Difference between revisions of "Digital Signal Transmission/Decision Feedback"

From LNTwww
 
(37 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Impulsinterferenzen und Entzerrungsverfahren
+
|Untermenü=Intersymbol Interfering and Equalization Methods
 
|Vorherige Seite=Lineare Nyquistentzerrung
 
|Vorherige Seite=Lineare Nyquistentzerrung
 
|Nächste Seite=Optimale Empfängerstrategien
 
|Nächste Seite=Optimale Empfängerstrategien
 
}}
 
}}
  
== Prinzip und Blockschaltbild ==
+
== Principle and block diagram ==
 
<br>
 
<br>
Eine Möglichkeit zur Verminderung von Impulsinterferenzen bietet die '''Entscheidungsrückkopplung''' (engl.: <i> Decision Feedback Equalization </i> &ndash; abgekürzt  '''DFE'''). In der deutschsprachigen Literatur wird diese manchmal auch als <i>Quantisierte Rückkopplung</i> (QR) bezeichnet.<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; &nbsp; '''Decision Feedback Equalization'''&nbsp; $\rm (DFE)$ &nbsp; is a method of reducing intersymbol interference.&nbsp; In German-language literature,&nbsp; this is sometimes also referred to as&nbsp; "Quantized Feedback"&nbsp; $\rm (QR)$.}}
  
[[File:P ID1446 Dig T 3 6 S1 version1.png|right|frame|Empfänger mit Entscheidungsrückkopplung (DFE)|class=fit]]
 
Die Grafik zeigt den entsprechenden Empfänger. Man erkennt anhand des Blockschaltbildes:
 
*Ohne die rot eingezeichnete Signalrückführung ergäbe sich ein herkömmlicher Digitalempfänger mit Schwellenwertentscheider entsprechend dem Kapitel  [[Digitalsignal%C3%BCbertragung/Ber%C3%BCcksichtigung_von_Kanalverzerrungen_und_Entzerrung#Idealer_Kanalentzerrer|Idealer Kanalentzerrer]].
 
*Für die folgende Beschreibung wird wieder angenommen, dass sich das gesamte Empfangsfilter $H_{\rm E}(f)$ aus dem (fiktiven) idealen Kanalentzerrer $1/H_{\rm K}(f)$  und einem Gaußtiefpass $H_{\rm G}(f)$  zur Rauschleistungsbegrenzung zusammensetzt.<br>
 
  
*Beim Empfänger mit Entscheidungsrückkopplung wird vom rechteckförmigen Ausgangssignal $v(t)$ über ein lineares Netzwerk mit dem Frequenzgang $H_{\rm DFE}(f)$ ein Kompensationssignal $w(t)$ gewonnen und an den Eingang des Schwellenwertentscheiders zurückgeführt.<br>
+
The graphic shows the corresponding receiver. It can be seen from the block diagram:
 +
[[File:P ID1446 Dig T 3 6 S1 version1.png|right|frame|Receiver with decision feedback equalization&nbsp; $\rm (DFE)$|class=fit]]
  
*Dieses Signal $w(t)$ wird vom vorentzerrten Signal  $d(t)$ subtrahiert. Bei geeigneter Dimensionierung des Rückkopplungsnetzwerkes weist somit das ''korrigierte Signal'' $k(t) = d(t) - w(t)$ keine (oder zumindest deutlich geringere) Impulsnachläufer auf als das Signal $d(t)$. Die Impulsvorläufer können dagegen aus Kausalitätsgründen nicht beeinflusst werden.<br>
+
*Without the signal feedback shown in red,&nbsp; a conventional digital receiver with threshold decision would result according to the chapter&nbsp; [[Digital_Signal_Transmission/Consideration_of_Channel_Distortion_and_Equalization#Ideal_channel_equalizer|"Ideal channel equalizer"]].
 +
 +
*For the following description,&nbsp; it is assumed that the entire receiver filter &nbsp;$H_{\rm E}(f)$&nbsp; is composed of the (fictitious) ideal channel equalizer &nbsp;$1/H_{\rm K}(f)$&nbsp;  and a Gaussian low-pass filter &nbsp;$H_{\rm G}(f)$&nbsp; for noise power limitation.
  
*Da bei diesem Empfänger mit Entscheidungsrückkopplung das Kompensationssignal $w(t)$ vom rauschfreien Sinkensignal $v(t)$ abgeleitet wird, ist die Signalentzerrung nicht mit einer Erhöhung der Rauschleistung verbunden wie bei linearer Entzerrung. Vielmehr besitzt das korrigierte Signal $k(t)$ den gleichen Rauscheffektivwert $\sigma_d$ wie das Signal $d(t)$.<br><br>
+
*In the receiver with decision feedback,&nbsp; a compensation signal &nbsp;$w(t)$&nbsp; is obtained from the rectangular output signal &nbsp;$v(t)$&nbsp; via a linear network with the frequency response&nbsp; $H_{\rm DFE}(f)$&nbsp; and fed back to the input of the threshold decision.<br>
  
''Hinweis:'' Die Signalverläufe dieses nichtlinearen Entzerrungsverfahrens &bdquo;DFE&rdquo; sowie die zugehörigen Fehlerwahrscheinlichkeiten &ndash; gültig für einen verzerrungsfreien Kanal &ndash; können mit dem Interaktionsmodul [[Entscheidungsrückkopplung]] angezeigt werden.<br>
+
*This signal &nbsp;$w(t)$&nbsp; is subtracted from the pre-equalized signal &nbsp;$d(t)$.&nbsp; If the feedback network is suitably dimensioned,&nbsp; the&nbsp; '''corrected signal'''&nbsp; $k(t) = d(t) - w(t)$&nbsp; thus has no&nbsp; (or at least significantly fewer)&nbsp; pulse trailers than the signal &nbsp;$d(t)$.  
  
 +
*In contrast to these pulse trailers&nbsp; ("postcursors"),&nbsp; the pulse precursors cannot be influenced for reasons of causality.
  
== Ideale Entscheidungsrückkopplung ==
+
*Since in this receiver with decision feedback,&nbsp; the compensation signal &nbsp;$w(t)$&nbsp; is derived from the noise-free sink signal &nbsp;$v(t)$,&nbsp; the signal equalization is not associated with an increase in noise power as in linear equalization.&nbsp; Rather,&nbsp; the corrected signal &nbsp;$k(t)$&nbsp; has the same noise rms value &nbsp;$\sigma_d$&nbsp; as the signal &nbsp;$d(t)$.<br><br>
 +
 
 +
&rArr; &nbsp;  The signal characteristics of this nonlinear equalization method&nbsp; "DFE"&nbsp; as well as the associated error probabilities &ndash; valid for a distortion-free channel &ndash; can be displayed with the&nbsp; (German language)&nbsp; SWF applet&nbsp; [[Applets:Entscheidungsrückkopplung|"Entscheidungsrückkopplung"]] &nbsp; &rArr; &nbsp; "Decision Feedback Equalization"
 +
 
 +
 
 +
 
 +
== Ideal decision feedback ==
 
<br>
 
<br>
Wir behandeln zunächst die ideale DFE&ndash;Realisierung anhand der Grundimpulse.<br>
+
We first discuss the ideal DFE realization based on the different basic pulses.<br>
  
{{Definition}}''':''' Eine ideale Entscheidungsrückkopplung liegt vor, wenn am Entscheider der folgende Grundimpuls anliegt:
+
{{BlaueBox|TEXT= 
:<math>g_k(t) =  \left\{ \begin{array}{c} g_d(t)
+
$\text{Definition:}$&nbsp; An &nbsp;'''ideal decision feedback'''&nbsp; exists when the following basic pulse is applied to the decision:
  \\ 0  \\  \end{array} \right.\quad
+
:$$g_k(t) =  \left\{ \begin{array}{c} g_d(t)
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array}
+
  \\ 0  \\  \end{array} \right.\quad  
 +
\begin{array}{*{1}c} \text{for} \\ \text{for} \\ \end{array}  
 
\begin{array}{*{20}c} t < T_{\rm D} +  T_{\rm V}, \\  t \ge T_{\rm D} +  T_{\rm V}. \\
 
\begin{array}{*{20}c} t < T_{\rm D} +  T_{\rm V}, \\  t \ge T_{\rm D} +  T_{\rm V}. \\
\end{array}</math>{{end}}<br>
+
\end{array}$$
 +
 
 +
*This means that in the ideal case the basic compensation pulse &nbsp;$g_w(t)$&nbsp; must exactly reproduce the linearly pre-equalized pulse &nbsp;$g_d(t)$&nbsp; for all times &nbsp;$t > T_{\rm D} +  T_{\rm V}$.&nbsp;
 +
 +
*The delay time &nbsp;$T_{\rm V}$&nbsp; required for realization reasons must be smaller than the symbol duration &nbsp;$T$;&nbsp; In the following &nbsp;$T_{\rm V} = T/2$&nbsp; always applies.}}<br>
  
Das bedeutet, dass im Idealfall der Kompensationsgrundimpuls <i>g<sub>w</sub></i>(<i>t</i>) den linear vorentzerrten Impuls <i>g<sub>d</sub></i>(<i>t</i>) für alle Zeiten <i>t</i> > <i>T</i><sub>D</sub> + <i>T</i><sub>V</sub> exakt nachbilden muss. Die aus Realisiserungsgründen erforderliche Verzögerungszeit <i>T</i><sub>V</sub> muss stets kleiner als die Symboldauer <i>T</i> sein; im Folgenden gelte stets <i>T</i><sub>V</sub> = <i>T</i>/2.<br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; Let the total frequency response &nbsp;$H_{\rm K}(f) \cdot H_{\rm E}(f) = H_{\rm G}(f)$&nbsp; be Gaussian with the cutoff frequency &nbsp;$f_{\rm G}  = 0.3/T$. For NRZ rectangular pulses, this then yields the basic pulse &nbsp;$g_d(t)$ sketched in pink.
  
{{Beispiel}}''':''' Der Gesamtfrequenzgang <i>H</i><sub>K</sub>(<i>f</i>) &middot; <i>H</i><sub>E</sub>(<i>f</i>) = <i>H</i><sub>G</sub>(<i>f</i>) sei gaußförmig mit der Grenzfrequenz <i>f</i><sub>G</sub>  = 0.3/<i>T</i>. Bei NRZ&ndash;Rechteckimpulsen ergibt sich dann der skizzierte Detektionsgrundimpuls <i>g<sub>d</sub></i>(<i>t</i>).<br><br>
+
[[File:P ID1447 Dig T 3 6 S2 version1.png|right|frame|Basic pulses and signals with ideal&nbsp; "Decision Feedback Equalization"&nbsp; $\rm (DFE)$|class=fit]]
  
[[File:P ID1447 Dig T 3 6 S2 version1.png|Grundimpulse und Signale bei idealer DFE|class=fit]]<br>
+
&rArr; &nbsp; Shown on the left are the basic pulses &nbsp;$g_w(t)$&nbsp; and&nbsp; $g_k(t)$&nbsp; with ideal decision feedback,&nbsp; based on the detection time &nbsp;$T_{\rm D} = 0$&nbsp; and the delay time &nbsp;$T_{\rm V} = T/2$.&nbsp; <br>
  
Links dargestellt sind auch die Grundimpulse <i>g<sub>w</sub></i>(<i>t</i>) und <i>g<sub>k</sub></i>(<i>t</i>) bei idealer Entscheidungsrückkopplung, wobei der Detektionszeitpunkt <i>T</i><sub>D</sub> = 0 und die Verzögerungszeit <i>T</i><sub>V</sub> = <i>T</i>/2 zugrunde liegen.<br>
+
&rArr; &nbsp; The right pictures from [Söd01]<ref name = 'Söd01'>Söder, G.:&nbsp;Simulation digitaler Übertragungssysteme. Anleitung zum gleichnamigen Praktikum. Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2001.</ref> &ndash; all without consideration of the noise &ndash; make clear that by the compensation of all pulse trailers by means of the correction signal &nbsp;$w(t)$,&nbsp; the distances of the useful signal samples&nbsp; $d_{\rm S}(\nu \cdot T)$&nbsp; from the decision threshold &nbsp;$E = 0$&nbsp; are changed.
  
Die rechten Bilder aus [Söd01]<ref>Söder, G.: ''Simulation digitaler Übertragungssysteme.'' Anleitung zum gleichnamigen Praktikum. Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2001.</ref> &ndash; alle ohne Berücksichtigung des Rauschens &ndash; machen deutlich, dass durch die Kompensation aller Impulsnachläufer mittels des Korrektursignals <i>w</i>(<i>t</i>) die Abstände der Nutzabstandswerte <i>d</i><sub>S</sub>(<i>&nu;</i><i>T</i>) von der Entscheiderschwelle <i>E</i> = 0 verändert werden. Besonders geringe Abstände wie beispielsweise zu den Zeitpunkten <i>t</i> = 6<i>T</i> und <i>t</i> = 7<i>T</i> werden deutlich vergrößert und damit deren Fehlerwahrscheinlichkeiten stark verringert (Pfeile weggehend von der Schwelle).<br>
+
*Particularly small distances,&nbsp; such as at times &nbsp;$t = 6T$&nbsp; and&nbsp; $t = 7T$,&nbsp; are significantly increased and thus their error probabilities are greatly reduced&nbsp; (arrows pointing away from the threshold).<br>
  
Dagegen werden die im Signal <i>d</i>(<i>t</i>) weit vom Schwellenwert <i>E</i> = 0 entfernten Detektionsabtastwerte zur Schwelle hin verschoben und deren Verfälschungswahrscheinlichkeit leicht erhöht. Dies erkennt man zum Beispiel für den Zeitpunkt <i>t</i> = 5<i>T</i>.{{end}}<br>
+
*In contrast,&nbsp; the  samples further away from the threshold value &nbsp; $E = 0$&nbsp; in the signal &nbsp;$d(t)$&nbsp; are shifted towards the threshold and their falsification probabilities are thus slightly increased.&nbsp; This can be seen,&nbsp; for example,&nbsp; for time &nbsp;$t = 5T$.}}<br>
  
== Augenöffnung und Fehlerwahrscheinlichkeit bei DFE ==
+
== Eye opening and error probability with DFE ==
 
<br>
 
<br>
Betrachten wir nun die Augendiagramme ohne DFE (linke Grafik) und mit idealer DFE (rechte Grafik).<br>
+
[[File:EN_Dig_T_3_6_S3.png|right|frame|Eye diagrams without and with&nbsp; "Decision Feedback Equalization"&nbsp; $(f_{\rm G}\cdot T = 0.3)$|class=fit]] We now consider the eye diagrams
 +
*without DFE&nbsp; (left graph)&nbsp; and
 +
*with ideal DFE (right graph).  
 +
 
  
[[File:P ID1448 Dig T 3 6 S3 version1.png|Augendiagramme ohne und mit DFE|class=fit]]<br>
+
We assume the same conditions as in the last section,&nbsp; so that the following basic pulse values are present:
 +
:$$g_0  =  g_d(t=0) = 0.548 \cdot s_0,$$
 +
:$$g_1 =  g_d(t=T) = 0.214 \cdot s_0 =
 +
g_{-1} \hspace{0.05cm},$$
 +
:$$g_2  =  g_d(t=2\hspace{0.05cm}T) = 0.012 \cdot s_0 = g_{-2}
 +
\hspace{0.05cm},$$
 +
:$$g_3 =  g_{-3} = \text{...} \approx 0
 +
\hspace{0.05cm}.$$
  
Dabei wird von den gleichen Voraussetzungen wie auf der letzten Seite ausgegangen, so dass folgende Grundimpulswerte vorliegen:
+
These two eye diagrams can be interpreted as follows:
 +
*For the conventional receiver (without DFE),&nbsp;  with binary bipolar redundancy-free coding considering symmetry:
 +
:$${\ddot{o}(T_{\rm D} = 0 )}  =  {2} \cdot \big [  g_0 -  | g_{-1}| -  | g_{-2}| -  | g_{1}| -  | g_{2}|\big ] =  {2} \cdot \big [  g_0 -  2 \cdot g_{1} -  2 \cdot g_{2}\big
 +
]= 0.192 \cdot s_0 \hspace{0.05cm}.$$
  
:<math>g_0  =  g_d(t=0) = 0.548 \cdot s_0
+
*On the other hand,&nbsp; for ideal DFE,&nbsp; the two trailers&nbsp; $g_1$&nbsp; and&nbsp; $g_2$&nbsp; are fully compensated and we obtain for the vertical eye opening:
\hspace{0.05cm},\hspace{0.2cm}g_1 = g_d(t=T) = 0.214 \cdot s_0 =
+
:$${\ddot{o}(T_{\rm D} = 0 )} = {2} \cdot \big  [  g_0 -  | g_{-1}| -  |g_{-2}|\big
g_{-1} \hspace{0.05cm},</math>
+
] = {2} \cdot \big [  g_0 -  g_{1} -  g_{2}\big ]= 0.644 \cdot s_0 \hspace{0.05cm}.$$
:<math> g_2 =   g_d(t=2\hspace{0.05cm}T) = 0.012 \cdot s_0 = g_{-2}
 
\hspace{0.05cm},\hspace{0.2cm}g_3 =   g_{-3} = ... \approx 0
 
\hspace{0.05cm}.</math>
 
  
Diese beiden Augendiagramme können wie folgt interpretiert werden:
+
*Since the correction signal&nbsp;  $w(t)$&nbsp; is derived from the decision and thus noise-free signal &nbsp;$v(t)$,&nbsp; the noise rms value &nbsp;$\sigma_d$&nbsp; is not changed by the decision feedback.&nbsp; Thus,&nbsp; the SNR gain due to the DFE is
*Beim herkömmlichen Empfänger (ohne DFE) gilt bei binärer bipolarer redundanzfreier Codierung unter Berücksichtigung der Symmetrie:
+
:$$G_{\rm DFE}=
::<math>{\ddot{o}(T_{\rm D} = 0 )}  = {2} \cdot \left [  g_0 -  | g_{-1}| -  | g_{-2}| -  | g_{1}| -  | g_{2}|\right ] =</math>
+
  20 \cdot {\rm lg}\hspace{0.1cm}\frac{0.644}{0.192} \approx 10.5\,{\rm dB} \hspace{0.05cm}.$$
:::::<math> =  {2} \cdot \left [  g_0 -  2 \cdot g_{1} -  2 \cdot g_{2}\right
 
]= 0.192 \cdot s_0 \hspace{0.05cm}.</math>
 
  
*Dagegen werden bei idealer DFE die beiden Nachläufer <i>g</i><sub>1</sub> und <i>g</i><sub>2</sub> vollständig kompensiert und man erhält für die vertikale Augenöffnung:
+
{{BlaueBox|TEXT= 
::<math>{\ddot{o}(T_{\rm D} = 0 )} = {2} \cdot \left [ g_0 -   g_{-1} -  g_{-2}\right
+
$\text{Conclusion:}$&nbsp; For a coaxial cable with characteristic cable attenuation&nbsp; $a_\star = 80 \ \rm dB$&nbsp; and&nbsp; $10 \cdot \lg \ (E_{\rm B}/N_0) = 80 \ \rm dB$,&nbsp; <br>this SNR gain means that the worst-case error probability &nbsp;$p_{\rm U}$&nbsp; is reduced by DFE from&nbsp; $7\%$&nbsp; to about&nbsp; $4 \cdot 10^{-7}$&nbsp; &ndash; a quite remarkable improvement.}}<br>
]= 0.644 \cdot s_0 \hspace{0.05cm}.</math>
 
  
*Da das Korrektursignal  <i>w</i>(<i>t</i>) aus dem entschiedenen und damit rauschfreien Signal <i>&upsilon;</i>(<i>t</i>) abgeleitet wird, wird der Rauscheffektivwert durch die Entscheidungsrückkopplung nicht verändert. Der Störabstandsgewinn durch die DFE ist somit im betrachteten Beispiel gleich
+
== Optimization of a transmission system with DFE ==
::<math>G_{\rm DFE}=
+
<br>
20 \cdot {\rm lg}\hspace{0.1cm}\frac{0.644}{0.192} \approx 10.5\,{\rm dB} \hspace{0.05cm}.</math>
 
  
Bei einem Koaxialkabel mit charakteristischer Kabeldämpfung <i>a</i><sub>&#8727;</sub> = 80 dB und 10 &middot; lg <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> = 80 dB bedeutet dieser Störabstandsgewinn beispielsweise, dass die ungünstigste Fehlerwahrscheinlichkeit <i>p</i><sub>U</sub> durch die DFE von 7% auf ca. 4 &middot; 10<sup>&ndash;7</sup> verkleinert wird &ndash; eine durchaus beachtenswerte Verbesserung.<br>
+
The last section has already made clear that the DFE already causes an enormous SNR gain if
 +
[[File:EN_Dig_T_3_6_S3_v23png.png|right|frame|Eye diagrams with DFE and optimized detection time|class=fit]]
 +
* a fixed cutoff frequency&nbsp; $f_{\rm G}$&nbsp; and
 +
*the fixed detection time&nbsp; $T_{\rm D} = 0$
 +
  
== Optimierung eines Übertragungssystems mit DFE ==
+
is assumed.&nbsp; However,&nbsp; the system can be further improved if the two parameters&nbsp; $f_{\rm G}$&nbsp; and&nbsp; $T_{\rm D}$&nbsp; are optimized together.<br>
<br>
+
 
Die letzte Seite hat deutlich gemacht, dass die Entscheidungsrückkopplung bereits dann einen enormen Störabstandsgewinn bewirkt, wenn von einer festen Grenzfrequenz <i>f</i><sub>G</sub> und dem Detektionszeitpunkt <i>T</i><sub>D</sub> = 0 ausgegangen wird. Das System lässt sich aber weiter verbessern, wenn die beiden Parameter <i>f</i><sub>G</sub> und <i>T</i><sub>D</sub> gemeinsam optimiert werden.<br>
+
The graph shows the eye diagrams without noise for
 +
*$f_{\rm G} \cdot T = 0.3$&nbsp; (left),
 +
*$f_{\rm G} \cdot T = 0.2$&nbsp; (right).
 +
 
 +
 
 +
For the diagram and the following calculations  are still assumed:
 +
*the characteristic cable attenuation&nbsp; $a_\star = 80 \ \rm dB$,
 +
*the AWGN parameter&nbsp; $10 \cdot \lg \ (E_{\rm B}/N_0) = 80 \ \rm  dB$&nbsp; <br>$($with&nbsp; $E_{\rm B} = s_0^2 \cdot T)$.
 +
 
 +
 
 +
The left diagram is largely identical &ndash; except for the detection time&nbsp; $T_{\rm D}$&nbsp; &ndash;  to the [[Digital_Signal_Transmission/Decision_Feedback#Eye_opening_and_error_probability_with_DFE|right diagram]]&nbsp; in the last section.&nbsp; The optimization results can be summarized as follows:
 +
 
 +
*With&nbsp; $f_{\rm G} \cdot T = 0.3$,&nbsp; by shifting the detection time to &nbsp;$T_\text{D, opt} = -0.3T$,&nbsp; the eye opening can be increased to&nbsp; $\ddot{o}(T_\text{D, opt}) = 0.779 \cdot s_0 $.&nbsp;
 +
 +
*Compared to&nbsp; $T_{\rm D} = 0$&nbsp; $($see last section$)$,&nbsp; this results in a further SNR gain of&nbsp; $G_{T_\text{D, opt}}= 20 \cdot {\rm lg}\hspace{0.1cm}{0.779}/{644} \approx 1.65\,{\rm dB} \hspace{0.05cm}.$
 +
 +
*The worst-case error probability is now found to be&nbsp; $p_{\rm U} \approx 1.3 \cdot  10^{-9}$&nbsp; $($versus &nbsp;$4 \cdot 10^{-7})$.<br>
  
[[File:P ID1449 Dig T 3 6 S4 version1.png|Augendiagramme mit DFE und optimiertem Detektionszeitpunkt|class=fit]]<br>
 
  
Betrachten wir die Augendiagramme ohne Rauschen für <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.3 (links) und <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.2 (rechts). Für die nachfolgenden Berechnungen werden weiterhin die charakteristische Kabeldämpfung <i>a</i><sub>&#8727;</sub> = 80 dB sowie der AWGN&ndash;Parameter 10 &middot; lg <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> = 80 dB (mit <i>E</i><sub>B</sub> = <i>s</i><sub>0</sub><sup>2</sup> &middot; <i>T</i>) vorausgesetzt, so dass sich der normierte Rauscheffektivwert zu <i>&sigma;<sub>d</sub></i>/<i>s</i><sub>0</sub> = 0.065 (für <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.3) bzw. <i>&sigma;<sub>d</sub></i>/<i>s</i><sub>0</sub> = 0.010 (für <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.2) ergibt. Die Optimierungsergebnisse lassen sich wie folgt zusammenfassen:
+
With the DFE receiver,&nbsp; however,&nbsp; you can further reduce the cutoff frequency.&nbsp; The reason is the better noise behavior with a smaller cutoff frequency.&nbsp;  
 +
*For example,&nbsp; the normalized noise rms value results instead of &nbsp;$\sigma_d/s_0 = 0.065$&nbsp; $($for &nbsp;$f_{\rm G} \cdot T = 0.3)$&nbsp; to &nbsp;$\sigma_d/s_0 = 0.010$&nbsp; $($for &nbsp;$f_{\rm G} \cdot T = 0.2)$.
  
*Mit <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.3 kann durch Verschiebung des Detektionszeitpunktes auf <i>T</i><sub>D,opt</sub> = &ndash;0.3<i>T</i> die Augenöffnung auf <i>ö</i>(<i>T</i><sub>D</sub>) = 0.779 &middot; <i>s</i><sub>0</sub> vergrößert werden. Daraus resultiert gegenüber <i>T</i><sub>D</sub> = 0 (vergleiche letze Seite) ein weiterer Störabstandsgewinn von 20 &middot; lg (0.779/0.644) &asymp; 1.65 dB und die Fehlerwahrscheinlichkeit ergibt sich nun zu <i>p</i><sub>U</sub> &asymp; 1.3 &middot; 10<sup>&ndash;9</sup> (gegenüber 4 &middot; 10<sup>&ndash;7</sup>).<br>
+
*Thus,&nbsp; with&nbsp; $f_{\rm G} \cdot T = 0.2$&nbsp; and&nbsp; $T_{\rm D} = 0$&nbsp; the small but nonzero eye opening &nbsp;$\ddot{o}_{\rm norm} = 0.152$&nbsp; is obtained,&nbsp; which together with the very favorable noise rms value leads to the worst-case SNR &nbsp;$10 \cdot \lg \ \rho_{\rm U} = 17.6 \ \rm  dB$ &nbsp; &rArr; &nbsp; worst-case error probabilty &nbsp;$p_{\rm U} \approx 1.6 \cdot  10^{-14}$.&nbsp;
 +
 +
*By combining the cutoff frequency &nbsp;$f_{\rm G} \cdot T = 0.2$&nbsp; with the detection time &nbsp;$T_{\rm D} = -T/2$,&nbsp; one finally obtains the optimal system configuration with the normalized eye opening &nbsp;$\ddot{o}_{\rm norm} = 0.368$&nbsp; and the worst-case SNR &nbsp;$10 \cdot \lg \ \rho_{\rm U} = 25.3 \ \rm  dB$.
  
*Bei einem DFE&ndash;Empfänger kann man zusätzlich die Grenzfrequenz weiter herabsetzen. So ergibt sich mit <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.2 und <i>T</i><sub>D</sub> = 0 die zwar kleine, aber immerhin von 0 verschiedene Augenöffnung <i>ö</i>(<i>T</i><sub>D</sub>) = 0.152 &middot; <i>s</i><sub>0</sub>, die zusammen mit dem sehr günstigen Rauscheffektivwert <i>&sigma;<sub>d</sub></i>/<i>s</i><sub>0</sub> = 0.010 zum (ungünstigsten) Störabstand 17.6 dB und zur Fehlerwahrscheinlichkeit <i>p</i><sub>U</sub> = 1.6 &middot; 10<sup>&ndash;14</sup> führt.<br>
+
* Thus&nbsp; (practically)&nbsp; $p_{\rm U}\approx 0$.&nbsp; However,&nbsp; this configuration is not relevant in practice: &nbsp; Already a minimal tolerance of the system parameters leads to a&nbsp; "closed eye".<br>
  
*Durch Kombination der Grenzfrequenz <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.2 mit dem Detektionszeitpunkt <i>T</i><sub>D</sub> = &ndash;0.5<i>T</i> erhält man schließlich die bei den getroffenen Voraussetzungen optimale Systemkonfiguration mit der Augenöffnung <i>ö</i>(<i>T</i><sub>D</sub>) = 0.368 &middot; <i>s</i><sub>0</sub> und dem (ungünstigsten) Störabstand 10 &middot; lg <i>&rho;</i><sub>U</sub> = 25.3 dB. Die Fehlerwahrscheinlichkeit ist damit (praktisch) gleich 0.<br>
 
  
== Realisierungsaspekte der Entscheidungsrückkopplung (1) ==
+
== Realization aspects of the decision feedback ==
 
<br>
 
<br>
Als ein wesentliches Ergebnis von Kapitel 3.5 und Kapitel 3.6 empfiehlt sich folgende Vorgehensweise: Für ein Übertragungssystem über Kupferleitungen (Koaxialkabel, Zweidrahtleitung) sind aufgrund des erreichbaren Signal&ndash;zu&ndash;Rauschabstandes am Entscheider folgende Systemvarianten besonders geeignet:
+
As an essential result of the last chapter&nbsp; [[Digital_Signal_Transmission/Linear_Nyquist_Equalization|"Linear Nyquist Equalization"]]&nbsp; and the current chapter&nbsp; "Decision Feedback"&nbsp; the following approach is recommended:
*ein Mehrstufensystem (z.B. <i>M</i> = 4) und die optimale Nyquistentzerrung zur Kompensation der starken Impulsinterferenzen, hervorgerufen durch die linearen Kanalverzerrungen.<br>
 
  
*ein Binärsystem mit relativ kleiner Bandbreite des Gesamtfrequenzganges <i>H</i><sub>G</sub>(<i>f</i>) = <i>H</i><sub>K</sub>(<i>f</i>) &middot; <i>H</i><sub>E</sub>(<i>f</i>) und ein nichtlinearer Detektor mit Entscheidungsrückkopplung.<br><br>
+
{{BlaueBox|TEXT=
 +
$\text{Conclusion:}$&nbsp; For a transmission system over copper lines&nbsp; $($coaxial cable,&nbsp; two-wire line$)$,&nbsp; the following system variants are particularly suitable due to the achievable signal&ndash;to&ndash;noise ratio at the decision:
 +
*a&nbsp; '''multi-level system'''&nbsp; $($for example &nbsp;$M = 4)$&nbsp; and the optimal&nbsp; '''Nyquist equalization'''&nbsp; to compensate for the strong intersymbol interference caused by the linear channel distortions;<br>
  
Beide Systemvarianten liefern bei idealisierten Bedingungen vergleichbar gute Resultate. Zu beachten ist allerdings, dass es bei beiden Systemen durch Realisierungsungenauigkeiten zu großen Degradationen kommen kann, die hier am Beispiel des DFE&ndash;Systems genannt werden:
+
*a&nbsp; '''binary system'''&nbsp; with relatively small bandwidth of the total frequency response &nbsp;$H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$&nbsp; and a non-linear decision with&nbsp; '''DFE'''.}}
  
*Da über das Fernsprechnetz kein Gleichsignal übertragen werden kann, für unsere Berechnungen aber <i>H</i><sub>K</sub>(<i>f</i> = 0) = 1 angenommen wird, ist am Empfänger eine <i>Gleichsignalwiedergewinnung</i> erforderlich. Diese Aussage trifft in gleicher Weise für das quaternäre Nyquistsystem zu.<br>
 
  
*Beim DFE&ndash;System muss der Kompensationsimpuls den vorentzerrten Grundimpuls <i>g<sub>d</sub></i>(<i>t</i>) exakt nachbilden. Dies ist insbesondere dann schwierig, wenn <i>g<sub>d</sub></i>(<i>t</i>) sehr breit ist (kleine Grenzfrequenz, zum Beispiel <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.2) und die Optimierung den Detektionszeitpunkt <i>T</i><sub>D,&nbsp;opt</sub> = &ndash;<i>T</i>/2 liefert.<br>
+
Both system variants provide comparably good results under idealized conditions.&nbsp; But it should be noted,&nbsp; that large degradations can occur due to realization inaccuracies in both systems,&nbsp; which are mentioned here using the DFE system as an example:
  
*Kommt es aufgrund eines sehr großen Rauschwertes zu einer Fehlentscheidung, so werden auch die nachfolgenden Symbole mit großer Wahrscheinlichkeit verfälscht. Allerdings gibt es immer wieder Symbolfolgen, die diese Fehlerfortpflanzung unterbrechen.<br><br>
+
*Since no DC signal can be transmitted via the telephone network,&nbsp; but &nbsp;$H_{\rm K}(f=0) = 1$&nbsp; is assumed for our calculations, a&nbsp; "DC signal recovery"&nbsp; is required at the receiver.&nbsp; This statement applies in the same way to the quaternary Nyquist system.<br>
  
{{Beispiel}}''':''' Die Grafik zeigt den Grundimpuls <i>g<sub>d</sub></i>(<i>t</i>) für die Grenzfrequenz <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.2 (rote Kurve) und den Kompensationsimpuls <i>g<sub>w</sub></i>(<i>t</i>) für <i>T</i><sub>D</sub> = &ndash; <i>T</i>/2 (blau gefüllt). Hierbei ist wieder eine Verzögerungszeit <i>T</i><sub>V</sub> = <i>T</i>/2 zwischen Entscheidung und Beginn der Signalkorrektur berücksichtigt.<br><br>
+
*In the DFE system,&nbsp; the compensation pulse &nbsp;$g_w(t)$&nbsp; must exactly replicate the pre-equalized basic pulse &nbsp;$g_d(t)$.&nbsp; This is especially difficult when &nbsp;$g_d(t)$&nbsp; is very broad&nbsp; $($small cutoff frequency,&nbsp; e.g. &nbsp;$f_{\rm G} \cdot T = 0.2)$&nbsp; and the optimization yields the detection time &nbsp;$T_\text{D, opt} = -T/2$.<br>
  
[[File:P ID1450 Dig T 3 6 S5a version1.png|Grundimpulse bei idealer DFE|class=fit]]<br>
+
*If a wrong decision occurs due to a large noise value,&nbsp; the subsequent symbols will also be falsified with a high probability.&nbsp; However,&nbsp; there are always symbol sequences which interrupt this &nbsp;[https://en.wikipedia.org/wiki/Propagation_of_uncertainty "propogation of uncertainty"].&nbsp;<br>
  
Man erkennt, dass bereits für <i>T</i><sub>D</sub> = &ndash;<i>T</i>/2 der erste Nachläufer <i>g<sub>d</sub></i>(<i>T</i><sub>D</sub> + <i>T</i>) = <i>g<sub>d</sub></i>(<i>T</i>/2) genau so groß ist wie der Hauptwert <i>g<sub>d</sub></i>(<i>T</i><sub>D</sub>) = <i>g<sub>d</sub></i>(&ndash;<i>T</i>/2). Gelingt es nicht, tatsächlich alle Nachläufer zu kompensieren, so ergibt sich schnell ein geschlossenes Auge und damit die Fehlerwahrscheinlichkeit <i>p</i><sub>U</sub> = 50%.{{end}}<br>
 
  
== Realisierungsaspekte der Entscheidungsrückkopplung (2) ==
+
{{GraueBox|TEXT=
 +
[[File:EN_Dig_T_3_6_S5a.png|right|frame|Basic pulses with ideal DFE|class=fit]] 
 +
$\text{Example 2:}$&nbsp; The graph shows the basic pulse &nbsp;$g_d(t)$&nbsp;
 +
* for the cutoff frequency &nbsp;$f_{\rm G} \cdot T = 0.2$&nbsp; (red curve) and
 +
* the compensation pulse &nbsp;$g_w(t)$&nbsp; for $T_\text{D} = -T/2$&nbsp; (filled in blue).
 +
 
 +
 
 +
Here,&nbsp; a delay time &nbsp;$T_\text{V} = -T/2$&nbsp; between decision and start of signal correction is considered.&nbsp; It can be seen:
 +
*For &nbsp;$T_\text{D} = -T/2$&nbsp; the first trailer &nbsp;$g_d(T_\text{D} +T) = g_d(T/2)$&nbsp; is exactly as large as the main value &nbsp;$g_d(T_\text{D}) = g_d(-T/2)$.
 +
 +
*If it is not possible to fully compensate all the trailers,&nbsp; this quickly results in a closed eye and thus,&nbsp; in the worst&ndash;case  error probability $p_{\rm U} \approx 50\%$.}}<br>
 +
 
 +
== Decision feedback with delay filter==
 
<br>
 
<br>
Für eine schaltungstechnische Realisierung genügt es, wenn der korrigierte Grundimpuls <i>g<sub>k</sub></i>(<i>t</i>) lediglich zu den äquidistanten Detektionszeitpunkten <i>T</i><sub>D</sub> + <i>&nu;</i> &middot; <i>T</i> zu Null wird. Eine Realisierungsmöglichkeit stellt somit ein Laufzeitfilter gemäß der nachfolgenden Grafik dar,
+
For a circuit realization it is sufficient if the basic corrected pulse &nbsp;$g_k(t)$&nbsp; becomes zero only at the equidistant detection times &nbsp;$T_\text{D} +\nu \cdot T$.&nbsp;
*dessen Ordnung <i>N</i> (Anzahl der Filterkoeffizienten), und<br>
+
[[File:P ID1451 Dig T 3 6 S5b version1.png|right|frame|Decision feedback with delay filter|class=fit]]
 +
One realization possibility is thus an asymmetric&nbsp; [[Digital_Signal_Transmission/Linear_Nyquist_Equalization#Operating_principle_of_the_transversal_filter|delay filter]]&nbsp; according to the adjacent diagram,
 +
 
 +
*whose order &nbsp;$N$&nbsp; (number of filter coefficients), and<br>
 +
 
 +
*whose filter coefficients $&nbsp;k_\nu$&nbsp; $($mit $\nu = 1$, ... , $N)$&nbsp;
  
*dessen Filterkoeffizienten <i>k<sub>&nu;</sub></i> (mit <i>&nu;</i> = 1, ... , <i>N</i>)<br><br>
 
  
durch den Grundimpuls <i>g<sub>d</sub></i>(<i>t</i>) sowie den Detektionszeitpunkt <i>T</i><sub>D</sub> festgelegt sind.<br>
+
are determined by the pulse &nbsp;$g_d(t)$&nbsp; and the detection time &nbsp;$T_\text{D}$.&nbsp;<br>
  
[[File:P ID1451 Dig T 3 6 S5b version1.png|Entscheidungsrückkopplung mit Laufzeitfilter|class=fit]]<br>
 
  
Diese DFE&ndash;Realisierung weist folgende Eigenschaften auf:
+
This DFE realization has the following properties:
*Da das Ausgangssignal <i>&upsilon;</i>(<i>t</i>) rechteckförmig ist, ist der Kompensationsimpuls <i>g<sub>w</sub></i>(<i>t</i>) treppenförmig.<br>
+
*Since the output signal &nbsp;$v(t)$&nbsp; is rectangular,&nbsp;  the compensation pulse &nbsp;$g_w(t)$&nbsp; is staircase shaped.<br>
  
*Bei richtiger Dimensionierung der Filterkoeffizienten <i>k<sub>&nu;</sub></i> gilt für <i>&nu;</i> = 1, ... , <i>N</i>:
+
*With proper dimensioning of the filter coefficients &nbsp;$k_\nu$,&nbsp; <br>for &nbsp;$\nu = 1$, ... , $N$:
::<math>g_w(T_{\rm D} + \nu \cdot T) = g_d(T_{\rm D} + \nu \cdot T)
+
:$$g_w(T_{\rm D} + \nu \cdot T) = g_d(T_{\rm D} + \nu \cdot T)
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
g_k(T_{\rm D} + \nu \cdot T) = 0 \hspace{0.05cm}.</math>
+
g_k(T_{\rm D} + \nu \cdot T) = 0 \hspace{0.05cm}.$$
  
*Zum Detektionszeitpunkt <i>T</i><sub>D</sub> ergibt sich die genau gleiche vertikale Augenöffnung wie bei idealer DFE. Nachteilig ist eine kleinere horizontale Augenöffnung.<br><br>
+
*At detection time &nbsp;$T_\text{D}$,&nbsp; the vertical eye opening is exactly the same as for ideal DFE.&nbsp;  A disadvantage is a smaller horizontal eye opening.<br><br>
  
{{Beispiel}}''':''' Die Grafik zeigt die Grundimpulse <i>g<sub>d</sub></i>(<i>t</i>) und <i>g<sub>k</sub></i>(<i>t</i>) bei der Entscheidungsrückkopplung mit einem Laufzeitfilter zweiter Ordnung. Es gelten die gleichen Voraussetzungen wie im Beispiel auf der letzten Seite: <i>f</i><sub>G</sub> &middot; <i>T</i> = 0.2, <i>T</i><sub>D</sub> = &ndash;<i>T</i>/2, <i>T</i><sub>V</sub> = <i>T</i>/2.<br><br>
+
{{GraueBox|TEXT=
 +
[[File:P ID1452 Dig T 3 6 S5c version1.png|right|frame|Basic pulses for DFE with delay filter|class=fit]]
 +
 
 +
$\text{Example 3:}$&nbsp; The graph shows the basic pulses &nbsp;$g_d(t)$&nbsp; and &nbsp;$g_w(t)$&nbsp; for decision feedback with a second order delay filter.&nbsp; The same conditions apply as for the example in the last section: &nbsp; $f_{\rm G} \cdot T = 0.2$&nbsp; and&nbsp; $T_\text{D} = -T/2$.&nbsp; One can see:
  
[[File:P ID1452 Dig T 3 6 S5c version1.png|Grundimpulse bei DFE mit Laufzeitfilter|class=fit]]<br>
+
*Because of the order &nbsp;$N = 2$,&nbsp; only the first two trailers &nbsp;$g_d(0.5T)$&nbsp; and &nbsp;$g_d(1.5T)$&nbsp; are compensated here.
  
Wegen der Ordnung <i>N</i> = 2 werden hier allerdings nur die beiden ersten Nachläufer <i>g<sub>d</sub></i>(0.5<i>T</i>) und <i>g<sub>d</sub></i>(1.5<i>T</i>) kompensiert. Der dritte Nachläufer <i>g<sub>d</sub></i>(2.5<i>T</i>) könnte durch einen weiteren Filterkoeffizienten <i>k</i><sub>3</sub> zu 0 gemacht werden. Dagegen können die Impulsvorläufer <i>g<sub>d</sub></i>(&ndash;1.5<i>T</i>) und <i>g<sub>d</sub></i>(&ndash;2.5<i>T</i>) prinzipiell nicht kompensiert werden.{{end}}<br>
+
*The third trailer &nbsp;$g_d(2.5T)$&nbsp; could be compensate by a further filter coefficient &nbsp;$k_3$.
 +
 +
*In contrast,&nbsp; the precursors &nbsp;$g_d(-1.5T)$&nbsp; and &nbsp;$g_d(-2.5T)$&nbsp; cannot be compensated in principle.}}<br>
  
==Aufgaben==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:3.8 DFE mit Laufzeitfilter|A3.8 DFE mit Laufzeitfilter]]
+
[[Aufgaben:Exercise_3.8:_Delay_Filter_DFE_Realization|Exercise 3.8: Delay Filter DFE Realization]]
  
[[Zusatzaufgaben:3.8 Optimaler Detektionszeitpunkt]]
+
[[Aufgaben:Exercise_3.8Z:_Optimal_Detection_Time_for_DFE|Exercise 3.8Z: Optimal Detection Time for DFE]]
  
==Quellenverzeichnis==
+
==References==
  
 
<references/>
 
<references/>

Latest revision as of 17:26, 24 August 2022

Principle and block diagram


$\text{Definition:}$    Decision Feedback Equalization  $\rm (DFE)$   is a method of reducing intersymbol interference.  In German-language literature,  this is sometimes also referred to as  "Quantized Feedback"  $\rm (QR)$.


The graphic shows the corresponding receiver. It can be seen from the block diagram:

Receiver with decision feedback equalization  $\rm (DFE)$
  • Without the signal feedback shown in red,  a conventional digital receiver with threshold decision would result according to the chapter  "Ideal channel equalizer".
  • For the following description,  it is assumed that the entire receiver filter  $H_{\rm E}(f)$  is composed of the (fictitious) ideal channel equalizer  $1/H_{\rm K}(f)$  and a Gaussian low-pass filter  $H_{\rm G}(f)$  for noise power limitation.
  • In the receiver with decision feedback,  a compensation signal  $w(t)$  is obtained from the rectangular output signal  $v(t)$  via a linear network with the frequency response  $H_{\rm DFE}(f)$  and fed back to the input of the threshold decision.
  • This signal  $w(t)$  is subtracted from the pre-equalized signal  $d(t)$.  If the feedback network is suitably dimensioned,  the  corrected signal  $k(t) = d(t) - w(t)$  thus has no  (or at least significantly fewer)  pulse trailers than the signal  $d(t)$.
  • In contrast to these pulse trailers  ("postcursors"),  the pulse precursors cannot be influenced for reasons of causality.
  • Since in this receiver with decision feedback,  the compensation signal  $w(t)$  is derived from the noise-free sink signal  $v(t)$,  the signal equalization is not associated with an increase in noise power as in linear equalization.  Rather,  the corrected signal  $k(t)$  has the same noise rms value  $\sigma_d$  as the signal  $d(t)$.

⇒   The signal characteristics of this nonlinear equalization method  "DFE"  as well as the associated error probabilities – valid for a distortion-free channel – can be displayed with the  (German language)  SWF applet  "Entscheidungsrückkopplung"   ⇒   "Decision Feedback Equalization"


Ideal decision feedback


We first discuss the ideal DFE realization based on the different basic pulses.

$\text{Definition:}$  An  ideal decision feedback  exists when the following basic pulse is applied to the decision:

$$g_k(t) = \left\{ \begin{array}{c} g_d(t) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} \text{for} \\ \text{for} \\ \end{array} \begin{array}{*{20}c} t < T_{\rm D} + T_{\rm V}, \\ t \ge T_{\rm D} + T_{\rm V}. \\ \end{array}$$
  • This means that in the ideal case the basic compensation pulse  $g_w(t)$  must exactly reproduce the linearly pre-equalized pulse  $g_d(t)$  for all times  $t > T_{\rm D} + T_{\rm V}$. 
  • The delay time  $T_{\rm V}$  required for realization reasons must be smaller than the symbol duration  $T$;  In the following  $T_{\rm V} = T/2$  always applies.


$\text{Example 1:}$  Let the total frequency response  $H_{\rm K}(f) \cdot H_{\rm E}(f) = H_{\rm G}(f)$  be Gaussian with the cutoff frequency  $f_{\rm G} = 0.3/T$. For NRZ rectangular pulses, this then yields the basic pulse  $g_d(t)$ sketched in pink.

Basic pulses and signals with ideal  "Decision Feedback Equalization"  $\rm (DFE)$

⇒   Shown on the left are the basic pulses  $g_w(t)$  and  $g_k(t)$  with ideal decision feedback,  based on the detection time  $T_{\rm D} = 0$  and the delay time  $T_{\rm V} = T/2$. 

⇒   The right pictures from [Söd01][1] – all without consideration of the noise – make clear that by the compensation of all pulse trailers by means of the correction signal  $w(t)$,  the distances of the useful signal samples  $d_{\rm S}(\nu \cdot T)$  from the decision threshold  $E = 0$  are changed.

  • Particularly small distances,  such as at times  $t = 6T$  and  $t = 7T$,  are significantly increased and thus their error probabilities are greatly reduced  (arrows pointing away from the threshold).
  • In contrast,  the samples further away from the threshold value   $E = 0$  in the signal  $d(t)$  are shifted towards the threshold and their falsification probabilities are thus slightly increased.  This can be seen,  for example,  for time  $t = 5T$.


Eye opening and error probability with DFE


Eye diagrams without and with  "Decision Feedback Equalization"  $(f_{\rm G}\cdot T = 0.3)$

We now consider the eye diagrams

  • without DFE  (left graph)  and
  • with ideal DFE (right graph).


We assume the same conditions as in the last section,  so that the following basic pulse values are present:

$$g_0 = g_d(t=0) = 0.548 \cdot s_0,$$
$$g_1 = g_d(t=T) = 0.214 \cdot s_0 = g_{-1} \hspace{0.05cm},$$
$$g_2 = g_d(t=2\hspace{0.05cm}T) = 0.012 \cdot s_0 = g_{-2} \hspace{0.05cm},$$
$$g_3 = g_{-3} = \text{...} \approx 0 \hspace{0.05cm}.$$

These two eye diagrams can be interpreted as follows:

  • For the conventional receiver (without DFE),  with binary bipolar redundancy-free coding considering symmetry:
$${\ddot{o}(T_{\rm D} = 0 )} = {2} \cdot \big [ g_0 - | g_{-1}| - | g_{-2}| - | g_{1}| - | g_{2}|\big ] = {2} \cdot \big [ g_0 - 2 \cdot g_{1} - 2 \cdot g_{2}\big ]= 0.192 \cdot s_0 \hspace{0.05cm}.$$
  • On the other hand,  for ideal DFE,  the two trailers  $g_1$  and  $g_2$  are fully compensated and we obtain for the vertical eye opening:
$${\ddot{o}(T_{\rm D} = 0 )} = {2} \cdot \big [ g_0 - | g_{-1}| - |g_{-2}|\big ] = {2} \cdot \big [ g_0 - g_{1} - g_{2}\big ]= 0.644 \cdot s_0 \hspace{0.05cm}.$$
  • Since the correction signal  $w(t)$  is derived from the decision and thus noise-free signal  $v(t)$,  the noise rms value  $\sigma_d$  is not changed by the decision feedback.  Thus,  the SNR gain due to the DFE is
$$G_{\rm DFE}= 20 \cdot {\rm lg}\hspace{0.1cm}\frac{0.644}{0.192} \approx 10.5\,{\rm dB} \hspace{0.05cm}.$$

$\text{Conclusion:}$  For a coaxial cable with characteristic cable attenuation  $a_\star = 80 \ \rm dB$  and  $10 \cdot \lg \ (E_{\rm B}/N_0) = 80 \ \rm dB$, 
this SNR gain means that the worst-case error probability  $p_{\rm U}$  is reduced by DFE from  $7\%$  to about  $4 \cdot 10^{-7}$  – a quite remarkable improvement.


Optimization of a transmission system with DFE


The last section has already made clear that the DFE already causes an enormous SNR gain if

Eye diagrams with DFE and optimized detection time
  • a fixed cutoff frequency  $f_{\rm G}$  and
  • the fixed detection time  $T_{\rm D} = 0$


is assumed.  However,  the system can be further improved if the two parameters  $f_{\rm G}$  and  $T_{\rm D}$  are optimized together.

The graph shows the eye diagrams without noise for

  • $f_{\rm G} \cdot T = 0.3$  (left),
  • $f_{\rm G} \cdot T = 0.2$  (right).


For the diagram and the following calculations are still assumed:

  • the characteristic cable attenuation  $a_\star = 80 \ \rm dB$,
  • the AWGN parameter  $10 \cdot \lg \ (E_{\rm B}/N_0) = 80 \ \rm dB$ 
    $($with  $E_{\rm B} = s_0^2 \cdot T)$.


The left diagram is largely identical – except for the detection time  $T_{\rm D}$  – to the right diagram  in the last section.  The optimization results can be summarized as follows:

  • With  $f_{\rm G} \cdot T = 0.3$,  by shifting the detection time to  $T_\text{D, opt} = -0.3T$,  the eye opening can be increased to  $\ddot{o}(T_\text{D, opt}) = 0.779 \cdot s_0 $. 
  • Compared to  $T_{\rm D} = 0$  $($see last section$)$,  this results in a further SNR gain of  $G_{T_\text{D, opt}}= 20 \cdot {\rm lg}\hspace{0.1cm}{0.779}/{644} \approx 1.65\,{\rm dB} \hspace{0.05cm}.$
  • The worst-case error probability is now found to be  $p_{\rm U} \approx 1.3 \cdot 10^{-9}$  $($versus  $4 \cdot 10^{-7})$.


With the DFE receiver,  however,  you can further reduce the cutoff frequency.  The reason is the better noise behavior with a smaller cutoff frequency. 

  • For example,  the normalized noise rms value results instead of  $\sigma_d/s_0 = 0.065$  $($for  $f_{\rm G} \cdot T = 0.3)$  to  $\sigma_d/s_0 = 0.010$  $($for  $f_{\rm G} \cdot T = 0.2)$.
  • Thus,  with  $f_{\rm G} \cdot T = 0.2$  and  $T_{\rm D} = 0$  the small but nonzero eye opening  $\ddot{o}_{\rm norm} = 0.152$  is obtained,  which together with the very favorable noise rms value leads to the worst-case SNR  $10 \cdot \lg \ \rho_{\rm U} = 17.6 \ \rm dB$   ⇒   worst-case error probabilty  $p_{\rm U} \approx 1.6 \cdot 10^{-14}$. 
  • By combining the cutoff frequency  $f_{\rm G} \cdot T = 0.2$  with the detection time  $T_{\rm D} = -T/2$,  one finally obtains the optimal system configuration with the normalized eye opening  $\ddot{o}_{\rm norm} = 0.368$  and the worst-case SNR  $10 \cdot \lg \ \rho_{\rm U} = 25.3 \ \rm dB$.
  • Thus  (practically)  $p_{\rm U}\approx 0$.  However,  this configuration is not relevant in practice:   Already a minimal tolerance of the system parameters leads to a  "closed eye".


Realization aspects of the decision feedback


As an essential result of the last chapter  "Linear Nyquist Equalization"  and the current chapter  "Decision Feedback"  the following approach is recommended:

$\text{Conclusion:}$  For a transmission system over copper lines  $($coaxial cable,  two-wire line$)$,  the following system variants are particularly suitable due to the achievable signal–to–noise ratio at the decision:

  • multi-level system  $($for example  $M = 4)$  and the optimal  Nyquist equalization  to compensate for the strong intersymbol interference caused by the linear channel distortions;
  • binary system  with relatively small bandwidth of the total frequency response  $H_{\rm G}(f) = H_{\rm K}(f) \cdot H_{\rm E}(f)$  and a non-linear decision with  DFE.


Both system variants provide comparably good results under idealized conditions.  But it should be noted,  that large degradations can occur due to realization inaccuracies in both systems,  which are mentioned here using the DFE system as an example:

  • Since no DC signal can be transmitted via the telephone network,  but  $H_{\rm K}(f=0) = 1$  is assumed for our calculations, a  "DC signal recovery"  is required at the receiver.  This statement applies in the same way to the quaternary Nyquist system.
  • In the DFE system,  the compensation pulse  $g_w(t)$  must exactly replicate the pre-equalized basic pulse  $g_d(t)$.  This is especially difficult when  $g_d(t)$  is very broad  $($small cutoff frequency,  e.g.  $f_{\rm G} \cdot T = 0.2)$  and the optimization yields the detection time  $T_\text{D, opt} = -T/2$.
  • If a wrong decision occurs due to a large noise value,  the subsequent symbols will also be falsified with a high probability.  However,  there are always symbol sequences which interrupt this  "propogation of uncertainty"


Basic pulses with ideal DFE

$\text{Example 2:}$  The graph shows the basic pulse  $g_d(t)$ 

  • for the cutoff frequency  $f_{\rm G} \cdot T = 0.2$  (red curve) and
  • the compensation pulse  $g_w(t)$  for $T_\text{D} = -T/2$  (filled in blue).


Here,  a delay time  $T_\text{V} = -T/2$  between decision and start of signal correction is considered.  It can be seen:

  • For  $T_\text{D} = -T/2$  the first trailer  $g_d(T_\text{D} +T) = g_d(T/2)$  is exactly as large as the main value  $g_d(T_\text{D}) = g_d(-T/2)$.
  • If it is not possible to fully compensate all the trailers,  this quickly results in a closed eye and thus,  in the worst–case error probability $p_{\rm U} \approx 50\%$.


Decision feedback with delay filter


For a circuit realization it is sufficient if the basic corrected pulse  $g_k(t)$  becomes zero only at the equidistant detection times  $T_\text{D} +\nu \cdot T$. 

Decision feedback with delay filter

One realization possibility is thus an asymmetric  delay filter  according to the adjacent diagram,

  • whose order  $N$  (number of filter coefficients), and
  • whose filter coefficients $ k_\nu$  $($mit $\nu = 1$, ... , $N)$ 


are determined by the pulse  $g_d(t)$  and the detection time  $T_\text{D}$. 


This DFE realization has the following properties:

  • Since the output signal  $v(t)$  is rectangular,  the compensation pulse  $g_w(t)$  is staircase shaped.
  • With proper dimensioning of the filter coefficients  $k_\nu$, 
    for  $\nu = 1$, ... , $N$:
$$g_w(T_{\rm D} + \nu \cdot T) = g_d(T_{\rm D} + \nu \cdot T) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} g_k(T_{\rm D} + \nu \cdot T) = 0 \hspace{0.05cm}.$$
  • At detection time  $T_\text{D}$,  the vertical eye opening is exactly the same as for ideal DFE.  A disadvantage is a smaller horizontal eye opening.

Basic pulses for DFE with delay filter

$\text{Example 3:}$  The graph shows the basic pulses  $g_d(t)$  and  $g_w(t)$  for decision feedback with a second order delay filter.  The same conditions apply as for the example in the last section:   $f_{\rm G} \cdot T = 0.2$  and  $T_\text{D} = -T/2$.  One can see:

  • Because of the order  $N = 2$,  only the first two trailers  $g_d(0.5T)$  and  $g_d(1.5T)$  are compensated here.
  • The third trailer  $g_d(2.5T)$  could be compensate by a further filter coefficient  $k_3$.
  • In contrast,  the precursors  $g_d(-1.5T)$  and  $g_d(-2.5T)$  cannot be compensated in principle.


Exercises for the chapter


Exercise 3.8: Delay Filter DFE Realization

Exercise 3.8Z: Optimal Detection Time for DFE

References

  1. Söder, G.: Simulation digitaler Übertragungssysteme. Anleitung zum gleichnamigen Praktikum. Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2001.