdot {\rm log_2}\hspace{0.05cm} (M_q)}{m_c \cdot {\rm log_2} \hspace{0.05cm}(M_c)} > 0 \hspace{0.05cm}.$$

The best known block code for transmission coding is the   4B3T code   with the code parameters

$$m_q = 4,\hspace{0.2cm}M_q = 2,\hspace{0.2cm}m_c = 3,\hspace{0.2cm}M_c = 3\hspace{0.05cm},$$

which was developed in the 1970s and is used,  for example,  in  "ISDN"  ("Integrated Services Digital Networks").

Such a 4B3T code has the following properties:

  • Because of  $m_q \cdot T_{\rm B} = m_c \cdot T$,  the symbol duration  $T$  of the ternary encoded signal is larger than the bit duration  $T_{\rm B}$  of the binary source signal by a factor of  $4/3$.  This results in the favorable property that the bandwidth requirement is a quarter less than for redundancy-free binary transmission.
  • The relative redundancy can be calculated with the above equation and results in  $r_c \approx 16\%$.  This redundancy is used in the 4B3T code to achieve DC freedom.
  • The 4B3T encoder signal can thus also be transmitted over a channel  (German:  "Kanal"   ⇒  subscript:  "K")  with the property  $H_{\rm K}(f= 0) = 0$  without noticeable degradation.


The encoding of the sixteen possible binary blocks into the corresponding ternary blocks could in principle be performed according to a fixed code table. To further improve the spectral properties of these codes, the common 4B3T codes, viz.

  1. the 4B3T code according to Jessop and Waters,
  2. the MS43 code (from:  $\rm M$onitored $\rm S$um $\rm 4$B$\rm 3$T Code),
  3. the FoMoT code (from:  $\rm Fo$ur $\rm Mo$de $\rm T$ernary),

two or more code tables are used,  the selection of which is controlled by the  "running digital sum"  of the amplitude coefficients.  The principle is explained in the next section.


Running digital sum


After the transmission of  $l$  coded blocks,  the  "running digital sum"  with ternary amplitude coefficients  $a_\nu \in \{ -1, \ 0, +1\}$:

Code tables for three 4B3T codes
$${\it \Sigma}_l = \sum_{\nu = 1}^{3 \hspace{0.02cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu \hspace{0.05cm}.$$

The selection of the table for encoding the  $(l + 1)$–th block is done depending on the current   ${\it \Sigma}_l$  value.


The table shows the coding rules for the three 4B3T codes mentioned above.  To simplify the notation,

  •   "+" stands for the amplitude coefficient "+1" and
  •   "–" for the coefficient "–1".


You can see from the graph:

  1. The two code tables of the Jessop–Waters code are selected in such a way that the running digital sum  ${\it \Sigma}_l$  always lies between  $0$  and  $5$.

  2. For the other two codes  (MS43,  FoMoT),  the restriction of the running digital sum to the range  $0 \le {\it \Sigma}_l \le 3$  is achieved by three resp. four alternative tables.


ACF and PSD of the 4B3T codes


The procedure for calculating the auto-correlation function  $\rm (ACF)$  and the power-spectral density  $\rm (PSD)$  is only outlined here in bullet points:

Markov diagram for the analysis of the 4B3T FoMoT code

(1)   The transition of the running digital sum from  ${\it \Sigma}_l$  to  ${\it \Sigma}_{l+1}$  is described by a homogeneous stationary first-order Markov chain with six  $($Jessop–Waters$)$  or four states  $($MS43, FoMoT$)$.  For the FoMoT code, the Markov diagram sketched on the right applies.

(2)   The values at the arrows denote the transition probabilities  ${\rm Pr}({\it \Sigma}_{l+1}|{\it \Sigma}_{l})$,  resulting from the respective code tables.  The colors correspond to the backgrounds of the table on the last section.  Due to the symmetry of the FoMoT Markov diagram,  the four probabilities are all the same:

$${\rm Pr}({\it \Sigma}_{l} = 0) = \text{...} = {\rm Pr}({\it \Sigma}_{l} = 3) = 1/4.$$

(3)   The auto-correlation function  $\varphi_a(\lambda) = {\rm E}\big [a_\nu \cdot a_{\nu+\lambda}\big ]$  of the amplitude coefficients can be determined from this diagram.  Simpler than the analytical calculation,  which requires a very large computational effort,  is the simulative determination of the ACF values by computer.


Fourier transforming the ACF yields the power-spectral density  ${\it \Phi}_a(f)$  of the amplitude coefficients corresponding to the following graph from  [TS87][1].  The outlined PSD was determined for the FoMoT code,  whose Markov diagram is shown above.  The differences between the individual 4B3T codes are not particularly pronounced.  Thus,  for the MS43 code  ${\rm E}\big [a_\nu^2 \big ] \approx 0.65$  and for the other two 4B3T codes  (Jessop/Waters, MS43)   ${\rm E}\big [a_\nu^2 \big ] \approx 0.69$.
The statements of this graph can be summarized as follows:

Power-spectral density (of amplitude coefficients) of 4B3T compared to redundancy-free and AMI coding
  • The graph shows the power-spectral density  ${\it \Phi}_a(f)$  of the amplitude coefficients  $a_\nu$  of the 4B3T code   ⇒   red curve.
  • The PSD  ${\it \Phi}_s(f)$  including the transmission pulse is obtained by multiplying by  $1/T \cdot |G_s(f)|^2$   ⇒   ${\it \Phi}_a(f)$  must be multiplied by a  $\rm sinc^2$ function, if  $g_s(t)$  describes a rectangular pulse.
  • Redundancy-free binary or ternary coding results in a constant  ${\it \Phi}_a(f)$  in each case,  the magnitude of which depends on the number  $M$  of levels  (different signal power).
  • In contrast,  the 4B3T power-spectral density has zeros at  $f = 0$  and multiples of  $f = 1/T$. 
  • The zero point at  $f = 0$  has the advantage that the 4B3T signal can also be transmitted without major losses via a so-called  "telephone channel",  which is not suitable for a DC signal due to transformers.
  • The zero point at  $f = 1/T$  has the disadvantage that this makes clock recovery at the receiver more difficult.  Outside of these zeros,  the 4B3T codes have a flatter  ${\it \Phi}_a(f)$  than the  "AMI code"  discussed in the next chapter  (blue curve), which is advantageous.
  • The reason for the flatter PSD curve at medium frequencies as well as the steeper drop towards the zeros is that for the 4B3T codes up to five  $+1$  coefficients  (resp.  $-1$ coefficients)  can follow each other.  With the AMI code,  these symbols occur only in isolation.


Error probability of the 4B3T codes


We now consider the symbol error probability when using the 4B3T code in comparison with redundancy-free binary and ternary coding, subject to the following conditions:

Eye diagram for redundancy-free and 4B3T coding
  • The system comparison is first made under the constraint of  "peak limitation".  Therefore,  we use the rectangular basic transmission pulse,  which is optimal for this purpose.
  • The overall frequency response shows a cosine rolloff with best possible rolloff factor  $r = 0.8$.  The noise power  $\sigma_d^2$  is thus  $12\%$  larger than with the matched filter  (global optimum),  see graph in the section  "Optimization of the rolloff factor with peak limitation"  in the third main chapter.


The graph shows the  "eye diagrams"  (with noise) of the three systems to be compared.  It also contains  $($in row  $\rm A)$  the equations for calculating the symbol error probability.  Approximately  2000  eye lines are drawn for each diagram.

The first two rows of the table describe the system comparison at peak limitation.  For the binary system  (first column),  the noise power  (taking into account the  $12\%$ increase)  is given by

$$\sigma_d^2 = 1.12 \cdot {N_0}/({2 \cdot T}) = 0.56 \cdot {N_0}/{T} = \sigma_1^2 \hspace{0.05cm}.$$

For the eye diagram and the following calculations, a signal-to-noise ratio of  $10 \cdot \lg \hspace{0.05cm}(s_0^2 \cdot T/N_0) = 13 \ \rm dB$  is assumed in each case. This gives:

$$10 \cdot {\rm lg } \hspace{0.1cm}{s_0^2 \cdot T}/{N_0} = 13 \, {\rm dB } \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{s_0^2 \cdot T}/{N_0} = 10^{1.3} \approx 20 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\sigma_1^2 = 0.56 \cdot {s_0^2}/{20} \approx 0.028 \cdot s_0^2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{ \sigma_1}/{s_0}\approx 0.167 \hspace{0.05cm}.$$

Row  $\rm B$  shows the associated symbol error probability  $p_{\rm S} \approx {\rm Q}(s_0/\sigma_1) \approx {\rm Q}(6) = 10^{-9}$. 

The two other eye diagrams can be interpreted as follows:

  • For the redundancy-free ternary system,  the eye opening is only half as large as in the binary case,  and the noise power  $\sigma_2^2$  is smaller than  $\sigma_1^2$ by a factor of  $\log_2 \hspace{0.05cm}(3)$.  The factor  $4/3$  in front of the Q–function takes into account that the ternary  "0"  can be falsified in both directions.  This results in the following numerical values:
$$\frac{ \sigma_2}{s_0}\hspace{-0.05cm} =\hspace{-0.05cm} \frac{ \sigma_1/s_0}{\sqrt{{\rm log_2} (3)}}\hspace{-0.05cm} =\hspace{-0.05cm}\frac{ 0.167}{1.259} \approx 0.133 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm S}\hspace{-0.05cm}=\hspace{-0.05cm} {4}/{3} \cdot {\rm Q}\left (\frac{ 0.5}{0.133}\right)\approx {4}/{3} \cdot {\rm Q}(3.76) \hspace{-0.05cm}= \hspace{-0.05cm}1.1 \cdot 10^{-4} .$$
  • The 4B3T code yields even slightly less favorable results, since here the noise power  $(\sigma_3^2)$  is reduced less than in the redundancy-free ternary code  $(\sigma_2^2)$ for the same eye opening:
$$\frac{ \sigma_3}{s_0} = \frac{ \sigma_1/s_0}{\sqrt{4/3}} =\frac{ 0.167}{1.155} \approx 0.145 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm S}= {4}/{3} \cdot {\rm Q}\left (\frac{ 0.5}{0.145}\right)\approx {4}/{3} \cdot {\rm Q}(3.45) = 3.7 \cdot 10^{-4} \hspace{0.05cm}.$$


$\text{Row C:   Symbol error probabilities under power limitation}$ 

    ⇒   Thereby is given the rectangular basic transmission pulse  $g_{s}(t)$  and  $10 \cdot \lg \hspace{0.05cm}(E_{\rm B}/N_0) = 13 \ \rm dB$:

  • For the  redundancy-free binary system  with NRZ rectangular pulses,  $p_{\rm S}$  is not changed with respect to row  $\rm B$  because of  $E_{\rm B} = s_0^2 \cdot T$: 
$$p_\text{S, power limitation} = p_\text{S, peak limitation} \approx 10^{-9}.$$
  • For the two ternary codes,  ${\rm E}\big [a_\nu^2\big ] \approx 2/3$.  Therefore,  the amplitude can here be increased by a factor of  $\sqrt{(3/2)} \approx 1.225$. 
  • For the  redundancy-free ternary code,  one thus obtains with power limitation an error probability smaller by factor  $ 4$  than with peak limitation $($cf. rows  $\rm B$  and  $\rm C)$:
$$p_\text{S, power limitation} = 4/3 \cdot {\rm Q}(1.225 \cdot 3.76) \approx 2.9 \cdot 10^{-5} \approx 0.26 \cdot p_\text{S, peak limitation} .$$
  • A similar  (and even stronger)  result holds for the  4B3T code:
$$p_\text{S, power limitation} = 4/3 \cdot {\rm Q}(1.225 \cdot 3.45) \approx 1.5 \cdot 10^{-5} \approx 0.04 \cdot p_\text{S, peak limitation}.$$


Exercises for the chapter


Exercise 2.6: Modified MS43 Code

Exercise 2.6Z: 4B3T Code according to Jessop and Waters

References

  1. Tröndle, K.; Söder, G.:  Optimization of Digital Transmission Systems.  Boston – London: Artech House, 1987,  ISBN:  0-89006-225-0.