Difference between revisions of "Digital Signal Transmission/Carrier Frequency Systems with Non-Coherent Demodulation"

From LNTwww
 
(11 intermediate revisions by 2 users not shown)
Line 8: Line 8:
 
== Rayleigh and Rice Distribution ==
 
== Rayleigh and Rice Distribution ==
 
<br>
 
<br>
The estimation of the phase angle from the incoming signal, which is required for coherent demodulation, is not possible or only possible to a limited extent in many applications. For example, the movement of a mobile subscriber at high speed leads to very rapid temporal changes in the phase angle &nbsp;$\phi$, which makes its sufficiently accurate determination difficult or even impossible.<br>
+
The estimation of the phase angle from the incoming signal,&nbsp; which is required for coherent demodulation,&nbsp; is not possible or only possible to a limited extent in many applications.&nbsp; For example,&nbsp; the movement of a mobile subscriber at high speed leads to very rapid temporal changes in the phase angle &nbsp;$\phi$,&nbsp; which makes its sufficiently accurate determination difficult or even impossible.<br>
  
This fact leads to the&nbsp; '''non-coherent demodulation processes'''&nbsp; with the advantage of reduced complexity, but with increased probability of falsification. In the derivation of the equations one encounters two probability density functions, which are given here in advance:
+
This fact leads to the&nbsp; '''non-coherent demodulation processes'''&nbsp; with the advantage of reduced complexity,&nbsp; but with increased error probability.&nbsp; In the derivation of the equations one encounters two probability density functions,&nbsp; which are given here in advance:
  
*The&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rayleigh_PDF|'''Rayleigh distribution''']]&nbsp; is obtained for the PDF of the random variable&nbsp; $y$&nbsp; with realization&nbsp; $\eta$, which is obtained from the two Gaussian distributed and statistically independent components&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; (both with the same standard deviation&nbsp; $\sigma_n)$&nbsp; as follows:
+
*The&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rayleigh_PDF|'''Rayleigh distribution''']]&nbsp; is obtained for the power density function&nbsp; $\rm (PDF)$&nbsp; of the random variable&nbsp; $y$&nbsp; with realization&nbsp; $\eta$,&nbsp; which is obtained from the two Gaussian distributed and statistically independent components&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; $($both with the same standard deviation&nbsp; $\sigma_n)$&nbsp; as follows:
  
 
::<math>y = \sqrt{u^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) ={\eta}/{\sigma_n^2}
 
::<math>y = \sqrt{u^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) ={\eta}/{\sigma_n^2}
Line 18: Line 18:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*The&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rice_PDF|'''Rice distribution''']]&nbsp; is obtained under the same boundary conditions for the case where a constant &nbsp; $C$&nbsp; is added to one of the components $($either &nbsp;$u$&nbsp; or &nbsp;$v)$:&nbsp;
+
*The&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rice_PDF|'''Rice distribution''']]&nbsp; is obtained under the same boundary conditions for the case where a constant &nbsp; $C$&nbsp; is added to one of the components $($either to&nbsp;$u$&nbsp; or &nbsp;$v)$:&nbsp;
  
 
::<math>y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = {\eta}/{\sigma_n^2}
 
::<math>y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = {\eta}/{\sigma_n^2}
Line 24: Line 24:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
:The Rice distribution uses the <i>modified zero-order Bessel function</i>, whose definition and series expansion are as follows:
+
:The Rice distribution uses the&nbsp; "modified zero-order Bessel function",&nbsp; whose definition and series expansion are as follows:
 
::<math>{\rm I }_0 (x) = \frac{1}{ 2\pi} \cdot  \int_{0}^{2\pi} {\rm e }^{-x \hspace{0.03cm}\cdot \hspace{0.03cm}\cos(\alpha)} \,{\rm d} \alpha \hspace{0.2cm} \approx \hspace{0.2cm}
 
::<math>{\rm I }_0 (x) = \frac{1}{ 2\pi} \cdot  \int_{0}^{2\pi} {\rm e }^{-x \hspace{0.03cm}\cdot \hspace{0.03cm}\cos(\alpha)} \,{\rm d} \alpha \hspace{0.2cm} \approx \hspace{0.2cm}
 
  \sum_{k = 0}^{\infty} \frac{(x/2)^{2k}}{k! \cdot \Gamma (k+1)}
 
  \sum_{k = 0}^{\infty} \frac{(x/2)^{2k}}{k! \cdot \Gamma (k+1)}
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
The graph shows the probability density functions of Rayleigh and Rice distributions.
+
The graph shows the probability density functions of Rayleigh and Rice distributions.&nbsp; To this representation it is to be noted:
 
+
[[File:P ID2082 Dig T 4 5 S1 version1_ret.png|right|frame|Rayleigh resp. Rice PDF for $&sigma;_n = 0.5$|class=fit]]
[[File:P ID2082 Dig T 4 5 S1 version1.png|center|frame|Rayleigh and Rice PDF, respectively for $&sigma;_n = 0.5$|class=fit]]
 
 
 
To this representation it is to be noted:
 
 
*The Rice distribution is determined by the two parameters&nbsp; $C$&nbsp; and&nbsp; $\sigma_n$.&nbsp; With&nbsp; $C = 0$,&nbsp; the Rice PDF is identical to the Rayleigh PDF.<br>
 
*The Rice distribution is determined by the two parameters&nbsp; $C$&nbsp; and&nbsp; $\sigma_n$.&nbsp; With&nbsp; $C = 0$,&nbsp; the Rice PDF is identical to the Rayleigh PDF.<br>
  
 
*The Rayleigh PDF with larger&nbsp; $\sigma_n$&nbsp; is of the same shape as shown for&nbsp; $\sigma_n = 0.5$,&nbsp; but wider and lower in the ratio of standard deviation.<br>
 
*The Rayleigh PDF with larger&nbsp; $\sigma_n$&nbsp; is of the same shape as shown for&nbsp; $\sigma_n = 0.5$,&nbsp; but wider and lower in the ratio of standard deviation.<br>
  
*$\sigma_n$&nbsp; indicates the standard deviation of the two Gaussian distributed random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; and not the standard deviation of the Rayleigh distributed random variable&nbsp; $y$. Rather, the following applies to the latter:
+
*$\sigma_n$&nbsp; indicates the standard deviation of the two Gaussian distributed random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; and not the standard deviation of the Rayleigh distributed random variable&nbsp; $y$.&nbsp; Rather,&nbsp; the following applies to the latter:
  
 
::<math>\sigma_y = \sigma_n  \cdot  \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n   
 
::<math>\sigma_y = \sigma_n  \cdot  \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n   
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*The Rayleigh distribution is extremely asymmetric, recognizable by the (relatively) large value for the&nbsp;  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments|"third order central moment"]] &nbsp; &rArr; &nbsp; ''Charlier's skewness'':  
+
*The Rayleigh PDF is extremely asymmetric,&nbsp; recognizable by the large value for the&nbsp;  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments|"third order central moment"]] &nbsp; &rArr; &nbsp; "Charlier's skewness":  
 
:$$\mu_3/\sigma_y \approx 0.27.$$
 
:$$\mu_3/\sigma_y \approx 0.27.$$
  
*The Rice distribution is more symmetric the larger the ratio&nbsp; $C/\sigma_n$&nbsp; is. For&nbsp; $C/\sigma_n \ge 4$,&nbsp; &nbsp; $\mu_3 \approx 0$. The larger&nbsp; $C/\sigma_n$&nbsp; is, the more the Rice distribution $($with &nbsp;$C$, &nbsp;$\sigma_n)$&nbsp; approaches a&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Probability_density_function_.E2.80.93_Cumulative_density_function|"Gaussian distribution"]]&nbsp; with mean&nbsp; $C$&nbsp; and standard deviation&nbsp; $\sigma_n$:&nbsp;
+
*The Rice PDF is more symmetrical the larger the quotient&nbsp; $C/\sigma_n$.&nbsp; For&nbsp; $C/\sigma_n \ge 4$:&nbsp; $\mu_3 \approx 0$ &nbsp; &rArr; &nbsp; symmetrical PDF.  
 +
 
 +
*The larger&nbsp; $C/\sigma_n$&nbsp; is,&nbsp; the more the Rice PDF $($with &nbsp;$C$, &nbsp;$\sigma_n)$&nbsp; approaches a&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Probability_density_function_.E2.80.93_Cumulative_density_function|"Gaussian PDF"]]&nbsp; with mean&nbsp; $C$&nbsp; and standard deviation&nbsp; $\sigma_n$:  
  
::<math>p_y (\eta) \approx \frac{1}{\sqrt{2\pi} \cdot \sigma_n}
+
:$$p_y (\eta) \approx \frac{1}{\sqrt{2\pi} \cdot \sigma_n}
  \cdot {\rm exp } \left [ - \frac{(\eta - C)^2}{2 \sigma_n^2}\right ]
+
  \cdot {\rm exp } \left [ - \frac{(\eta - C)^2}{2 \sigma_n^2}\right ]$$
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} m_y = C\hspace{0.05cm},\hspace{0.2cm}\sigma_y = \sigma_n  
+
:$$ \Rightarrow \hspace{0.3cm} m_y = C\hspace{0.05cm},\hspace{0.2cm}\sigma_y = \sigma_n  
  \hspace{0.05cm}.</math>
+
  \hspace{0.05cm}.$$
  
== Non-coherent demodulation of on–off keying==
+
== Non-coherent demodulation of&nbsp; "on–off keying"&nbsp; (OOK)==
 
<br>
 
<br>
We consider&nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#On.E2.80.93off_keying_.282.E2.80.93ASK.29|"on&ndash;off keying"]]&nbsp; (or 2&ndash;ASK) in the equivalent low-pass range.
+
We consider&nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#On.E2.80.93off_keying_.282.E2.80.93ASK.29|"on&ndash;off keying"]]&nbsp; $(\rm OOK$&nbsp; or&nbsp; $\rm 2&ndash;ASK)$&nbsp; in the equivalent low-pass range.
 +
[[File:EN_Dig_A_1_9_neu.png|right|frame|Coherent and non-coherent demodulation of&nbsp; "on-off keying" |class=fit]]
 +
 +
*In the case of coherent demodulation&nbsp; (left graph),&nbsp; the signal space constellation of the received signal&nbsp; $\boldsymbol{r}(t)$&nbsp; is the same as that of the transmitted signal&nbsp; $\boldsymbol{s}(t)$&nbsp; and consists of two points.
 +
 
 +
*The decision boundary&nbsp; $G$&nbsp; lies in the middle between these points&nbsp; $\boldsymbol{r}_0$&nbsp; and&nbsp; $\boldsymbol{r}_1$.
 
   
 
   
*In the case of coherent demodulation (left graph), the signal space constellation of the received signal is the same as that of the transmitted signal and consists of two points.
 
*The decision boundary&nbsp; $G$&nbsp; lies in the middle between these points&nbsp; $\boldsymbol{r}_0$&nbsp; and&nbsp; $\boldsymbol{r}_1$.
 
 
*The arrows mark the rough direction of noise vectors that may cause transmission errors.
 
*The arrows mark the rough direction of noise vectors that may cause transmission errors.
  
  
[[File:P ID2083 Dig T 4 5 S2a version1.png|center|frame|Coherent and non-coherent demodulation of on-off keying|class=fit]]
+
On the other hand, for non-coherent demodulation (right graph):
 +
*The point&nbsp; $\boldsymbol{r}_1 = \boldsymbol{s}_1 = 0$&nbsp; is still preserved.&nbsp; But&nbsp; $\boldsymbol{r}_0 = \boldsymbol{s}_0 \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi}$&nbsp; can lie on any point of the circle around&nbsp; $\boldsymbol{s}_0$,&nbsp; since&nbsp; $\phi$&nbsp; is unknown.<br>
  
On the other hand, for non-coherent demodulation (right graph):
+
*The decision process in consideration of the AWGN noise happens in two dimensions&nbsp; $($indicated by arrows in the right graph$)$.<br>
*The point&nbsp; $\boldsymbol{r}_1 = \boldsymbol{s}_1 = 0$&nbsp; is still preserved. On the other hand,&nbsp; $\boldsymbol{r}_0 = \boldsymbol{s}_0 \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi}$&nbsp; can lie on any point of the circle around&nbsp; $\boldsymbol{s}_0$,&nbsp; since&nbsp; $\phi$&nbsp; is unknown.<br>
+
 
 +
*The decision area&nbsp; $I_1$&nbsp; is a circle whose radius&nbsp; $G$&nbsp; is an optimizable parameter. The decision area&nbsp; $I_0$ &nbsp;lies outside the circle.<br>
  
*The decision process taking into account the AWGN noise can now be interpreted in two dimensions, as indicated by the arrows in the right graph.<br>
 
  
*The decision area&nbsp; $I_1$&nbsp; is a circle whose radius&nbsp; $G$&nbsp; is an optimizable parameter. The decision area&nbsp; $I_0$ &nbsp;lies outside the circle.<br><br>
+
Thus,&nbsp; the structure of the optimal OOK receiver&nbsp; (in the equivalent low&ndash;pass range)&nbsp; is fixed &nbsp; &rArr; &nbsp;  see second graph:
 +
[[File:EN_Dig_T_4_5_S2b_neu.png|right|frame|Receiver for non-coherent OOK demodulation&nbsp; (complex signals are labeled blue) |class=fit]]
 +
 +
*The input signal&nbsp; $\boldsymbol{r}(t) = \boldsymbol{s}(t) \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi} + \boldsymbol{n}(t)$&nbsp; is generally complex because of the phase angle&nbsp; $\phi$&nbsp; and because of the complex noise term&nbsp; $\boldsymbol{n}(t)$.&nbsp;  
  
[[File:P ID3147 Dig T 4 5 S2b version1.png|center|frame|Receiver for non-coherent OOK demodulation (complex signals are labeled blue)|class=fit]]
+
*Consequently required is now the correlation between the complex received signal&nbsp;  $\boldsymbol{r}(t)$&nbsp; and a complex basis function&nbsp; $\boldsymbol{\xi}_1(t)$.<br>
  
Thus, the structure of the optimal OOK receiver (in the equivalent low&ndash;pass range) is fixed.  According to this second graph:
+
*The result is the&nbsp; (complex)&nbsp; detection value&nbsp; $\boldsymbol{r}$,&nbsp; from which the magnitude&nbsp; $y = |\boldsymbol{r}(t)|$&nbsp; is formed as a real decision input variable.<br>
*The input signal&nbsp; $\boldsymbol{r}(t) = \boldsymbol{s}(t) \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi} + \boldsymbol{n}(t)$&nbsp; is generally complex because of the phase angle&nbsp; $\phi$&nbsp; and because of the complex noise term&nbsp; $\boldsymbol{n}(t)$.&nbsp; Consequently, what is required now is the correlation between the complex received signal&nbsp; $\boldsymbol{r}(t)$&nbsp; and a complex basis function&nbsp; $\boldsymbol{\xi}_1(t)$.<br>
 
  
*The result is the (complex) detector value&nbsp; $\boldsymbol{r}$, from which the amount&nbsp; $y = |\boldsymbol{r}(t)|$&nbsp; is formed as a real decision input variable.<br>
+
*If the decision value&nbsp; $y \gt G$,&nbsp;  then&nbsp; $m_0$&nbsp; is output as the estimated value,&nbsp; otherwise&nbsp; $m_1$.  
  
*If the decision value&nbsp; $y \gt G$, then&nbsp; $m_0$&nbsp; is output as the estimated value, otherwise&nbsp; $m_1$. Thus, the error probability for equally probable symbols is:
+
*Thus,&nbsp; the symbol error probability for equally probable symbols <br>&rArr; &nbsp; ${\rm Pr}(\boldsymbol{m}_0) = {\rm Pr}(\boldsymbol{m}_1) =1/2$&nbsp; is:
  
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E}}) =  {1}/{ 2} \cdot \int_{0}^{G} p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (\eta \hspace{0.05cm}|\hspace{0.05cm} m_0) \,{\rm d} \eta
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E}}) =  {1}/{ 2} \cdot \int_{0}^{G} p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (\eta \hspace{0.05cm}|\hspace{0.05cm} m_0) \,{\rm d} \eta
Line 83: Line 88:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*However, due to the Rice PDF&nbsp; $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_0)$ and the Rayleigh PDF $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_1)$,&nbsp; this probability can only be determined numerically. The optimal decision boundary&nbsp; $G$&nbsp; has to be determined beforehand as the solution of the following equation:
+
*However,&nbsp; due to the Rice PDF &nbsp; $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_0)$ &nbsp; and the Rayleigh PDF &nbsp; $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_1)$, &nbsp; this probability can only be determined numerically.
 +
 
 +
* The optimal decision limit&nbsp; $G$&nbsp; has to be determined beforehand as the solution of the following equation:
 
::<math>p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_0) = p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_1)
 
::<math>p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_0) = p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_1)
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
[[File:P ID3148 Dig T 4 5 S2c version1.png|right|frame|Density functions for "OOK, non-coherent"]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT= 
+
[[File:P ID3148 Dig T 4 5 S2c version1.png|right|frame|Density functions for "OOK, non-coherent"]]  
$\text{Example 1:}$&nbsp; The graph shows the result of this equation for&nbsp; $\sigma_n = 0.5$&nbsp; and&nbsp; $C = 2$, where the (red) Rice PDF is approximated by a Gaussian PDF with mean&nbsp; $C$&nbsp; and standard deviation&nbsp; $\sigma_n$.&nbsp; One can see from this:
+
$\text{Example 1:}$&nbsp; The graph shows the result of this equation for&nbsp; $\sigma_n = 0.5$&nbsp; and&nbsp; $C = 2$, where the (red) Rice PDF is approximated by a Gaussian PDF with mean&nbsp; $C$&nbsp; and standard deviation&nbsp; $\sigma_n$.&nbsp;  
*The optimal decision boundary &nbsp;$($here: &nbsp; $G \approx 1.25)$&nbsp; results from the intersection of the two curves.<br>
 
*The symbol error probability&nbsp; $p_{\rm S}$&nbsp; is the sum of the two colored areas. In the example,&nbsp; $p_{\rm S} \approx 5\%$ results.
 
  
 +
One can see from this sketch:
 +
*The optimal decision value &nbsp;$($here: &nbsp; $G \approx 1.25)$&nbsp; results from the intersection of the two PDF curves.<br>
  
You can determine the error probability for other values of&nbsp; $C$&nbsp; and&nbsp; $\sigma_n$&nbsp; as well as the optimal decision boundary&nbsp; $G$&nbsp; using the calculation tool&nbsp;  [[Applets:On-Off-Keying|"Non-coherent On-Off Keying"]].&nbsp; }}
+
*The symbol error probability&nbsp; $p_{\rm S}$&nbsp; is the sum of the two colored areas.&nbsp; In the example:&nbsp; $p_{\rm S} \approx 5\%$ results.
 +
 
 +
 
 +
&rArr; &nbsp; You can determine the error probability for other values of&nbsp; $C$&nbsp; and&nbsp; $\sigma_n$&nbsp; as well as the optimal decision value&nbsp; $G$&nbsp; using the&nbsp; HTML5/JavaScript applet&nbsp;  [[Applets:Coherent_and_Non-Coherent_On-Off_Keying|"Coherent and Non-coherent On-Off Keying"]].&nbsp; }}
  
 
== Non-coherent demodulation of binary FSK (2&ndash;FSK)==
 
== Non-coherent demodulation of binary FSK (2&ndash;FSK)==
 
<br>
 
<br>
As already shown in the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_frequency_shift_keying_.282.E2.80.93FSK.29|"last chapter"]],&nbsp; &nbsp;<i>Binary Frequency Shift Keying</i>&nbsp; (2&ndash;FSK) in the equivalent low-pass range can be described by the basis functions  
+
As already shown in the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_frequency_shift_keying_.282.E2.80.93FSK.29|"last chapter"]],&nbsp; "Binary Frequency Shift Keying"&nbsp; $\rm (2&ndash;FSK)$&nbsp; in the equivalent low-pass range can be described by the basis functions  
 
::<math>\xi_1(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},</math>
 
::<math>\xi_1(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},</math>
 
::<math> \xi_2(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}</math>
 
::<math> \xi_2(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}</math>
  
To achieve orthogonality between these two complex basis functions, the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_frequency_shift_keying_.282.E2.80.93FSK.29|"modulation index"]]&nbsp; $h$&nbsp; must be chosen to be integer:
+
To achieve orthogonality between these two complex basis functions,&nbsp; the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_frequency_shift_keying_.282.E2.80.93FSK.29|"modulation index"]]&nbsp; $h$&nbsp; must be chosen to be integer:
  
 
::<math><  \hspace{-0.05cm}\xi_1(t) \hspace{0.1cm}  \cdot  \hspace{0.1cm} \xi_2(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0  
 
::<math><  \hspace{-0.05cm}\xi_1(t) \hspace{0.1cm}  \cdot  \hspace{0.1cm} \xi_2(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0  
Line 109: Line 119:
 
The diagram shows the structure for non-coherent orthogonal demodulation of binary FSK.<br>
 
The diagram shows the structure for non-coherent orthogonal demodulation of binary FSK.<br>
  
[[File:P ID2087 Dig T 4 5 S3a version2.png|center|frame|Non-coherent demodulation of the binary FSK|class=fit]]
+
[[File:EN_Dig_T_4_5_S3a_neu.png|right|frame|Non-coherent demodulation of the binary FSK|class=fit]]
  
 
In the noise-free case &nbsp; &#8658; &nbsp;  $n(t) \equiv 0$&nbsp;  applies to the outputs of the two correlators:
 
In the noise-free case &nbsp; &#8658; &nbsp;  $n(t) \equiv 0$&nbsp;  applies to the outputs of the two correlators:
  
::<math>r_1 = \hspace{0.2cm} <  \hspace{-0.05cm}r(t) \hspace{0.1cm}  \cdot  \hspace{0.1cm} \xi_1(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm},  \hspace{0.2cm} {\rm falls}\hspace{0.15cm} m = m_1\hspace{0.05cm},</math>
+
::<math>r_1 = \hspace{0.2cm} <  \hspace{-0.05cm}r(t) \hspace{0.1cm}  \cdot  \hspace{0.1cm} \xi_1(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm},  \hspace{0.4cm} {\rm if}\hspace{0.15cm} m = m_1\hspace{0.05cm},</math>
::<math> r_2 = \hspace{0.2cm} <  \hspace{-0.05cm}r(t) \hspace{0.1cm}  \cdot  \hspace{0.1cm} \xi_2(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm},  \hspace{0.2cm} {\rm falls}\hspace{0.15cm} m = m_0\hspace{0.05cm}.</math>
+
::<math> r_2 = \hspace{0.2cm} <  \hspace{-0.05cm}r(t) \hspace{0.1cm}  \cdot  \hspace{0.1cm} \xi_2(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm},  \hspace{0.4cm} {\rm if}\hspace{0.15cm} m = m_0\hspace{0.05cm}.</math>
  
After respective amount formation &nbsp; &#8658; &nbsp; $y_1 = |r_1|, \ \ y_2 = |r_2|$&nbsp; the following decision rule is then applicable:
+
After respective magnitude formation &nbsp; &#8658; &nbsp; $y_1 = |r_1|, \ \ y_2 = |r_2|$&nbsp; the following decision rule is applicable:
 
::<math>\hat{m} =
 
::<math>\hat{m} =
 
\left\{ \begin{array}{c} m_0 \\
 
\left\{ \begin{array}{c} m_0 \\
Line 123: Line 133:
 
\\  {\rm if}\hspace{0.15cm} y_1 < y_2  \hspace{0.05cm}.\\ \end{array}</math>
 
\\  {\rm if}\hspace{0.15cm} y_1 < y_2  \hspace{0.05cm}.\\ \end{array}</math>
  
For a simpler realization of the decision, the difference&nbsp; $y_1 - y_2$&nbsp; can also be evaluated with the decision boundary&nbsp; $G = 0$.&nbsp; <br>
+
For a simpler realization of the decision,&nbsp; the difference&nbsp; $y_1 - y_2$&nbsp; can also be evaluated with the decision boundary&nbsp; $G = 0$.&nbsp; <br>
  
 
== Error probability with non-coherent 2&ndash;FSK demodulation==
 
== Error probability with non-coherent 2&ndash;FSK demodulation==
 
<br>
 
<br>
In the following, the error probability is calculated under the assumption that&nbsp; $m = m_0$&nbsp; was sent. Under the further assumption of equally probable binary messages&nbsp; $m_0$&nbsp; and&nbsp; $m_1$,&nbsp; the absolute error probability is exactly the same:  
+
In the following,&nbsp; the error probability is calculated under the assumption that&nbsp; $m = m_0$&nbsp; was sent.  
 +
 
 +
*Under the further assumption of equally probable binary messages&nbsp; $m_0$&nbsp; and&nbsp; $m_1$,&nbsp; the absolute error probability is exactly the same:  
 
:$${\rm Pr}({\cal{E}}) =  {\rm Pr}({\cal{E}}\hspace{0.05cm} | \hspace{0.05cm}m_0)
 
:$${\rm Pr}({\cal{E}}) =  {\rm Pr}({\cal{E}}\hspace{0.05cm} | \hspace{0.05cm}m_0)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
With&nbsp; $m = m_0$&nbsp; we get for the complex correlation output values&nbsp; $r_i$&nbsp; and their amounts&nbsp; $y_i$:<br>
+
*With&nbsp; $m = m_0$&nbsp; we get for the complex correlation output values&nbsp; $r_i$&nbsp; and their magnitudes&nbsp; $y_i$:<br>
 
::<math>r_1 = \sqrt{E} \cdot {\rm e}^{{\rm j}\phi} + n_1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_1 = |r_1|\hspace{0.15cm}{\rm is}\hspace{0.15cm}{\rm Rice}\hspace{0.15cm}{\rm distributed}
 
::<math>r_1 = \sqrt{E} \cdot {\rm e}^{{\rm j}\phi} + n_1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_1 = |r_1|\hspace{0.15cm}{\rm is}\hspace{0.15cm}{\rm Rice}\hspace{0.15cm}{\rm distributed}
 
  \hspace{0.05cm},</math>
 
  \hspace{0.05cm},</math>
Line 137: Line 149:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Here,&nbsp; $E$&nbsp; due to&nbsp; $M = 2$&nbsp; represents the <i>symbol energy</i>&nbsp; $(E_{\rm S})$&nbsp; and the <i>bit energy</i>&nbsp;  $(E_{\rm B})$&nbsp; equally, and&nbsp; $n_1$&nbsp; and&nbsp; $n_2$&nbsp; are uncorrelated complex noise variables with mean zero and variance&nbsp; $2 \cdot \sigma_n^2$. Thus, the&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#Joint_probability_density_function|"joint probability density function"]] is:
+
:Here,&nbsp; $E$&nbsp; due to&nbsp; $M = 2$&nbsp; represents the&nbsp; "average symbol energy"&nbsp; $(E_{\rm S})$&nbsp; and the&nbsp; "average bit energy"&nbsp;  $(E_{\rm B})$&nbsp; equally.&nbsp; $n_1$&nbsp; and&nbsp; $n_2$&nbsp; are uncorrelated complex noise variables with mean zero and variance&nbsp; $2 \cdot \sigma_n^2$.  
 +
 
 +
*Thus,&nbsp; the&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#Joint_probability_density_function|"joint probability density function"]]&nbsp; is:
 
::<math>p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) =  
 
::<math>p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) =  
 
   p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot  
 
   p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot  
 
   p_{y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0)
 
   p_{y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0)
 
  \hspace{0.05cm},</math>
 
  \hspace{0.05cm},</math>
::<math>\Rightarrow \hspace{0.5cm} p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2}
+
::$$p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2}
 
  \cdot {\rm e }^{  - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot  \sqrt{E}}/{ \sigma_n^2}\right ]
 
  \cdot {\rm e }^{  - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot  \sqrt{E}}/{ \sigma_n^2}\right ]
  \hspace{0.05cm}, \hspace{0.5cm}
+
  \hspace{0.05cm},$$
p_{y_2 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2}  
+
::$$ p_{y_2 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2}  
  \cdot {\rm e }^{  - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.</math>
+
  \cdot {\rm e }^{  - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.$$
  
The error probability is generally obtained as follows:
+
*The error probability is generally obtained as follows:
  
 
::<math>{\rm Pr}({\cal{E}}) = \int_{0}^{\infty} \int_{\eta_1}^{\infty}  
 
::<math>{\rm Pr}({\cal{E}}) = \int_{0}^{\infty} \int_{\eta_1}^{\infty}  
Line 161: Line 175:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
For comparison, the result for '''coherent demodulation''' is given again:
+
*For comparison,&nbsp; the result for&nbsp; '''coherent demodulation'''&nbsp; is here given again:
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q}(\sqrt{ E_{\rm S}/N_0})
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q}(\sqrt{ E_{\rm S}/N_0})
 
  \hspace{0.05cm}.</math>}}
 
  \hspace{0.05cm}.</math>}}
Line 167: Line 181:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Derivation:}$&nbsp; The result taken in advance is now to be derived in some calculation steps. We start from the following equations:
+
$\text{Derivation:}$&nbsp; This result is now to be derived in some calculation steps.&nbsp; We start from the following equations:
  
 
:$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0) \cdot \int_{\eta_1}^{\infty}  
 
:$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0) \cdot \int_{\eta_1}^{\infty}  
 
   p_{y_2 \hspace{0.03cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2\,\,{\rm d} \eta_1
 
   p_{y_2 \hspace{0.03cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2\,\,{\rm d} \eta_1
 
  \hspace{0.05cm},\hspace{0.5cm}\text{with}$$
 
  \hspace{0.05cm},\hspace{0.5cm}\text{with}$$
:$$p_{y_1 \hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{  - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot  \sqrt{E} }/{ \sigma_n^2}\right ] \hspace{0.05cm},\hspace{0.5cm}p_{y_\hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2}  \cdot {\rm e }^{  - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.$$
+
::$$p_{y_1 \hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{  - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot  \sqrt{E} }/{ \sigma_n^2}\right ] \hspace{0.05cm},$$
 +
::$$p_{y_\hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2}  \cdot {\rm e }^{  - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.$$
  
 
<b>(1)</b> &nbsp; The inner integral gives the probability that the Rayleigh distributed random variable&nbsp; $\eta_2$&nbsp; is larger than&nbsp; $\eta_1$&nbsp; &ndash; see solution to&nbsp; [[Aufgaben:Exercise_4.17Z:_Rayleigh_and_Rice_Distribution|"Exercise 4.17Z"]]:
 
<b>(1)</b> &nbsp; The inner integral gives the probability that the Rayleigh distributed random variable&nbsp; $\eta_2$&nbsp; is larger than&nbsp; $\eta_1$&nbsp; &ndash; see solution to&nbsp; [[Aufgaben:Exercise_4.17Z:_Rayleigh_and_Rice_Distribution|"Exercise 4.17Z"]]:
Line 183: Line 198:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
<b>(2)</b> &nbsp; With the (arbitrary) substitutions&nbsp; $C_0^2  = E/4$&nbsp; and&nbsp; $\sigma_0^2 = \sigma_n^2/2$,&nbsp; we obtain:
+
<b>(2)</b> &nbsp; With the&nbsp; (arbitrary)&nbsp; substitutions&nbsp; $C_0^2  = E/4$&nbsp; and&nbsp; $\sigma_0^2 = \sigma_n^2/2$,&nbsp; we obtain:
  
 
:$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2}
 
:$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2}
Line 192: Line 207:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
<b>(3)</b> &nbsp; By shifting fractions in front of the integral, we succeed that the integrand again describes a&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rice_PDF|"Rice distribution"]]:&nbsp;  
+
<b>(3)</b> &nbsp; By shifting fractions in front of the integral,&nbsp; we succeed that the integrand again describes a&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rice_PDF|"Rice distribution"]]:&nbsp;  
  
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] \cdot \int\limits_{0}^{\infty} \frac{\eta_1}{ \sigma_0^2}
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] \cdot \int\limits_{0}^{\infty} \frac{\eta_1}{ \sigma_0^2}
Line 199: Line 214:
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
<b>(4)</b> &nbsp; The integrand now describes the Rice PDF. The integral over the entire definition area from&nbsp; $0$&nbsp; to &nbsp;$+\infty$&nbsp; yields the value one, as for any PDF, so that holds:
+
<b>(4)</b> &nbsp; The integrand now describes the Rice PDF.&nbsp; The integral over the entire definition area from&nbsp; $0$&nbsp; to &nbsp;$+\infty$&nbsp; yields the value one,&nbsp; as for any PDF,&nbsp; so that holds:
  
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ]\hspace{0.05cm}.</math>
 
::<math>{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ]\hspace{0.05cm}.</math>
Line 206: Line 221:
 
:$${\rm Pr}({\cal{E} })  
 
:$${\rm Pr}({\cal{E} })  
 
  = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] = {1}/{2} \cdot {\rm exp } \left [ - \frac{ E_{\rm S}/4}{N_{\rm 0}/2}\right ] \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}\hspace{0.05cm}.$$
 
  = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] = {1}/{2} \cdot {\rm exp } \left [ - \frac{ E_{\rm S}/4}{N_{\rm 0}/2}\right ] \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}\hspace{0.05cm}.$$
<b>q.e.d.</b> &nbsp; &nbsp; &nbsp; &nbsp; $E_{\rm S}$&nbsp; here indicates the average signal energy per symbol, which is equal to the normalization energy&nbsp; $E$&nbsp; for FSK.}}<br>
+
&nbsp; &nbsp; &nbsp; &nbsp; $E_{\rm S}$&nbsp; here indicates the average signal energy per symbol, which is equal to the normalization energy&nbsp; $E$&nbsp; for FSK.
 +
<div align="right">$\text{q.e.d.}$</div>}}<br>
  
[[File:P ID2088 Dig T 4 5 S3b version1.png|right|frame|FSK error probability for coherent and non-coherent demodulation|class=fit]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT=  
+
[[File:EN_Dig_T_4_5_S3b.png|right|frame|FSK symbol error probability for coherent and non-coherent demodulation|class=fit]]   
 
$\text{Example 2:}$&nbsp; The graph compares the error probability curves of both demodulation methods as a function of the AWGN quotient&nbsp; $E_{\rm S}/N_0$.&nbsp;  
 
$\text{Example 2:}$&nbsp; The graph compares the error probability curves of both demodulation methods as a function of the AWGN quotient&nbsp; $E_{\rm S}/N_0$.&nbsp;  
 
+
<br><br><br><br>
 
One can see:
 
One can see:
*The non-coherent FSK (red curve) requires a&nbsp;$0.8 \ \rm dB$&nbsp; larger&nbsp;$E_{\rm S}/N_0$ compared to the coherent FSK (blue curve) at&nbsp; $p_{\rm S}= 10^{-5}$.&nbsp;   
+
#The non-coherent BFSK&nbsp; (red curve)&nbsp; requires a &nbsp; $0.8 \ \rm dB$ &nbsp; larger&nbsp;$E_{\rm S}/N_0$&nbsp; compared to the coherent BFSK&nbsp; (blue curve)&nbsp; at&nbsp; $p_{\rm S}= 10^{-5}$.&nbsp;<br><br>  
*At &nbsp;$p_{\rm S}= 10^{-3}$&nbsp; the distance is even&nbsp; $1.3 \ \rm dB$.<br>
+
#At &nbsp; $p_{\rm S}= 10^{-3}$ &nbsp; the distance is even&nbsp; $1.3 \ \rm dB$.<br><br>
 
+
#In contrast,&nbsp; the distance between the coherent binary FSK from the coherent BPSK is always&nbsp; $1.3 \ \rm dB$&nbsp; regardless of the error probability.
*In contrast, the distance between the coherent binary FSK from the coherent BPSK is always&nbsp; $1.3 \ \rm dB$ regardless of the error probability.
 
 
<br clear =all>}}
 
<br clear =all>}}
  
Line 224: Line 239:
 
[[File:P ID2089 Dig T 4 5 S4a version1.png|right|frame|Orthogonal $M$&ndash;level FSK for &nbsp;$M= 3$]]
 
[[File:P ID2089 Dig T 4 5 S4a version1.png|right|frame|Orthogonal $M$&ndash;level FSK for &nbsp;$M= 3$]]
  
We now consider the message set&nbsp; $\{m_1, m_2,\hspace{0.05cm}\text{ ...} \hspace{0.05cm}, m_{M}\}$&nbsp; and denote&nbsp; $M$&nbsp; as the number of levels.
+
We now consider the message set&nbsp; $\{m_1, m_2,\hspace{0.05cm}\text{ ...} \hspace{0.05cm}, m_{M}\}$&nbsp; and denote&nbsp; $M$&nbsp; as the&nbsp; "level number".
*As in the case of binary FSK, a prerequisite for the application of the modulation process&nbsp; <i>"Frequency Shift Keying"</i>&nbsp; and at the same time of a non-coherent demodulator is an integer modulation index&nbsp; $h$.<br>
+
#As in the case of binary FSK,&nbsp; a prerequisite for the application of the modulation process&nbsp; "Frequency Shift Keying"&nbsp; and at the same time of a non-coherent demodulator is an integer modulation index&nbsp; $h$.<br><br>
 
+
#In this case,&nbsp; the&nbsp; $M$&ndash;level FSK is orthogonal and a signal space constellation results as shown in the adjacent diagram for the special case&nbsp; $M = 3$.&nbsp; <br><br>
*In this case, the&nbsp; $M$&ndash;level FSK is orthogonal and a signal space constellation results as shown in the adjacent diagram for the special case&nbsp; $M = 3$.&nbsp; <br><br>
 
 
 
The non-coherent demodulator is sketched below. Compared to the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Non-coherent_demodulation_of_binary_FSK_.282.E2.80.93FSK.29|"receiver structure for binary FSK"]],&nbsp; this receiver differs only by&nbsp; $M$&nbsp; branches instead of only two, which provide the comparison values&nbsp; $y_1$,&nbsp; $y_2$, ... , $y_M$.<br>
 
  
[[File:P ID2090 Dig T 4 5 S4b version1.png|center|frame|Non-coherent receiver structure for &nbsp;$M$&ndash;level FSK|class=fit]]
+
The non-coherent demodulator is sketched below.
 +
*Compared to the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Non-coherent_demodulation_of_binary_FSK_.282.E2.80.93FSK.29|"receiver structure for binary FSK"]],&nbsp; this receiver differs only by&nbsp; $M$&nbsp; branches instead of only two,&nbsp; which provide the comparison values&nbsp; $y_1$,&nbsp; $y_2$, ... , $y_M$.<br>
  
To calculate the error probability, we assume that&nbsp; $m_1$&nbsp; was sent. This means that the decision is correct if the largest detection output value is&nbsp; $y_1$:&nbsp;  
+
*To calculate the error probability,&nbsp; we assume that&nbsp; $m_1$&nbsp; was sent. This means that the decision is correct if the largest detection output value is&nbsp; $y_1$:&nbsp;  
  
 
::<math>{\rm Pr}({\cal{C}}) \hspace{-0.1cm}  =  \hspace{-0.1cm} {\rm Pr} \big [ (y_2 < y_1) \cap (y_3 < y_1) \cap ... \cap (y_{M} < y_1)
 
::<math>{\rm Pr}({\cal{C}}) \hspace{-0.1cm}  =  \hspace{-0.1cm} {\rm Pr} \big [ (y_2 < y_1) \cap (y_3 < y_1) \cap ... \cap (y_{M} < y_1)
Line 239: Line 252:
 
   \hspace{0.05cm}| \hspace{0.05cm}m = m_1\right ]
 
   \hspace{0.05cm}| \hspace{0.05cm}m = m_1\right ]
 
   \hspace{0.01cm}.</math>
 
   \hspace{0.01cm}.</math>
 
+
[[File:EN_Dig_T_4_5_S4b.png|right|frame|Non-coherent receiver structure for &nbsp;$M$&ndash;level FSK|class=fit]]
 +
<br clear=all>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Conclusion:}$&nbsp;
+
$\text{Conclusions:}$&nbsp;
* The &nbsp;'''error probability of M&ndash;level FSK in non-coherent demodulation'''&nbsp; is equal to ${\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} })$.  
+
* The &nbsp; '''error probability of M&ndash;level FSK in non-coherent demodulation''' &nbsp; is equal to&nbsp; ${\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} })$.
*In the following, it is shown that ${\rm Pr}({\cal{C} })$ can be represented as follows:
+
 +
*In the following,&nbsp; it is shown that&nbsp; ${\rm Pr}({\cal{C} })$&nbsp; can be represented as follows:
  
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
Line 256: Line 271:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Derivation:}$&nbsp; The result taken in advance shall now be derived in some calculation steps. We assume that&nbsp; $m_1$&nbsp; has been sent. This means that the decision is correct if the largest detection output value is&nbsp; $y_1$.&nbsp; Otherwise, there are certain analogies to the derivation of the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Error_probability_with_non-coherent_2.E2.80.93FSK_demodulation|"BFSK error probability"]].<br>
+
$\text{Derivation:}$&nbsp; This result shall now be derived in some calculation steps.  
 +
*We assume that&nbsp; $m_1$&nbsp; has been sent.&nbsp; This means that the decision is correct if the largest detection output value is&nbsp; $y_1$.&nbsp;  
 +
 
 +
*Otherwise,&nbsp; there are certain analogies to the derivation of the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Error_probability_with_non-coherent_2.E2.80.93FSK_demodulation|"BFSK error probability"]].<br>
 +
 
  
 
<b>(1)</b> &nbsp; Using the conditional probability density&nbsp; $p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_1)$,&nbsp; we obtain:
 
<b>(1)</b> &nbsp; Using the conditional probability density&nbsp; $p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_1)$,&nbsp; we obtain:
Line 276: Line 295:
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(4)</b> &nbsp; Now we are looking for the expression&nbsp; $(1 -a)^{M-1}$, for which with the abbreviation from <b>(3)</b> holds:
+
<b>(4)</b> &nbsp; Now we are looking for the expression &nbsp; $(1 -a)^{M-1}$,&nbsp; for which with the abbreviation from&nbsp; <b>(3)</b>&nbsp; holds:
  
 
::<math> (1-a)^{M-1} \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot (-1)^i  \cdot a^i =  \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ]
 
::<math> (1-a)^{M-1} \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot (-1)^i  \cdot a^i =  \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ]
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(5)</b> &nbsp; $y_1$&nbsp; has a&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Rayleigh_and_Rice_Distribution|"Rice distribution"]] conditioned on&nbsp; $m=m_1$.&nbsp; Thus, the probability of a correct decision can be expressed in the following form:
+
<b>(5)</b> &nbsp; $y_1$&nbsp; has a&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Rayleigh_and_Rice_Distribution|"Rice distribution"]] conditioned on&nbsp; $m=m_1$.&nbsp; Thus,&nbsp; the probability of a correct decision can be expressed in the following form:
  
 
::<math>{\rm Pr}({\cal{C} }) \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \int_{0}^{\infty} {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \cdot \frac{\eta_1}{ \sigma_n^2}\cdot   
 
::<math>{\rm Pr}({\cal{C} }) \hspace{-0.1cm}  =  \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \int_{0}^{\infty} {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \cdot \frac{\eta_1}{ \sigma_n^2}\cdot   
Line 288: Line 307:
 
   \hspace{0.05cm}.</math>
 
   \hspace{0.05cm}.</math>
  
<b>(6)</b> &nbsp; Substitutions succeed in shaping the integrand according to the Rice distribution. Since each probability density integrates to one, we obtain:
+
<b>(6)</b> &nbsp; Substitutions succeed in shaping the integrand according to the Rice distribution.&nbsp; Since each probability density integrates to one,&nbsp; we obtain:
  
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
 
::<math>{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i }  \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} }
Line 301: Line 320:
 
::<math>  \Rightarrow \hspace{0.5cm} {\rm Pr}({\cal{C} }) = 1 - {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)}
 
::<math>  \Rightarrow \hspace{0.5cm} {\rm Pr}({\cal{C} }) = 1 - {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)}
 
  \hspace{0.5cm} \Rightarrow \hspace{0.5cm} {\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} })  = {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)}
 
  \hspace{0.5cm} \Rightarrow \hspace{0.5cm} {\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} })  = {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)}
   \hspace{0.05cm}.</math>}}
+
   \hspace{0.05cm}.</math>
 +
<div align="right">$\text{q.e.d.}$</div>}}
  
 
== Exercises for the chapter==
 
== Exercises for the chapter==

Latest revision as of 13:43, 10 October 2022

Rayleigh and Rice Distribution


The estimation of the phase angle from the incoming signal,  which is required for coherent demodulation,  is not possible or only possible to a limited extent in many applications.  For example,  the movement of a mobile subscriber at high speed leads to very rapid temporal changes in the phase angle  $\phi$,  which makes its sufficiently accurate determination difficult or even impossible.

This fact leads to the  non-coherent demodulation processes  with the advantage of reduced complexity,  but with increased error probability.  In the derivation of the equations one encounters two probability density functions,  which are given here in advance:

  • The  Rayleigh distribution  is obtained for the power density function  $\rm (PDF)$  of the random variable  $y$  with realization  $\eta$,  which is obtained from the two Gaussian distributed and statistically independent components  $u$  and  $v$  $($both with the same standard deviation  $\sigma_n)$  as follows:
\[y = \sqrt{u^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) ={\eta}/{\sigma_n^2} \cdot {\rm exp } \left [ - {\eta^2}/{ (2\sigma_n^2)}\right ] \hspace{0.05cm}.\]
  • The  Rice distribution  is obtained under the same boundary conditions for the case where a constant   $C$  is added to one of the components $($either to $u$  or  $v)$: 
\[y = \sqrt{(u+C)^2 + v^2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_y (\eta) = {\eta}/{\sigma_n^2} \cdot {\rm exp } \left [ - ({\eta^2 + C^2})/(2 \sigma_n^2) \right ] \cdot {\rm I }_0 \left [{\eta \cdot C}/{ \sigma_n^2}\right ] \hspace{0.05cm}.\]
The Rice distribution uses the  "modified zero-order Bessel function",  whose definition and series expansion are as follows:
\[{\rm I }_0 (x) = \frac{1}{ 2\pi} \cdot \int_{0}^{2\pi} {\rm e }^{-x \hspace{0.03cm}\cdot \hspace{0.03cm}\cos(\alpha)} \,{\rm d} \alpha \hspace{0.2cm} \approx \hspace{0.2cm} \sum_{k = 0}^{\infty} \frac{(x/2)^{2k}}{k! \cdot \Gamma (k+1)} \hspace{0.05cm}.\]

The graph shows the probability density functions of Rayleigh and Rice distributions.  To this representation it is to be noted:

Rayleigh resp. Rice PDF for $σ_n = 0.5$
  • The Rice distribution is determined by the two parameters  $C$  and  $\sigma_n$.  With  $C = 0$,  the Rice PDF is identical to the Rayleigh PDF.
  • The Rayleigh PDF with larger  $\sigma_n$  is of the same shape as shown for  $\sigma_n = 0.5$,  but wider and lower in the ratio of standard deviation.
  • $\sigma_n$  indicates the standard deviation of the two Gaussian distributed random variables  $u$  and  $v$  and not the standard deviation of the Rayleigh distributed random variable  $y$.  Rather,  the following applies to the latter:
\[\sigma_y = \sigma_n \cdot \sqrt{2 - {\pi}/{2 }} \hspace{0.2cm} \approx \hspace{0.2cm} 0.655 \cdot \sigma_n \hspace{0.05cm}.\]
  • The Rayleigh PDF is extremely asymmetric,  recognizable by the large value for the  "third order central moment"   ⇒   "Charlier's skewness":
$$\mu_3/\sigma_y \approx 0.27.$$
  • The Rice PDF is more symmetrical the larger the quotient  $C/\sigma_n$.  For  $C/\sigma_n \ge 4$:  $\mu_3 \approx 0$   ⇒   symmetrical PDF.
  • The larger  $C/\sigma_n$  is,  the more the Rice PDF $($with  $C$,  $\sigma_n)$  approaches a  "Gaussian PDF"  with mean  $C$  and standard deviation  $\sigma_n$:
$$p_y (\eta) \approx \frac{1}{\sqrt{2\pi} \cdot \sigma_n} \cdot {\rm exp } \left [ - \frac{(\eta - C)^2}{2 \sigma_n^2}\right ]$$
$$ \Rightarrow \hspace{0.3cm} m_y = C\hspace{0.05cm},\hspace{0.2cm}\sigma_y = \sigma_n \hspace{0.05cm}.$$

Non-coherent demodulation of  "on–off keying"  (OOK)


We consider  "on–off keying"  $(\rm OOK$  or  $\rm 2–ASK)$  in the equivalent low-pass range.

Coherent and non-coherent demodulation of  "on-off keying"
  • In the case of coherent demodulation  (left graph),  the signal space constellation of the received signal  $\boldsymbol{r}(t)$  is the same as that of the transmitted signal  $\boldsymbol{s}(t)$  and consists of two points.
  • The decision boundary  $G$  lies in the middle between these points  $\boldsymbol{r}_0$  and  $\boldsymbol{r}_1$.
  • The arrows mark the rough direction of noise vectors that may cause transmission errors.


On the other hand, for non-coherent demodulation (right graph):

  • The point  $\boldsymbol{r}_1 = \boldsymbol{s}_1 = 0$  is still preserved.  But  $\boldsymbol{r}_0 = \boldsymbol{s}_0 \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi}$  can lie on any point of the circle around  $\boldsymbol{s}_0$,  since  $\phi$  is unknown.
  • The decision process in consideration of the AWGN noise happens in two dimensions  $($indicated by arrows in the right graph$)$.
  • The decision area  $I_1$  is a circle whose radius  $G$  is an optimizable parameter. The decision area  $I_0$  lies outside the circle.


Thus,  the structure of the optimal OOK receiver  (in the equivalent low–pass range)  is fixed   ⇒   see second graph:

Receiver for non-coherent OOK demodulation  (complex signals are labeled blue)
  • The input signal  $\boldsymbol{r}(t) = \boldsymbol{s}(t) \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi} + \boldsymbol{n}(t)$  is generally complex because of the phase angle  $\phi$  and because of the complex noise term  $\boldsymbol{n}(t)$. 
  • Consequently required is now the correlation between the complex received signal  $\boldsymbol{r}(t)$  and a complex basis function  $\boldsymbol{\xi}_1(t)$.
  • The result is the  (complex)  detection value  $\boldsymbol{r}$,  from which the magnitude  $y = |\boldsymbol{r}(t)|$  is formed as a real decision input variable.
  • If the decision value  $y \gt G$,  then  $m_0$  is output as the estimated value,  otherwise  $m_1$.
  • Thus,  the symbol error probability for equally probable symbols
    ⇒   ${\rm Pr}(\boldsymbol{m}_0) = {\rm Pr}(\boldsymbol{m}_1) =1/2$  is:
\[p_{\rm S} = {\rm Pr}({\cal{E}}) = {1}/{ 2} \cdot \int_{0}^{G} p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (\eta \hspace{0.05cm}|\hspace{0.05cm} m_0) \,{\rm d} \eta + {1}/{ 2} \cdot \int_{G}^{\infty} p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} m_1) \,{\rm d} \eta \hspace{0.05cm}.\]
  • However,  due to the Rice PDF   $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_0)$   and the Rayleigh PDF   $p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (\eta\hspace{0.05cm}|\hspace{0.05cm}m_1)$,   this probability can only be determined numerically.
  • The optimal decision limit  $G$  has to be determined beforehand as the solution of the following equation:
\[p_{y\hspace{0.05cm}\vert \hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_0) = p_{y\hspace{0.05cm}|\hspace{0.05cm}m} (G \hspace{0.05cm}|\hspace{0.05cm}m_1) \hspace{0.05cm}.\]
Density functions for "OOK, non-coherent"

$\text{Example 1:}$  The graph shows the result of this equation for  $\sigma_n = 0.5$  and  $C = 2$, where the (red) Rice PDF is approximated by a Gaussian PDF with mean  $C$  and standard deviation  $\sigma_n$. 

One can see from this sketch:

  • The optimal decision value  $($here:   $G \approx 1.25)$  results from the intersection of the two PDF curves.
  • The symbol error probability  $p_{\rm S}$  is the sum of the two colored areas.  In the example:  $p_{\rm S} \approx 5\%$ results.


⇒   You can determine the error probability for other values of  $C$  and  $\sigma_n$  as well as the optimal decision value  $G$  using the  HTML5/JavaScript applet  "Coherent and Non-coherent On-Off Keying"

Non-coherent demodulation of binary FSK (2–FSK)


As already shown in the  "last chapter",  "Binary Frequency Shift Keying"  $\rm (2–FSK)$  in the equivalent low-pass range can be described by the basis functions

\[\xi_1(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]
\[ \xi_2(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}\]

To achieve orthogonality between these two complex basis functions,  the  "modulation index"  $h$  must be chosen to be integer:

\[< \hspace{-0.05cm}\xi_1(t) \hspace{0.1cm} \cdot \hspace{0.1cm} \xi_2(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} h = 2 \cdot \Delta f_{\rm A} \cdot T\hspace{0.05cm}= 1, 2, 3, \text{...}\]

The diagram shows the structure for non-coherent orthogonal demodulation of binary FSK.

Non-coherent demodulation of the binary FSK

In the noise-free case   ⇒   $n(t) \equiv 0$  applies to the outputs of the two correlators:

\[r_1 = \hspace{0.2cm} < \hspace{-0.05cm}r(t) \hspace{0.1cm} \cdot \hspace{0.1cm} \xi_1(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm}, \hspace{0.4cm} {\rm if}\hspace{0.15cm} m = m_1\hspace{0.05cm},\]
\[ r_2 = \hspace{0.2cm} < \hspace{-0.05cm}r(t) \hspace{0.1cm} \cdot \hspace{0.1cm} \xi_2(t) \hspace{-0.05cm}> \hspace{0.2cm}= 0\hspace{0.05cm}, \hspace{0.4cm} {\rm if}\hspace{0.15cm} m = m_0\hspace{0.05cm}.\]

After respective magnitude formation   ⇒   $y_1 = |r_1|, \ \ y_2 = |r_2|$  the following decision rule is applicable:

\[\hat{m} = \left\{ \begin{array}{c} m_0 \\ m_1 \end{array} \right.\quad \begin{array}{*{1}c} {\rm if}\hspace{0.15cm} y_1 > y_2 \hspace{0.05cm}, \\ {\rm if}\hspace{0.15cm} y_1 < y_2 \hspace{0.05cm}.\\ \end{array}\]

For a simpler realization of the decision,  the difference  $y_1 - y_2$  can also be evaluated with the decision boundary  $G = 0$. 

Error probability with non-coherent 2–FSK demodulation


In the following,  the error probability is calculated under the assumption that  $m = m_0$  was sent.

  • Under the further assumption of equally probable binary messages  $m_0$  and  $m_1$,  the absolute error probability is exactly the same:
$${\rm Pr}({\cal{E}}) = {\rm Pr}({\cal{E}}\hspace{0.05cm} | \hspace{0.05cm}m_0) \hspace{0.05cm}.$$
  • With  $m = m_0$  we get for the complex correlation output values  $r_i$  and their magnitudes  $y_i$:
\[r_1 = \sqrt{E} \cdot {\rm e}^{{\rm j}\phi} + n_1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_1 = |r_1|\hspace{0.15cm}{\rm is}\hspace{0.15cm}{\rm Rice}\hspace{0.15cm}{\rm distributed} \hspace{0.05cm},\]
\[ r_2 = n_2\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_2 = |r_2|\hspace{0.15cm}{\rm is}\hspace{0.15cm}{\rm Rayleigh}\hspace{0.15cm}{\rm distributed} \hspace{0.05cm}.\]
Here,  $E$  due to  $M = 2$  represents the  "average symbol energy"  $(E_{\rm S})$  and the  "average bit energy"  $(E_{\rm B})$  equally.  $n_1$  and  $n_2$  are uncorrelated complex noise variables with mean zero and variance  $2 \cdot \sigma_n^2$.
\[p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) = p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot p_{y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) \hspace{0.05cm},\]
$$p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{ - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot \sqrt{E}}/{ \sigma_n^2}\right ] \hspace{0.05cm},$$
$$ p_{y_2 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2} \cdot {\rm e }^{ - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.$$
  • The error probability is generally obtained as follows:
\[{\rm Pr}({\cal{E}}) = \int_{0}^{\infty} \int_{\eta_1}^{\infty} p_{y_1,\hspace{0.03cm} y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_1, \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0) \,\,{\rm d} \eta_2\,\,{\rm d} \eta_1 = \int_{0}^{\infty} p_{y_1 \hspace{0.01cm}| \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}| \hspace{0.05cm}m_0) \cdot \int_{\eta_1}^{\infty} p_{y_2 \hspace{0.03cm}| \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}| \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2\,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

$\text{Conclusion:}$  For the  error probability with non-coherent demodulation of the binary FSK,  one obtains after some mathematical transformations the surprisingly simple result

\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)} \hspace{0.05cm}.\]
  • For comparison,  the result for  coherent demodulation  is here given again:
\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q}(\sqrt{ E_{\rm S}/N_0}) \hspace{0.05cm}.\]


$\text{Derivation:}$  This result is now to be derived in some calculation steps.  We start from the following equations:

$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_0) \cdot \int_{\eta_1}^{\infty} p_{y_2 \hspace{0.03cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2\,\,{\rm d} \eta_1 \hspace{0.05cm},\hspace{0.5cm}\text{with}$$
$$p_{y_1 \hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_1}/{\sigma_n^2} \cdot {\rm e }^{ - ({\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [{\eta_1 \cdot \sqrt{E} }/{ \sigma_n^2}\right ] \hspace{0.05cm},$$
$$p_{y_\hspace{0.01cm}\vert \hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0) = {\eta_2}/{\sigma_n^2} \cdot {\rm e }^{ - \eta_2^2 /({2 \sigma_n^2}) } \hspace{0.05cm}.$$

(1)   The inner integral gives the probability that the Rayleigh distributed random variable  $\eta_2$  is larger than  $\eta_1$  – see solution to  "Exercise 4.17Z":

$$\int_{\eta_1}^{\infty} p_{y_2 \hspace{0.03cm}\vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm}\vert \hspace{0.05cm}m_0)\,\,{\rm d} \eta_2 = {\rm e }^{ - \eta_1^2 /({2 \sigma_n^2}) } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}({\cal{E} }) = \int_{0}^{\infty}{\eta_1}/{\sigma_n^2} \cdot {\rm e }^{ - ({2\eta_1^2 + E})/({2 \sigma_n^2}) }\cdot {\rm I }_0 \left [ {\eta_1 \cdot \sqrt{E} }/{ \sigma_n^2}\right ]\,\,{\rm d} \eta_1 \hspace{0.05cm}.$$

(2)   With the  (arbitrary)  substitutions  $C_0^2 = E/4$  and  $\sigma_0^2 = \sigma_n^2/2$,  we obtain:

$${\rm Pr}({\cal{E} }) = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2} \cdot {\rm exp } \left [ - \frac{2 \eta_1^2 + 4 C_0^2}{4 \sigma_0^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot 2C_0}{ 2 \sigma_0^2}\right ]\,\,{\rm d} \eta_1 = \int_{0}^{\infty} \frac{\eta_1}{2 \cdot \sigma_0^2} \cdot {\rm exp } \left [ - \frac{\eta_1^2 + 2 C_0^2}{2 \sigma_0^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot C_0}{ \sigma_0^2}\right ]\,\,{\rm d} \eta_1 \hspace{0.05cm}.$$

(3)   By shifting fractions in front of the integral,  we succeed that the integrand again describes a  "Rice distribution"

\[{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] \cdot \int\limits_{0}^{\infty} \frac{\eta_1}{ \sigma_0^2} \cdot {\rm exp } \left [ - \frac{\eta_1^2 + C_0^2}{2 \sigma_0^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot C_0}{ \sigma_0^2}\right ]\,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(4)   The integrand now describes the Rice PDF.  The integral over the entire definition area from  $0$  to  $+\infty$  yields the value one,  as for any PDF,  so that holds:

\[{\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ]\hspace{0.05cm}.\]

(5)   Finally, with  $C_0^2 = E/4$  and  $\sigma_0^2 = \sigma_n^2/2$  and the generally valid relation  $\sigma_n^2 = N_0$,  we obtain:

$${\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm exp } \left [ - \frac{ C_0^2}{2 \sigma_0^2}\right ] = {1}/{2} \cdot {\rm exp } \left [ - \frac{ E_{\rm S}/4}{N_{\rm 0}/2}\right ] \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)}\hspace{0.05cm}.$$

        $E_{\rm S}$  here indicates the average signal energy per symbol, which is equal to the normalization energy  $E$  for FSK.

$\text{q.e.d.}$


FSK symbol error probability for coherent and non-coherent demodulation

$\text{Example 2:}$  The graph compares the error probability curves of both demodulation methods as a function of the AWGN quotient  $E_{\rm S}/N_0$. 



One can see:

  1. The non-coherent BFSK  (red curve)  requires a   $0.8 \ \rm dB$   larger $E_{\rm S}/N_0$  compared to the coherent BFSK  (blue curve)  at  $p_{\rm S}= 10^{-5}$. 

  2. At   $p_{\rm S}= 10^{-3}$   the distance is even  $1.3 \ \rm dB$.

  3. In contrast,  the distance between the coherent binary FSK from the coherent BPSK is always  $1.3 \ \rm dB$  regardless of the error probability.



Non-coherent demodulation of multi-level FSK


Orthogonal $M$–level FSK for  $M= 3$

We now consider the message set  $\{m_1, m_2,\hspace{0.05cm}\text{ ...} \hspace{0.05cm}, m_{M}\}$  and denote  $M$  as the  "level number".

  1. As in the case of binary FSK,  a prerequisite for the application of the modulation process  "Frequency Shift Keying"  and at the same time of a non-coherent demodulator is an integer modulation index  $h$.

  2. In this case,  the  $M$–level FSK is orthogonal and a signal space constellation results as shown in the adjacent diagram for the special case  $M = 3$. 

The non-coherent demodulator is sketched below.

  • Compared to the  "receiver structure for binary FSK",  this receiver differs only by  $M$  branches instead of only two,  which provide the comparison values  $y_1$,  $y_2$, ... , $y_M$.
  • To calculate the error probability,  we assume that  $m_1$  was sent. This means that the decision is correct if the largest detection output value is  $y_1$: 
\[{\rm Pr}({\cal{C}}) \hspace{-0.1cm} = \hspace{-0.1cm} {\rm Pr} \big [ (y_2 < y_1) \cap (y_3 < y_1) \cap ... \cap (y_{M} < y_1) \hspace{0.05cm}| \hspace{0.05cm} m = m_1\big ] = {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1) \hspace{0.05cm}| \hspace{0.05cm}m = m_1\right ] \hspace{0.01cm}.\]
Non-coherent receiver structure for  $M$–level FSK


$\text{Conclusions:}$ 

  • The   error probability of M–level FSK in non-coherent demodulation   is equal to  ${\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} })$.
  • In the following,  it is shown that  ${\rm Pr}({\cal{C} })$  can be represented as follows:
\[{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ] \hspace{0.05cm}\hspace{0.5cm} \text{with}\hspace{0.5cm} E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.\]
  • In the special case  $M = 2$,  of course, the result obtained in the  "last section"  is again obtained:
\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {1}/{2} \cdot {\rm e}^{-E_{\rm S}/(2 N_0)} \hspace{0.05cm}.\]


$\text{Derivation:}$  This result shall now be derived in some calculation steps.

  • We assume that  $m_1$  has been sent.  This means that the decision is correct if the largest detection output value is  $y_1$. 


(1)   Using the conditional probability density  $p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_1)$,  we obtain:

\[{\rm Pr}({\cal{C} }) = \int_{0}^{\infty} {\rm Pr} \left [ \hspace{0.1cm} \bigcap\limits_{k = 2}^M (y_k < y_1) \hspace{0.05cm}\vert\hspace{0.05cm}y_1 = \eta_1, m = m_1\right ] \cdot p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_1) \,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(2)   The decision values  $y_2$,  $y_3$,  ... , $y_M$  are statistically independent for given  $y_1$.  Therefore:

\[{\rm Pr}({\cal{C} }) = \int_{0}^{\infty} \left \{ {\rm Pr} \big [ (y_2 < y_1) \hspace{0.05cm}\vert \hspace{0.05cm}y_1 = \eta_1, m = m_1\big ] \right \}^{M-1} \cdot p_{y_1 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_1) \,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(3)   The selected value  $y_2$  conditioned on  $m_1$  has a Rayleigh distribution with parameter  $\sigma_n^2$:

\[{\rm Pr} \big [ (y_2 < y_1) \hspace{0.05cm} \vert \hspace{0.05cm}y_1 = \eta_1, m = m_1\big ] \hspace{-0.1cm} = \hspace{-0.1cm} \int_{0}^{\eta_1} p_{y_2 \hspace{0.01cm} \vert\hspace{0.03cm}m} ( \eta_2 \hspace{0.05cm} \vert \hspace{0.05cm}m_1)\,\,{\rm d} \eta_2= 1 - {\rm exp } \big [ - {\eta_1^2 }/({2 \sigma_n^2})\big ] = 1 - a \hspace{0.2cm}{\rm(abbreviation)} \hspace{0.05cm}.\]

(4)   Now we are looking for the expression   $(1 -a)^{M-1}$,  for which with the abbreviation from  (3)  holds:

\[ (1-a)^{M-1} \hspace{-0.1cm} = \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot (-1)^i \cdot a^i = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \hspace{0.05cm}.\]

(5)   $y_1$  has a  "Rice distribution" conditioned on  $m=m_1$.  Thus,  the probability of a correct decision can be expressed in the following form:

\[{\rm Pr}({\cal{C} }) \hspace{-0.1cm} = \hspace{-0.1cm} \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \int_{0}^{\infty} {\rm exp } \left [ - \frac{i \cdot \eta_1^2 }{2 \sigma_n^2}\right ] \cdot \frac{\eta_1}{ \sigma_n^2}\cdot {\rm exp } \left [ - \frac{\eta_1^2 + E_{\rm S} }{2 \sigma_n^2}\right ] \cdot {\rm I }_0 \left [ \frac{\eta_1 \cdot \sqrt{E_{\rm S} } }{ \sigma_n^2}\right ] \,\,{\rm d} \eta_1 \hspace{0.05cm}.\]

(6)   Substitutions succeed in shaping the integrand according to the Rice distribution.  Since each probability density integrates to one,  we obtain:

\[{\rm Pr}({\cal{C} }) = \sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm exp } \left [ - \frac{i \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ] \hspace{0.05cm}\hspace{0.5cm} \text{with}\hspace{0.5cm} E_{\rm S} = E_{\rm B} \cdot {\rm log_2}(M)\hspace{0.05cm}.\]

(7)   The special case  $M = 2$  leads to exactly the same result as calculated for the binary FSK:

\[{\rm Pr}({\cal{C} }) = (-1)^0 \cdot {2-1 \choose 0 } \cdot \frac{1}{0+1} \cdot {\rm exp } \left [ - \frac{0 \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ] + (-1)^1 \cdot {2-1 \choose 1 } \cdot \frac{1}{1+1} \cdot {\rm exp } \left [ - \frac{1 \cdot E_{\rm S} } {(i+1) \cdot N_0}\right ] \]
\[ \Rightarrow \hspace{0.5cm} {\rm Pr}({\cal{C} }) = 1 - {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} {\rm Pr}({\cal{E} }) = 1 - {\rm Pr}({\cal{C} }) = {1}/{2} \cdot {\rm e }^{-E_{\rm S}/(2N_0)} \hspace{0.05cm}.\]
$\text{q.e.d.}$

Exercises for the chapter


Exercise 4.17: Non-Coherent On-Off Keying

Exercise 4.17Z: Rayleigh and Rice Distribution

Exercise 4.18: Non-Coherent FSK Demodulation

Exercise 4.18Z: BER of Coherent and Non-Coherent FSK

Exercise 4.19: Orthogonal Multilevel FSK