Difference between revisions of "Digital Signal Transmission/Carrier Frequency Systems with Non-Coherent Demodulation"

From LNTwww
Line 134: Line 134:
 
::<math>r_1 = \sqrt{E} \cdot {\rm e}^{{\rm j}\phi} + n_1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_1 = |r_1|\hspace{0.15cm}{\rm is}\hspace{0.15cm}{\rm Rice}\hspace{0.15cm}{\rm distributed}
 
::<math>r_1 = \sqrt{E} \cdot {\rm e}^{{\rm j}\phi} + n_1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_1 = |r_1|\hspace{0.15cm}{\rm is}\hspace{0.15cm}{\rm Rice}\hspace{0.15cm}{\rm distributed}
 
  \hspace{0.05cm},</math>
 
  \hspace{0.05cm},</math>
::<math> r_2 =  n_2\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_2 = |r_2|\hspace{0.15cm}{\rm ist}\hspace{0.15cm}{\rm rayleighverteilt}
+
::<math> r_2 =  n_2\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_2 = |r_2|\hspace{0.15cm}{\rm is}\hspace{0.15cm}{\rm Rayleigh}\hspace{0.15cm}{\rm distributed}
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Hierbei steht&nbsp; $E$&nbsp; wegen&nbsp; $M = 2$&nbsp; für die <i>Symbolenergie</i>&nbsp; $(E_{\rm S})$&nbsp; und die <i>Bitenergie</i>&nbsp;  $(E_{\rm B})$&nbsp; gleichermaßen, und&nbsp; $n_1$&nbsp; und&nbsp; $n_2$&nbsp; sind unkorrelierte komplexe Rauschgrößen mit Mittelwert Null und Varianz&nbsp; $2 \cdot \sigma_n^2$. Somit lautet die&nbsp; [[Theory_of_Stochastic_Signals/Zweidimensionale_Zufallsgrößen#Verbundwahrscheinlichkeitsdichtefunktion|Verbundwahrscheinlichkeitsdichtefunktion]]:
+
Here,&nbsp; $E$&nbsp; due to&nbsp; $M = 2$&nbsp; represents the <i>symbol energy</i>&nbsp; $(E_{\rm S})$&nbsp; and the <i>bit energy</i>&nbsp;  $(E_{\rm B})$&nbsp; equally, and&nbsp; $n_1$&nbsp; and&nbsp; $n_2$&nbsp; are uncorrelated complex noise variables with mean zero and variance&nbsp; $2 \cdot \sigma_n^2$. Thus, the&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#Joint_probability_density_function|"joint probability density function"]] is:
 
::<math>p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) =  
 
::<math>p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) =  
 
   p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot  
 
   p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot  
Line 148: Line 148:
 
  \cdot {\rm e }^{  - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.</math>
 
  \cdot {\rm e }^{  - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.</math>
  
Die Fehlerwahrscheinlichkeit ergibt sich allgemein wie folgt:
+
The error probability is generally obtained as follows:
  
 
::<math>{\rm Pr}({\cal{E}}) = \int_{0}^{\infty} \int_{\eta_1}^{\infty}  
 
::<math>{\rm Pr}({\cal{E}}) = \int_{0}^{\infty} \int_{\eta_1}^{\infty}  
Line 156: Line 156:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Für die&nbsp; '''Fehlerwahrscheinlichkeit bei nichtkohärenter Demodulation der binären FSK'''&nbsp; erhält man  nach einigen mathematischen Umformungen  das überraschend einfache Ergebnis
+
$\text{Conclusion:}$&nbsp; For the&nbsp; '''error probability with non-coherent demodulation of the binary FSK''',&nbsp; one obtains after some mathematical transformations the surprisingly simple result
  
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Zum Vergleich sei nochmals das Ergebnis für die '''kohärente Demodulation''' angegeben:
+
For comparison, the result for '''coherent demodulation''' is given again:
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q}(\sqrt{ E_{\rm S}/N_0})
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q}(\sqrt{ E_{\rm S}/N_0})
 
  \hspace{0.05cm}.</math>}}
 
  \hspace{0.05cm}.</math>}}
Line 167: Line 167:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Herleitung:}$&nbsp; Das vorweg genommene Ergebnis soll nun in einigen Rechenschritten hergeleitet werden. Wir gehen dabei von den folgenden Gleichungen aus:
+
$\text{Derivation:}$&nbsp; The result taken in advance is now to be derived in some calculation steps. We start from the following equations:
  
 
:$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0) \cdot \int_{\eta_1}^{\infty}  
 
:$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0) \cdot \int_{\eta_1}^{\infty}  
 
   p_{y_2 \hspace{0.03cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2\,\,{\rm d} \eta_1
 
   p_{y_2 \hspace{0.03cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2\,\,{\rm d} \eta_1
  \hspace{0.05cm},\hspace{0.5cm}\text{mit}$$
+
  \hspace{0.05cm},\hspace{0.5cm}\text{with}$$
 
:$$p_{y_1 \hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{  - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot  \sqrt{E} }/{ \sigma_n^2}\right ] \hspace{0.05cm},\hspace{0.5cm}p_{y_\hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2}  \cdot {\rm e }^{  - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.$$
 
:$$p_{y_1 \hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{  - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot  \sqrt{E} }/{ \sigma_n^2}\right ] \hspace{0.05cm},\hspace{0.5cm}p_{y_\hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2}  \cdot {\rm e }^{  - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.$$
  
<b>(1)</b> &nbsp; Das innere Integral gibt die Wahrscheinlichkeit an, dass die rayleighverteilte Zufallsgröße&nbsp; $\eta_2$&nbsp; größer ist als&nbsp; $\eta_1$&nbsp; &ndash; siehe Musterlösung zur&nbsp; [[Aufgaben:Aufgabe_4.17Z:_Rayleigh-_und_Riceverteilung|Aufgabe 4.17Z]]:
+
<b>(1)</b> &nbsp; The inner integral gives the probability that the Rayleigh distributed random variable&nbsp; $\eta_2$&nbsp; is larger than&nbsp; $\eta_1$&nbsp; &ndash; see solution to&nbsp; [[Aufgaben:Exercise_4.17Z:_Rayleigh_and_Rice_Distribution|"Exercise 4.17Z"]]:
  
 
:$$\int_{\eta_1}^{\infty}  p_{y_2 \hspace{0.03cm}\vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2 =
 
:$$\int_{\eta_1}^{\infty}  p_{y_2 \hspace{0.03cm}\vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2 =
Line 183: Line 183:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
<b>(2)</b> &nbsp; Mit den (willkürlichen) Substitutionen&nbsp; $C_0^2  = E/4$&nbsp; und&nbsp; $\sigma_0^2 = \sigma_n^2/2$&nbsp; erhält man daraus:
+
<b>(2)</b> &nbsp; With the (arbitrary) substitutions&nbsp; $C_0^2  = E/4$&nbsp; and&nbsp; $\sigma_0^2 = \sigma_n^2/2$,&nbsp; we obtain:
  
 
:$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2}
 
:$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2}
Line 192: Line 192:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
<b>(3)</b> &nbsp; Durch Verschieben von Anteilen vor das Integral gelingt es, dass der Integrand wieder eine&nbsp; [[Theory_of_Stochastic_Signals/Weitere_Verteilungen#Riceverteilung|Riceverteilung]]&nbsp; beschreibt:
+
<b>(3)</b> &nbsp; By shifting fractions in front of the integral, we succeed that the integrand again describes a&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rice_PDF|"Rice distribution"]]:&nbsp;  
  
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] \cdot \int\limits_{0}^{\infty} \frac{\eta_1}{ \sigma_0^2}
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] \cdot \int\limits_{0}^{\infty} \frac{\eta_1}{ \sigma_0^2}
Line 199: Line 199:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
<b>(4)</b> &nbsp; Der Integrand beschreibt nun die Rice&ndash;WDF. Das Integral über das gesamte Definitionsgebiet von&nbsp; $0$&nbsp; bis &nbsp;$+\infty$&nbsp; ergibt wie bei jeder WDF den Wert Eins, so dass gilt:
+
<b>(4)</b> &nbsp; The integrand now describes the Rice PDF. The integral over the entire definition area from&nbsp; $0$&nbsp; to &nbsp;$+\infty$&nbsp; yields the value one, as for any PDF, so that holds:
  
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ]\hspace{0.05cm}.</math>
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ]\hspace{0.05cm}.</math>
  
<b>(5)</b> &nbsp; Mit&nbsp; $C_0^2  = E/4$&nbsp; und&nbsp; $\sigma_0^2 = \sigma_n^2/2$&nbsp; sowie der allgemein gültigen Beziehung&nbsp; $\sigma_n^2 = N_0$&nbsp; erhält man schließlich:
+
<b>(5)</b> &nbsp; Finally, with&nbsp; $C_0^2  = E/4$&nbsp; and&nbsp; $\sigma_0^2 = \sigma_n^2/2$&nbsp; and the generally valid relation&nbsp; $\sigma_n^2 = N_0$,&nbsp; we obtain:
 
:$${\rm Pr}({\cal{E} })  
 
:$${\rm Pr}({\cal{E} })  
 
  = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] = {1}/{2} \cdot {\rm exp } \left [ - \frac{ E_{\rm S}/4}{N_{\rm 0}/2}\right ] \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}\hspace{0.05cm}.$$
 
  = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] = {1}/{2} \cdot {\rm exp } \left [ - \frac{ E_{\rm S}/4}{N_{\rm 0}/2}\right ] \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}\hspace{0.05cm}.$$
<b>q.e.d.</b> &nbsp; &nbsp; &nbsp; &nbsp; $E_{\rm S}$&nbsp; gibt hierbei die mittlere Signalenergie pro Symbol an, die bei FSK gleich der Normierungsenergie&nbsp; $E$&nbsp; ist.}}<br>
+
<b>q.e.d.</b> &nbsp; &nbsp; &nbsp; &nbsp; $E_{\rm S}$&nbsp; here indicates the average signal energy per symbol, which is equal to the normalization energy&nbsp; $E$&nbsp; for FSK.}}<br>
  
[[File:P ID2088 Dig T 4 5 S3b version1.png|right|frame|FSK-Fehlerwahrscheinlichkeit bei kohärenter und nichtkohärenter Demodulation|class=fit]]
+
[[File:P ID2088 Dig T 4 5 S3b version1.png|right|frame|FSK error probability for coherent and non-coherent demodulation|class=fit]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Die Grafik stellt die Fehlerwahrscheinlichkeitskurven beider Demodulationsverfahren in Abhängigkeit des AWGN&ndash;Qotienten&nbsp; $E_{\rm S}/N_0$&nbsp; vergleichend gegenüber.
+
$\text{Example 2:}$&nbsp; The graph compares the error probability curves of both demodulation methods as a function of the AWGN quotient&nbsp; $E_{\rm S}/N_0$.&nbsp;  
  
Man erkennt:
+
One can see:
*Die nichtkohärente FSK (rote Kurve) benötigt gegenüber der kohärenten FSK (blaue Kurve) bei&nbsp; $p_{\rm S}= 10^{-5}$&nbsp; ein um &nbsp;$0.8 \ \rm dB$&nbsp; größeres &nbsp;$E_{\rm S}/N_0$.  
+
*The non-coherent FSK (red curve) requires a&nbsp;$0.8 \ \rm dB$&nbsp; larger&nbsp;$E_{\rm S}/N_0$ compared to the coherent FSK (blue curve) at&nbsp; $p_{\rm S}= 10^{-5}$.&nbsp; 
*Bei &nbsp;$p_{\rm S}= 10^{-3}$&nbsp; beträgt der Abstand sogar&nbsp; $1.3 \ \rm dB$.<br>
+
*At &nbsp;$p_{\rm S}= 10^{-3}$&nbsp; the distance is even&nbsp; $1.3 \ \rm dB$.<br>
  
*Dagegen beträgt der Abstand zwischen der kohärenten binären FSK von der kohärenten BPSK unabhängig von der Fehlerwahrscheinlichkeit stets&nbsp; $1.3 \ \rm dB$.
+
*In contrast, the distance between the coherent binary FSK from the coherent BPSK is always&nbsp; $1.3 \ \rm dB$ regardless of the error probability.
 
<br clear =all>}}
 
<br clear =all>}}
  
  
== Nichtkohärente Demodulation von mehrstufiger FSK==
+
== Non-coherent demodulation of multi-level FSK==
 
<br>
 
<br>
[[File:P ID2089 Dig T 4 5 S4a version1.png|right|frame|Orthogonale $M$&ndash;stufige FSK für &nbsp;$M= 3$]]
+
[[File:P ID2089 Dig T 4 5 S4a version1.png|right|frame|Orthogonal $M$&ndash;level FSK for &nbsp;$M= 3$]]
  
Wir betrachten nun die Nachrichtenmenge&nbsp; $\{m_1, m_2,\hspace{0.05cm}\text{ ...} \hspace{0.05cm}, m_{M}\}$&nbsp; und bezeichnen&nbsp; $M$&nbsp; als Stufenzahl.
+
We now consider the message set&nbsp; $\{m_1, m_2,\hspace{0.05cm}\text{ ...} \hspace{0.05cm}, m_{M}\}$&nbsp; and denote&nbsp; $M$&nbsp; as the number of levels.
*Voraussetzung für die Anwendung des Modulationsverfahrens&nbsp; <i>"Frequency Shift Keying"</i>&nbsp; und zugleich eines nichtkohärenten Demodulators ist wie bei der binären FSK ein ganzzahliger Modulationsindex&nbsp; $h$.<br>
+
*As in the case of binary FSK, a prerequisite for the application of the modulation process&nbsp; <i>"Frequency Shift Keying"</i>&nbsp; and at the same time of a non-coherent demodulator is an integer modulation index&nbsp; $h$.<br>
  
*In diesem Fall ist die&nbsp; $M$&ndash;stufige FSK orthogonal und es ergibt sich eine Signalraumkonstellation, wie in der nebenstehenden  Grafik für den Sonderfall&nbsp; $M = 3$&nbsp; dargestellt.<br><br>
+
*In this case, the&nbsp; $M$&ndash;level FSK is orthogonal and a signal space constellation results as shown in the adjacent diagram for the special case&nbsp; $M = 3$.&nbsp; <br><br>
  
Der nichtkohärente Demodulator ist nachfolgend skizziert. Gegenüber der&nbsp; [[Digital_Signal_Transmission/Trägerfrequenzsysteme_mit_nichtkohärenter_Demodulation#Nichtkoh.C3.A4rente_Demodulation_von_bin.C3.A4rer_FSK_.282.E2.80.93FSK.29| Empfängerstruktur für binäre FSK]]&nbsp; unterscheidet sich dieser Empfänger lediglich durch&nbsp; $M$&nbsp; Zweige anstelle von nur zweien, welche die Vergleichswerte&nbsp; $y_1$,&nbsp; $y_2$, ... , $y_M$ liefern.<br>
+
The non-coherent demodulator is sketched below. Compared to the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Non-coherent_demodulation_of_binary_FSK_.282.E2.80.93FSK.29|"receiver structure for binary FSK"]],&nbsp; this receiver differs only by&nbsp; $M$&nbsp; branches instead of only two, which provide the comparison values&nbsp; $y_1$,&nbsp; $y_2$, ... , $y_M$.<br>
  
[[File:P ID2090 Dig T 4 5 S4b version1.png|center|frame|Nichtkohärente Empfängerstruktur für &nbsp;$M$&ndash;stufige FSK|class=fit]]
+
[[File:P ID2090 Dig T 4 5 S4b version1.png|center|frame|Non-coherent receiver structure for &nbsp;$M$&ndash;level FSK|class=fit]]
  
Zur Berechnung der Fehlerwahrscheinlichkeit gehen wir von der Annahme aus, dass&nbsp; $m_1$&nbsp; gesendet wurde. Das bedeutet, dass die Entscheidung richtig ist, wenn der größte Detektionsausgangswert&nbsp; $y_1$&nbsp; ist:
+
To calculate the error probability, we assume that&nbsp; $m_1$&nbsp; was sent. This means that the decision is correct if the largest detection output value is&nbsp; $y_1$:&nbsp;  
  
 
::<math>{\rm Pr}({\cal{C}}) \hspace{-0.1cm}  =  \hspace{-0.1cm} {\rm Pr} \big [ (y_2 < y_1) \cap (y_3 < y_1) \cap ... \cap (y_{M} < y_1)
 
::<math>{\rm Pr}({\cal{C}}) \hspace{-0.1cm}  =  \hspace{-0.1cm} {\rm Pr} \big [ (y_2 < y_1) \cap (y_3 < y_1) \cap ... \cap (y_{M} < y_1)
Line 241: Line 241:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;
+
$\text{Conclusion:}$&nbsp;
* Die &nbsp;'''Fehlerwahrscheinlichkeit der M&ndash;stufigen FSK bei nichtkohärenter Demodulation'''&nbsp; ist gleich ${\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} })$.  
+
* The &nbsp;'''error probability of M&ndash;level FSK in non-coherent demodulation'''&nbsp; is equal to ${\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} })$.  
*Nachfolgend wird gezeigt, dass ${\rm Pr}({\cal{C} })$ wie folgt dargestellt werden kann:
+
*In the following, it is shown that ${\rm Pr}({\cal{C} })$ can be represented as follows:
  
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
 
   {(i+1) \cdot N_0}\right ]  
 
   {(i+1) \cdot N_0}\right ]  
   \hspace{0.05cm}\hspace{0.5cm} \text{mit}\hspace{0.5cm}  E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.</math>
+
   \hspace{0.05cm}\hspace{0.5cm} \text{with}\hspace{0.5cm}  E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.</math>
  
*Im Sonderfall&nbsp; $M = 2$&nbsp; ergibt sich natürlich wieder das im&nbsp; [[Digital_Signal_Transmission/Trägerfrequenzsysteme_mit_kohärenter_Demodulation|letzten Abschnitt]]&nbsp; erhaltene Ergebnis:
+
*In the special case&nbsp; $M = 2$,&nbsp; of course, the result obtained in the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation|"last section"]]&nbsp; is again obtained:
  
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}
Line 256: Line 256:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Herleitung:}$&nbsp; Das vorweg genommene Ergebnis soll nun in einigen Rechenschritten hergeleitet werden. Wir gehen von der Annahme aus, dass&nbsp; $m_1$&nbsp; gesendet wurde. Das bedeutet, dass die Entscheidung richtig ist, wenn der größte Detektionsausgangswert&nbsp; $y_1$&nbsp; ist. Ansonsten gibt es gewisse Analogien zur Herleitung der&nbsp; [[Digital_Signal_Transmission/Trägerfrequenzsysteme_mit_nichtkohärenter_Demodulation#Fehlerwahrscheinlichkeit_bei_nichtkoh.C3.A4renter_2.E2.80.93FSK.E2.80.93Demodulation|BFSK&ndash;Fehlerwahrscheinlichkeit]].<br>
+
$\text{Derivation:}$&nbsp; The result taken in advance shall now be derived in some calculation steps. We assume that&nbsp; $m_1$&nbsp; has been sent. This means that the decision is correct if the largest detection output value is&nbsp; $y_1$.&nbsp; Otherwise, there are certain analogies to the derivation of the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Error_probability_with_non-coherent_2.E2.80.93FSK_demodulation|"BFSK error probability"]].<br>
  
<b>(1)</b> &nbsp; Mit der bedingten Wahrscheinlichkeitsdichte&nbsp; $p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_1)$&nbsp; erhält man:
+
<b>(1)</b> &nbsp; Using the conditional probability density&nbsp; $p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_1)$,&nbsp; we obtain:
  
 
::<math>{\rm Pr}({\cal{C} }) =  \int_{0}^{\infty} {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1)   
 
::<math>{\rm Pr}({\cal{C} }) =  \int_{0}^{\infty} {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1)   
Line 264: Line 264:
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(2)</b> &nbsp; Die Entscheidungswerte&nbsp; $y_2$,&nbsp; $y_3$,&nbsp; ... , $y_M$&nbsp; sind bei gegebenem&nbsp; $y_1$&nbsp; statistisch unabhängig. Deshalb gilt:
+
<b>(2)</b> &nbsp; The decision values&nbsp; $y_2$,&nbsp; $y_3$,&nbsp; ... , $y_M$&nbsp; are statistically independent for given&nbsp; $y_1$.&nbsp; Therefore:
  
 
::<math>{\rm Pr}({\cal{C} }) =  \int_{0}^{\infty}  \left \{ {\rm Pr} \big [ (y_2 < y_1)   
 
::<math>{\rm Pr}({\cal{C} }) =  \int_{0}^{\infty}  \left \{ {\rm Pr} \big [ (y_2 < y_1)   
Line 270: Line 270:
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(3)</b> &nbsp; Der ausgewählte Wert&nbsp; $y_2$&nbsp; konditioniert auf&nbsp; $m_1$&nbsp; besitzt eine Rayleighverteilung mit Parameter&nbsp; $\sigma_n^2$:
+
<b>(3)</b> &nbsp; The selected value&nbsp; $y_2$&nbsp; conditioned on&nbsp; $m_1$&nbsp; has a Rayleigh distribution with parameter&nbsp; $\sigma_n^2$:
  
 
::<math>{\rm Pr} \big [ (y_2 < y_1)   
 
::<math>{\rm Pr} \big [ (y_2 < y_1)   
   \hspace{0.05cm} \vert \hspace{0.05cm}y_1 = \eta_1, m = m_1\big ] \hspace{-0.1cm} = \hspace{-0.1cm} \int_{0}^{\eta_1}  p_{y_2 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm} \vert \hspace{0.05cm}m_1)\,\,{\rm d} \eta_2=  1 - {\rm exp } \big [ - {\eta_1^2 }/({2 \sigma_n^2})\big ] = 1 - a  \hspace{0.2cm}{\rm(Abk\ddot{u}rzung)}
+
   \hspace{0.05cm} \vert \hspace{0.05cm}y_1 = \eta_1, m = m_1\big ] \hspace{-0.1cm} = \hspace{-0.1cm} \int_{0}^{\eta_1}  p_{y_2 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm} \vert \hspace{0.05cm}m_1)\,\,{\rm d} \eta_2=  1 - {\rm exp } \big [ - {\eta_1^2 }/({2 \sigma_n^2})\big ] = 1 - a  \hspace{0.2cm}{\rm(abbreviation)}
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(4)</b> &nbsp; Gesucht ist nun der Ausdruck&nbsp; $(1 -a)^{M-1}$, für den mit der Abkürzung aus <b>(3)</b> gilt:
+
<b>(4)</b> &nbsp; Now we are looking for the expression&nbsp; $(1 -a)^{M-1}$, for which with the abbreviation from <b>(3)</b> holds:
  
 
::<math> (1-a)^{M-1} \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot (-1)^i  \cdot a^i =  \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ]
 
::<math> (1-a)^{M-1} \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot (-1)^i  \cdot a^i =  \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ]
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(5)</b> &nbsp; $y_1$&nbsp; besitzt konditioniert auf&nbsp; $m=m_1$&nbsp; eine&nbsp; [[Digital_Signal_Transmission/Trägerfrequenzsysteme_mit_nichtkohärenter_Demodulation#Rayleigh.E2.80.93_und_Riceverteilung|Riceverteilung]]. Die Wahrscheinlichkeit für eine korrekte Entscheidung lässt sich somit in folgende Form bringen:
+
<b>(5)</b> &nbsp; $y_1$&nbsp; has a&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Rayleigh_and_Rice_Distribution|"Rice distribution"]] conditioned on&nbsp; $m=m_1$.&nbsp; Thus, the probability of a correct decision can be expressed in the following form:
  
 
::<math>{\rm Pr}({\cal{C} }) \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \int_{0}^{\infty} {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \cdot \frac{\eta_1}{ \sigma_n^2}\cdot   
 
::<math>{\rm Pr}({\cal{C} }) \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \int_{0}^{\infty} {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \cdot \frac{\eta_1}{ \sigma_n^2}\cdot   
Line 288: Line 288:
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(6)</b> &nbsp; Durch Substitutionen gelingt es, den Integranden gemäß der Riceverteilung zu gestalten. Da sich jede Wahrscheinlichkeitsdichte zu Eins integriert, erhält man:
+
<b>(6)</b> &nbsp; Substitutions succeed in shaping the integrand according to the Rice distribution. Since each probability density integrates to one, we obtain:
  
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
 
   {(i+1) \cdot N_0}\right ]  
 
   {(i+1) \cdot N_0}\right ]  
   \hspace{0.05cm}\hspace{0.5cm} \text{mit}\hspace{0.5cm}  E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.</math>
+
   \hspace{0.05cm}\hspace{0.5cm} \text{with}\hspace{0.5cm}  E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.</math>
  
<b>(7)</b> &nbsp; Der Sonderfall&nbsp; $M = 2$&nbsp; führt zum genau gleichen Ergebnis, wie für die binäre FSK berechnet:
+
<b>(7)</b> &nbsp; The special case&nbsp; $M = 2$&nbsp; leads to exactly the same result as calculated for the binary FSK:
  
 
::<math>{\rm Pr}({\cal{C} }) = (-1)^0 \cdot {2-1 \choose 0 }  \cdot \frac{1}{0+1} \cdot {\rm exp } \left [ - \frac{0 \cdot E_{\rm S} }
 
::<math>{\rm Pr}({\cal{C} }) = (-1)^0 \cdot {2-1 \choose 0 }  \cdot \frac{1}{0+1} \cdot {\rm exp } \left [ - \frac{0 \cdot E_{\rm S} }
Line 303: Line 303:
 
   \hspace{0.05cm}.</math>}}
 
   \hspace{0.05cm}.</math>}}
  
== Aufgaben zum Kapitel==
+
== Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:4.17_Nichtkohärentes_On-Off-Keying|Aufgabe 4.17: Nichtkohärentes On-Off-Keying]]
+
[[Aufgaben:Exercise_4.17:_Non-Coherent_On-Off_Keying|Exercise 4.17: Non-Coherent On-Off Keying]]
  
[[Aufgaben:4.17Z_Rayleigh-_und_Riceverteilung|Aufgabe 4.17Z: Rayleigh- und Riceverteilung]]
+
[[Aufgaben:Exercise_4.17Z:_Rayleigh_and_Rice_Distribution|Exercise 4.17Z: Rayleigh and Rice Distribution]]
  
[[Aufgaben:4.18_Nichtkohärente_FSK–Demodulation|Aufgabe 4.18: Nichtkohärente_FSK–Demodulation]]
+
[[Aufgaben:Exercise_4.18:_Non-Coherent_FSK_Demodulation|Exercise 4.18: Non-Coherent FSK Demodulation]]
  
[[Aufgaben:4.18Z_BER_von_kohärenter_und_nichtkohärenter_FSK|Aufgabe 4.18Z: BER von kohärenter und nichtkohärenter FSK]]
+
[[Aufgaben:Exercise_4.18Z:_BER_of_Coherent_and_Non-Coherent_FSK|Exercise 4.18Z: BER of Coherent and Non-Coherent FSK]]
  
[[Aufgaben:4.19_Orthogonale_mehrstufige_FSK|Aufgabe 4.19: Orthogonale mehrstufige FSK]]
+
[[Aufgaben:Exercise_4.19:_Orthogonal_Multilevel_FSK|Exercise 4.19: Orthogonal Multilevel FSK]]
  
 
{{Display}}
 
{{Display}}

Revision as of 15:16, 16 August 2022

Rayleigh and Rice Distribution


The estimation of the phase angle from the incoming signal, which is required for coherent demodulation, is not possible or only possible to a limited extent in many applications. For example, the movement of a mobile subscriber at high speed leads to very rapid temporal changes in the phase angle  $\phi$, which makes its sufficiently accurate determination difficult or even impossible.

This fact leads to the  non-coherent demodulation processes  with the advantage of reduced complexity, but with increased probability of falsification. In the derivation of the equations one encounters two probability density functions, which are given here in advance:

  • The  Rayleigh distribution  is obtained for the PDF of the random variable  $y$  with realization  $\eta$, which is obtained from the two Gaussian distributed and statistically independent components  $u$  and  $v$  (both with the same standard deviation  $\sigma_n)$  as follows:
\[y = \sqrt{u^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) ={\eta}/{\sigma_n^2} \cdot {\rm exp } \left [ - {\eta^2}/{ (2\sigma_n^2)}\right ] \hspace{0.05cm}.\]
  • The  Rice distribution  is obtained under the same boundary conditions for the case where a constant   $C$  is added to one of the components $($either  $u$  or  $v)$: 
\[y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = {\eta}/{\sigma_n^2} \cdot {\rm exp } \left [ - ({\eta^2 + C^2})/(2 \sigma_n^2) \right ] \cdot {\rm I }_0 \left [{\eta \cdot C}/{ \sigma_n^2}\right ] \hspace{0.05cm}.\]
The Rice distribution uses the modified zero-order Bessel function, whose definition and series expansion are as follows:
\[{\rm I }_0 (x) = \frac{1}{ 2\pi} \cdot \int_{0}^{2\pi} {\rm e }^{-x \hspace{0.03cm}\cdot \hspace{0.03cm}\cos(\alpha)} \,{\rm d} \alpha \hspace{0.2cm} \approx \hspace{0.2cm} \sum_{k = 0}^{\infty} \frac{(x/2)^{2k}}{k! \cdot \Gamma (k+1)} \hspace{0.05cm}.\]

The graph shows the probability density functions of Rayleigh and Rice distributions.

Rayleigh and Rice PDF, respectively for $σ_n = 0.5$

To this representation it is to be noted:

  • The Rice distribution is determined by the two parameters  $C$  and  $\sigma_n$.  With  $C = 0$,  the Rice PDF is identical to the Rayleigh PDF.
  • The Rayleigh PDF with larger  $\sigma_n$  is of the same shape as shown for  $\sigma_n = 0.5$,  but wider and lower in the ratio of standard deviation.
  • $\sigma_n$  indicates the standard deviation of the two Gaussian distributed random variables  $u$  and  $v$  and not the standard deviation of the Rayleigh distributed random variable  $y$. Rather, the following applies to the latter:
\[\sigma_y = \sigma_n \cdot \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n \hspace{0.05cm}.\]
  • The Rayleigh distribution is extremely asymmetric, recognizable by the (relatively) large value for the  "third order central moment"   ⇒   Charlier's skewness:
$$\mu_3/\sigma_y \approx 0.27.$$
  • The Rice distribution is more symmetric the larger the ratio  $C/\sigma_n$  is. For  $C/\sigma_n \ge 4$,    $\mu_3 \approx 0$. The larger  $C/\sigma_n$  is, the more the Rice distribution $($with  $C$,  $\sigma_n)$  approaches a  "Gaussian distribution"  with mean  $C$  and standard deviation  $\sigma_n$: 
\[p_y (\eta) \approx \frac{1}{\sqrt{2\pi} \cdot \sigma_n} \cdot {\rm exp } \left [ - \frac{(\eta - C)^2}{2 \sigma_n^2}\right ] \hspace{0.3cm} \Rightarrow \hspace{0.3cm} m_y = C\hspace{0.05cm},\hspace{0.2cm}\sigma_y = \sigma_n \hspace{0.05cm}.\]

Non-coherent demodulation of on–off keying


We consider  "on–off keying"  (or 2–ASK) in the equivalent low-pass range.

  • In the case of coherent demodulation (left graph), the signal space constellation of the received signal is the same as that of the transmitted signal and consists of two points.
  • The decision boundary  $G$  lies in the middle between these points  $\boldsymbol{r}_0$  and  $\boldsymbol{r}_1$.
  • The arrows mark the rough direction of noise vectors that may cause transmission errors.


Coherent and non-coherent demodulation of on-off keying

On the other hand, for non-coherent demodulation (right graph):

  • The point  $\boldsymbol{r}_1 = \boldsymbol{s}_1 = 0$  is still preserved. On the other hand,  $\boldsymbol{r}_0 = \boldsymbol{s}_0 \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi}$  can lie on any point of the circle around  $\boldsymbol{s}_0$,  since  $\phi$  is unknown.
  • The decision process taking into account the AWGN noise can now be interpreted in two dimensions, as indicated by the arrows in the right graph.
  • The decision area  $I_1$  is a circle whose radius  $G$  is an optimizable parameter. The decision area  $I_0$  lies outside the circle.

Receiver for non-coherent OOK demodulation (complex signals are labeled blue)

Thus, the structure of the optimal OOK receiver (in the equivalent low–pass range) is fixed. According to this second graph:

  • The input signal  $\boldsymbol{r}(t) = \boldsymbol{s}(t) \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi} + \boldsymbol{n}(t)$  is generally complex because of the phase angle  $\phi$  and because of the complex noise term  $\boldsymbol{n}(t)$.  Consequently, what is required now is the correlation between the complex received signal  $\boldsymbol{r}(t)$  and a complex basis function  $\boldsymbol{\xi}_1(t)$.
  • The result is the (complex) detector value  $\boldsymbol{r}$, from which the amount  $y = |\boldsymbol{r}(t)|$  is formed as a real decision input variable.
  • If the decision value  $y \gt G$, then  $m_0$  is output as the estimated value, otherwise  $m_1$. Thus, the error probability for equally probable symbols is:
\[p_{\rm S} = {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot \int_{0}^{G} p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (\eta \hspace{0.05cm}|\hspace{0.05cm} m_0) \,{\rm d} \eta + {1}/{ 2} \cdot \int_{G}^{\infty} p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} m_1) \,{\rm d} \eta \hspace{0.05cm}.\]
  • However, due to the Rice PDF  $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_0)$ and the Rayleigh PDF $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_1)$,  this probability can only be determined numerically. The optimal decision boundary  $G$  has to be determined beforehand as the solution of the following equation:
\[p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_0) = p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_1) \hspace{0.05cm}.\]
Density functions for "OOK, non-coherent"

$\text{Example 1:}$  The graph shows the result of this equation for  $\sigma_n = 0.5$  and  $C = 2$, where the (red) Rice PDF is approximated by a Gaussian PDF with mean  $C$  and standard deviation  $\sigma_n$.  One can see from this:

  • The optimal decision boundary  $($here:   $G \approx 1.25)$  results from the intersection of the two curves.
  • The symbol error probability  $p_{\rm S}$  is the sum of the two colored areas. In the example,  $p_{\rm S} \approx 5\%$ results.


You can determine the error probability for other values of  $C$  and  $\sigma_n$  as well as the optimal decision boundary  $G$  using the calculation tool  "Non-coherent On-Off Keying"

Non-coherent demodulation of binary FSK (2–FSK)


As already shown in the  "last chapter",   Binary Frequency Shift Keying  (2–FSK) in the equivalent low-pass range can be described by the basis functions

\[\xi_1(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]
\[ \xi_2(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}\]

To achieve orthogonality between these two complex basis functions, the  "modulation index"  $h$  must be chosen to be integer:

\[< \hspace{-0.05cm}\xi_1(t) \hspace{0.1cm} \cdot \hspace{0.1cm} \xi_2(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} h = 2 \cdot \Delta f_{\rm A} \cdot T\hspace{0.05cm}= 1, 2, 3, \text{...}\]

The diagram shows the structure for non-coherent orthogonal demodulation of binary FSK.

Non-coherent demodulation of the binary FSK

In the noise-free case   ⇒   $n(t) \equiv 0$  applies to the outputs of the two correlators:

\[r_1 = \hspace{0.2cm} < \hspace{-0.05cm}r(t) \hspace{0.1cm} \cdot \hspace{0.1cm} \xi_1(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm}, \hspace{0.2cm} {\rm falls}\hspace{0.15cm} m = m_1\hspace{0.05cm},\]
\[ r_2 = \hspace{0.2cm} < \hspace{-0.05cm}r(t) \hspace{0.1cm} \cdot \hspace{0.1cm} \xi_2(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm}, \hspace{0.2cm} {\rm falls}\hspace{0.15cm} m = m_0\hspace{0.05cm}.\]

After respective amount formation   ⇒   $y_1 = |r_1|, \ \ y_2 = |r_2|$  the following decision rule is then applicable:

\[\hat{m} = \left\{ \begin{array}{c} m_0 \\ m_1 \end{array} \right.\quad \begin{array}{*{1}c} {\rm if}\hspace{0.15cm} y_1 > y_2 \hspace{0.05cm}, \\ {\rm if}\hspace{0.15cm} y_1 < y_2 \hspace{0.05cm}.\\ \end{array}\]

For a simpler realization of the decision, the difference  $y_1 - y_2$  can also be evaluated with the decision boundary  $G = 0$. 

Error probability with non-coherent 2–FSK demodulation


In the following, the error probability is calculated under the assumption that  $m = m_0$  was sent. Under the further assumption of equally probable binary messages  $m_0$  and  $m_1$,  the absolute error probability is exactly the same:

$${\rm Pr}({\cal{E}}) = {\rm Pr}({\cal{E}}\hspace{0.05cm} | \hspace{0.05cm}m_0) \hspace{0.05cm}.$$

With  $m = m_0$  we get for the complex correlation output values  $r_i$  and their amounts  $y_i$:

\[r_1 = \sqrt{E} \cdot {\rm e}^{{\rm j}\phi} + n_1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_1 = |r_1|\hspace{0.15cm}{\rm is}\hspace{0.15cm}{\rm Rice}\hspace{0.15cm}{\rm distributed} \hspace{0.05cm},\]
\[ r_2 = n_2\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_2 = |r_2|\hspace{0.15cm}{\rm is}\hspace{0.15cm}{\rm Rayleigh}\hspace{0.15cm}{\rm distributed} \hspace{0.05cm}.\]

Here,  $E$  due to  $M = 2$  represents the symbol energy  $(E_{\rm S})$  and the bit energy  $(E_{\rm B})$  equally, and  $n_1$  and  $n_2$  are uncorrelated complex noise variables with mean zero and variance  $2 \cdot \sigma_n^2$. Thus, the  "joint probability density function" is:

\[p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) = p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot p_{y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) \hspace{0.05cm},\]
\[\Rightarrow \hspace{0.5cm} p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{ - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot \sqrt{E}}/{ \sigma_n^2}\right ] \hspace{0.05cm}, \hspace{0.5cm} p_{y_2 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2} \cdot {\rm e }^{ - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.\]

The error probability is generally obtained as follows:

\[{\rm Pr}({\cal{E}}) = \int_{0}^{\infty} \int_{\eta_1}^{\infty} p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) \,\,{\rm d} \eta_2\,\,{\rm d} \eta_1 = \int_{0}^{\infty} p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot \int_{\eta_1}^{\infty} p_{y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2\,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

$\text{Conclusion:}$  For the  error probability with non-coherent demodulation of the binary FSK,  one obtains after some mathematical transformations the surprisingly simple result

\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)} \hspace{0.05cm}.\]

For comparison, the result for coherent demodulation is given again:

\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q}(\sqrt{ E_{\rm S}/N_0}) \hspace{0.05cm}.\]


$\text{Derivation:}$  The result taken in advance is now to be derived in some calculation steps. We start from the following equations:

$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0) \cdot \int_{\eta_1}^{\infty} p_{y_2 \hspace{0.03cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2\,\,{\rm d} \eta_1 \hspace{0.05cm},\hspace{0.5cm}\text{with}$$
$$p_{y_1 \hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{ - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot \sqrt{E} }/{ \sigma_n^2}\right ] \hspace{0.05cm},\hspace{0.5cm}p_{y_\hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2} \cdot {\rm e }^{ - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.$$

(1)   The inner integral gives the probability that the Rayleigh distributed random variable  $\eta_2$  is larger than  $\eta_1$  – see solution to  "Exercise 4.17Z":

$$\int_{\eta_1}^{\infty} p_{y_2 \hspace{0.03cm}\vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2 = {\rm e }^{ - \eta_1^2 /({2 \sigma_n^2}) } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}({\cal{E} }) = \int_{0}^{\infty}{\eta_1}/{\sigma_n^2} \cdot {\rm e }^{ - ({2\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [ {\eta_1 \cdot \sqrt{E} }/{ \sigma_n^2}\right ]\,\,{\rm d} \eta_1 \hspace{0.05cm}.$$

(2)   With the (arbitrary) substitutions  $C_0^2 = E/4$  and  $\sigma_0^2 = \sigma_n^2/2$,  we obtain:

$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2} \cdot {\rm exp } \left [ - \frac{2 \eta_1^2 + 4 C_0^2}{4 \sigma_0^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot 2C_0}{ 2 \sigma_0^2}\right ]\,\,{\rm d} \eta_1 = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2} \cdot {\rm exp } \left [ - \frac{\eta_1^2 + 2 C_0^2}{2 \sigma_0^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot C_0}{ \sigma_0^2}\right ]\,\,{\rm d} \eta_1 \hspace{0.05cm}.$$

(3)   By shifting fractions in front of the integral, we succeed that the integrand again describes a  "Rice distribution"

\[{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] \cdot \int\limits_{0}^{\infty} \frac{\eta_1}{ \sigma_0^2} \cdot {\rm exp } \left [ - \frac{\eta_1^2 + C_0^2}{2 \sigma_0^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot C_0}{ \sigma_0^2}\right ]\,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(4)   The integrand now describes the Rice PDF. The integral over the entire definition area from  $0$  to  $+\infty$  yields the value one, as for any PDF, so that holds:

\[{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ]\hspace{0.05cm}.\]

(5)   Finally, with  $C_0^2 = E/4$  and  $\sigma_0^2 = \sigma_n^2/2$  and the generally valid relation  $\sigma_n^2 = N_0$,  we obtain:

$${\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] = {1}/{2} \cdot {\rm exp } \left [ - \frac{ E_{\rm S}/4}{N_{\rm 0}/2}\right ] \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}\hspace{0.05cm}.$$

q.e.d.         $E_{\rm S}$  here indicates the average signal energy per symbol, which is equal to the normalization energy  $E$  for FSK.


FSK error probability for coherent and non-coherent demodulation

$\text{Example 2:}$  The graph compares the error probability curves of both demodulation methods as a function of the AWGN quotient  $E_{\rm S}/N_0$. 

One can see:

  • The non-coherent FSK (red curve) requires a $0.8 \ \rm dB$  larger $E_{\rm S}/N_0$ compared to the coherent FSK (blue curve) at  $p_{\rm S}= 10^{-5}$. 
  • At  $p_{\rm S}= 10^{-3}$  the distance is even  $1.3 \ \rm dB$.
  • In contrast, the distance between the coherent binary FSK from the coherent BPSK is always  $1.3 \ \rm dB$ regardless of the error probability.



Non-coherent demodulation of multi-level FSK


Orthogonal $M$–level FSK for  $M= 3$

We now consider the message set  $\{m_1, m_2,\hspace{0.05cm}\text{ ...} \hspace{0.05cm}, m_{M}\}$  and denote  $M$  as the number of levels.

  • As in the case of binary FSK, a prerequisite for the application of the modulation process  "Frequency Shift Keying"  and at the same time of a non-coherent demodulator is an integer modulation index  $h$.
  • In this case, the  $M$–level FSK is orthogonal and a signal space constellation results as shown in the adjacent diagram for the special case  $M = 3$. 

The non-coherent demodulator is sketched below. Compared to the  "receiver structure for binary FSK",  this receiver differs only by  $M$  branches instead of only two, which provide the comparison values  $y_1$,  $y_2$, ... , $y_M$.

Non-coherent receiver structure for  $M$–level FSK

To calculate the error probability, we assume that  $m_1$  was sent. This means that the decision is correct if the largest detection output value is  $y_1$: 

\[{\rm Pr}({\cal{C}}) \hspace{-0.1cm} = \hspace{-0.1cm} {\rm Pr} \big [ (y_2 < y_1) \cap (y_3 < y_1) \cap ... \cap (y_{M} < y_1) \hspace{0.05cm}| \hspace{0.05cm} m = m_1\big ] = {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1) \hspace{0.05cm}| \hspace{0.05cm}m = m_1\right ] \hspace{0.01cm}.\]

$\text{Conclusion:}$ 

  • The  error probability of M–level FSK in non-coherent demodulation  is equal to ${\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} })$.
  • In the following, it is shown that ${\rm Pr}({\cal{C} })$ can be represented as follows:
\[{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ] \hspace{0.05cm}\hspace{0.5cm} \text{with}\hspace{0.5cm} E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.\]
  • In the special case  $M = 2$,  of course, the result obtained in the  "last section"  is again obtained:
\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)} \hspace{0.05cm}.\]


$\text{Derivation:}$  The result taken in advance shall now be derived in some calculation steps. We assume that  $m_1$  has been sent. This means that the decision is correct if the largest detection output value is  $y_1$.  Otherwise, there are certain analogies to the derivation of the  "BFSK error probability".

(1)   Using the conditional probability density  $p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_1)$,  we obtain:

\[{\rm Pr}({\cal{C} }) = \int_{0}^{\infty} {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1) \hspace{0.05cm}\vert\hspace{0.05cm}y_1 = \eta_1, m = m_1\right ] \cdot p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_1) \,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(2)   The decision values  $y_2$,  $y_3$,  ... , $y_M$  are statistically independent for given  $y_1$.  Therefore:

\[{\rm Pr}({\cal{C} }) = \int_{0}^{\infty} \left \{ {\rm Pr} \big [ (y_2 < y_1) \hspace{0.05cm}\vert \hspace{0.05cm}y_1 = \eta_1, m = m_1\big ] \right \}^{M-1} \cdot p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_1) \,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(3)   The selected value  $y_2$  conditioned on  $m_1$  has a Rayleigh distribution with parameter  $\sigma_n^2$:

\[{\rm Pr} \big [ (y_2 < y_1) \hspace{0.05cm} \vert \hspace{0.05cm}y_1 = \eta_1, m = m_1\big ] \hspace{-0.1cm} = \hspace{-0.1cm} \int_{0}^{\eta_1} p_{y_2 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm} \vert \hspace{0.05cm}m_1)\,\,{\rm d} \eta_2= 1 - {\rm exp } \big [ - {\eta_1^2 }/({2 \sigma_n^2})\big ] = 1 - a \hspace{0.2cm}{\rm(abbreviation)} \hspace{0.05cm}.\]

(4)   Now we are looking for the expression  $(1 -a)^{M-1}$, for which with the abbreviation from (3) holds:

\[ (1-a)^{M-1} \hspace{-0.1cm} = \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot (-1)^i \cdot a^i = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \hspace{0.05cm}.\]

(5)   $y_1$  has a  "Rice distribution" conditioned on  $m=m_1$.  Thus, the probability of a correct decision can be expressed in the following form:

\[{\rm Pr}({\cal{C} }) \hspace{-0.1cm} = \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \int_{0}^{\infty} {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \cdot \frac{\eta_1}{ \sigma_n^2}\cdot {\rm exp } \left [ - \frac{\eta_1^2 + E_{\rm S} }{2 \sigma_n^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot \sqrt{E_{\rm S} } }{ \sigma_n^2}\right ] \,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(6)   Substitutions succeed in shaping the integrand according to the Rice distribution. Since each probability density integrates to one, we obtain:

\[{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ] \hspace{0.05cm}\hspace{0.5cm} \text{with}\hspace{0.5cm} E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.\]

(7)   The special case  $M = 2$  leads to exactly the same result as calculated for the binary FSK:

\[{\rm Pr}({\cal{C} }) = (-1)^0 \cdot {2-1 \choose 0 } \cdot \frac{1}{0+1} \cdot {\rm exp } \left [ - \frac{0 \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ] + (-1)^1 \cdot {2-1 \choose 1 } \cdot \frac{1}{1+1} \cdot {\rm exp } \left [ - \frac{1 \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ] \]
\[ \Rightarrow \hspace{0.5cm} {\rm Pr}({\cal{C} }) = 1 - {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} {\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} }) = {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)} \hspace{0.05cm}.\]

Exercises for the chapter


Exercise 4.17: Non-Coherent On-Off Keying

Exercise 4.17Z: Rayleigh and Rice Distribution

Exercise 4.18: Non-Coherent FSK Demodulation

Exercise 4.18Z: BER of Coherent and Non-Coherent FSK

Exercise 4.19: Orthogonal Multilevel FSK