Difference between revisions of "Examples of Communication Systems/General Description of DSL"

From LNTwww
 
(20 intermediate revisions by 3 users not shown)
Line 9: Line 9:
 
<br>
 
<br>
  
$\rm D$igital $\rm S$ubscriber $\rm L$ine $\rm DSL$ for short – was synonymous with high-speed Internet access in the local loop to the end customer, although "high-speed" must be put into perspective today (2018). In what follows, we will predominantly use the industry term &nbsp;$\rm xDSL$&nbsp; to refer to high-speed access, with "$\rm x$" as a placeholder for the specific process, for example $\rm H$DSL, $\rm A$DSL, and $\rm V$DSL.
+
$\rm D$igital $\rm S$ubscriber $\rm L$ine&nbsp; &ndash; in short&nbsp; $\rm DSL$ &ndash;&nbsp; literally means only&nbsp; "digital subscriber line".&nbsp; At the same time,&nbsp; "DSL"&nbsp; was a synonym for&nbsp; "high-speed Internet access in the local loop to the end customer",&nbsp; although "high-speed"&nbsp; must be put into perspective today&nbsp; $(2018)$.
 +
 +
xDSL has been significantly standardized by the standards committees&nbsp; [https://en.wikipedia.org/wiki/American_National_Standards_Institute $\rm ANSI$]&nbsp; $($USA$)$&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/ETSI $\rm ETSI$]&nbsp; $($Europe$)$&nbsp; as well as the&nbsp; [https://en.wikipedia.org/wiki/International_Telecommunication_Union $\rm ITU$]&nbsp; $($worldwide$)$.&nbsp; Due to different pre-existing technical conditions and preferences of developers and operators,&nbsp; a large variety of nationally different versions of nominally identical xDSL standards resulted.&nbsp; In the following,&nbsp; we will restrict ourselves primarily to the German xDSL versions.
 +
 
 +
This chapter contains in detail:
  
xDSL has been significantly standardized by the standards bodies&nbsp; [https://en.wikipedia.org/wiki/American_National_Standards_Institute ANSI]&nbsp; (USA) and&nbsp; [https://en.wikipedia.org/wiki/ETSI ETSI]&nbsp; (Europe) as well as the&nbsp; [https://en.wikipedia.org/wiki/International_Telecommunication_Union ITU]&nbsp; (worldwide). Due to different pre-existing technical conditions and preferences of developers and operators, a large variety of nationally different versions of nominally identical xDSL standards resulted. In the following, we will restrict ourselves primarily to the German xDSL versions.
+
#An&nbsp; &raquo;overview of the historical development and standardization&laquo;&nbsp; of xDSL,
 +
#the&nbsp; &raquo;differences between ADSL and VDSL&laquo;&nbsp; as well as statistics on their penetration,
 +
#a brief description of xDSL from a&nbsp; &raquo;communications protocol perspective&laquo;,
 +
#the bandwidth allocations for the two&nbsp; &raquo;xDSL variants ADSL and VDSL&laquo;,&nbsp;
 +
#a detailed description of the&nbsp; &raquo;DSL transmission methods QAM, CAP and DMT&laquo;,
 +
#the problems of&nbsp; &raquo;digital signal transmission over copper twisted pairs&laquo;&nbsp; in general,
 +
#the relationship between&nbsp; &raquo;SNR,&nbsp; range and transmission rate&laquo;,
 +
#the&nbsp; &raquo;error correction measures&laquo;&nbsp; used to reduce the bit error rate.
  
This chapter contains in detail:
 
  
*an overview of the historical development and standardization of xDSL,
+
==Network infrastructure for DSL== 
*the differences between ADSL and VDSL as well as statistics on their penetration,
+
<br>
*a brief description of xDSL from a communications protocol perspective,
+
 
*the bandwidth allocations for the two xDSL variants ADSL and VDSL,
+
We start as in the&nbsp;  [[Examples_of_Communication_Systems/General_Description_of_ISDN#Network_infrastructure_for_ISDN|"ISDN chapter"]]&nbsp; with the  network infrastructure.&nbsp; DSL was intended to use the existing analog telephone network for cost reasons.&nbsp;
*a detailed description of the DSL transmission methods QAM, CAP and DMT,
+
 
*the problems of digital signal transmission over copper twisted pairs in general,
+
The greatest cost factor of the entire infrastructure is the&nbsp; &raquo;'''subscriber line area'''&laquo;&nbsp; between a main distribution frame&nbsp; $($e.g. "switching office"$)$&nbsp; and the subscribers.
*the relationship between SNR, range and transmission rate,
+
[[File:EN_LZI_T_4_3_S2_neu.png| right|frame|Structure of the local loop area]]
*the error correction measures used to reduce the bit error rate.
+
 
 +
*In Germany,&nbsp; this so-called&nbsp; &raquo;'''last mile'''&laquo;&nbsp; is shorter than&nbsp; $4$&nbsp; kilometers on average,&nbsp; and in urban areas&nbsp; $90\%$&nbsp; of the time it is even shorter than&nbsp; $2.8$&nbsp; kilometers.
 +
 
 +
*Due to the topological conditions,&nbsp; the telephone network is increasingly branching out in a star configuration toward the end customer.
 +
 
 +
*In order to avoid having to lay a separate copper cable to the local exchange for each subscriber,&nbsp; splitters have been installed in between and the lines bundled in correspondingly large cables.  
 +
 
  
 +
The&nbsp; &raquo;'''local loop area'''&raquo;&nbsp; is therefore usually made up as follows:
  
 +
# &nbsp; The&nbsp; "main cable"&nbsp; with up to&nbsp; $2000$&nbsp; pairs between the local exchange&nbsp; (or the switching office)&nbsp; frame and a cable branch,
 +
# &nbsp;the&nbsp; "branch cable"&nbsp; between the cable branch and the final branch,  with up to&nbsp; $300$&nbsp; pairs and a maximum length of 500 meters,&nbsp; which is significantly shorter than a main cable,
 +
# &nbsp;the&nbsp; "house connection cable"&nbsp; between the terminal box and the network termination box at the subscriber with two pairs of wires.
  
 +
  
==Motivation for xDSL==   
+
==xDSL types and terms==   
 
<br>
 
<br>
The different variants of &nbsp;$\rm xDSL$&nbsp; - ''Digital Subscriber Line'' arose from the need to provide end customers with low-cost, high-rate digital data access. The design had to take into account:
+
 
*The so-called&nbsp; ''Last Mile''&nbsp; - the last line section leading to the subscriber household and referred to as the &nbsp;'''Subscriber Line'''&nbsp; - represents the largest cost factor in a communications network, since the network branches out to the maximum in the local loop area.
+
{{BlaueBox|TEXT=
*Considerations to replace the estimated 130 million kilometers of copper twisted pairs in the local loop network with fiber optic lines (fiber-to-the-home, FttH) have failed to date due to the enormous costs of the mostly underground laying work.
+
$\text{Motivation for Digital Subscriber Line}$&nbsp;
*A viable solution was to offer a broadband connection with somewhat lower data rates than in a fiber optic network by using the existing telephone line network and by cleverly combining different messaging techniques and coding methods.
+
 
*The telephone service - either analog or digital (ISDN) - should be able to operate simultaneously on the same network.
+
$\rm DSL$&nbsp; $($"Digital Subscriber Line"$)$&nbsp; arose from the need,&nbsp; '''to provide low cost high rate digital data access to the end user'''.&nbsp; <br>During the design process,&nbsp; it was necessary to take into account:
 +
*As explained in the last section,&nbsp; the&nbsp; "last mile"&nbsp; is the largest cost factor in a communications network.
 +
 
 +
*Considerations to replace the estimated&nbsp; 130&nbsp; million kilometers of copper twisted pairs in the local loop network with fiber optic lines&nbsp; $($fiber-to-the-home,&nbsp; $\rm FttH)$&nbsp; have failed to date due to the enormous costs of the mostly underground laying work.
 +
 
 +
*A viable solution was to offer a broadband connection with somewhat lower data rates than in a fiber optic network by using the existing telephone line network and by cleverly combining different transmission techniques and coding methods.
 +
 
 +
*The telephone service &ndash; either analog or digital&nbsp; $\rm (ISDN)$&nbsp; &ndash; should be able to operate simultaneously on the same network.}}
 +
 
 +
 
 +
Before we turn to the historical DSL development up to the current state,&nbsp; the various types of&nbsp; "$\rm xDSL$"&nbsp; must first be defined and some terms explained.&nbsp; <u>Note:</u>
 +
#Here,&nbsp;"$\rm x$"&nbsp; is merely a placeholder that designates the various DSL standards.
 +
#The technical features will be covered in depth in the next chapters.
 +
 
 +
 
 +
'''Part of the xDSL standard:'''
 +
*$\text{ADSL}$&nbsp; –&nbsp; "Asymmetric Digital Subscriber Line: <br>Asymmetric data transmission technology with data rates of&nbsp; $8$&nbsp; Mbit/s to the subscriber&nbsp; $($"downstream"$)$&nbsp; and&nbsp; $1$&nbsp; Mbit/s in the opposite direction&nbsp; $($"upstream"$)$.
 +
 
 +
*$\text{ADSL2}$&nbsp; and&nbsp; $\text{ADSL2+}$: <br>Extensions of ADSL with data rates of up to&nbsp; $25$&nbsp; Mbit/s&nbsp; $($"downstream"$)$&nbsp; and up to&nbsp; $1$&nbsp; Mbit/s&nbsp; $($"upstream"$)$. <br>The data rate is dynamically negotiated depending on the channel state.
 +
 
 +
*$\text{Re &ndash; ADSL2}$: <br>Another extension of ADSL with about&nbsp; $30\%$&nbsp;  range gain at a data rate of&nbsp;  $768$&nbsp; kbit/s downstream.
 +
 
 +
*$\text{HDSL}$&nbsp; –&nbsp; "High Data Rate Digital Subscriber Line": <br>Symmetrical data transmission technology&nbsp; &ndash;&nbsp; i.e. equal rates in downstream and upstream&nbsp; &ndash;&nbsp; with data rates between&nbsp; $1.54$&nbsp; Mbit/s and&nbsp; $2.04$&nbsp; Mbit/s. <br><u>Note:</u>&nbsp; The name&nbsp; "HDSL"&nbsp; suggests higher data rates than ADSL;&nbsp; however,&nbsp; this is not the case.
 +
 
 +
*$\text{SDSL}$&nbsp; –&nbsp; "Symmetric Digital Subscriber Line": <br>Symmetrical data transmission at rates of up to&nbsp; $3$&nbsp; Mbit/s.&nbsp; With four-wire wiring&nbsp; $($two copper twisted pairs$)$,&nbsp; a maximum of&nbsp; $4$&nbsp; Mbit/s can be transmitted.&nbsp; Alternatively,&nbsp; the range can be increased at the expense of bandwidth.
 +
 
 +
*$\text{VDSL}$&nbsp; –&nbsp; "Very High Data Rate Digital Subscriber Line": <br>A newer transmission technology based on QAM that operates in the asymmetrical variant with bit rates of&nbsp; $25$&nbsp; to&nbsp; $50$&nbsp; Mbit/s&nbsp; downstream and&nbsp; $5$ to&nbsp; $10$&nbsp; Mbit/s upstream.&nbsp; The symmetrical variant has the same data transmission rates in upstream and downstream.
 +
 
 +
*$\text{VDSL2}$&nbsp; –&nbsp; "Very High Data Rate Digital Subscriber Line 2": <br>Transmission technology with the currently (2009) highest total data rate of up to&nbsp; $200$&nbsp; Mbit/s.&nbsp; The process is based on DMT&nbsp; $($"Discrete Multitone Transmission"$)$.
 +
 
 +
*$\text{UDSL}$ &nbsp; or &nbsp; $\text{UADSL}$&nbsp; &nbsp; –&nbsp; "Universal (Asymmetric) Digital Subscriber Line".
  
  
[[File:P_ID1905__Bei_2_1_S1_v1.png|right|frame|Subscriber line area of a telecommunications network]]
+
'''Not part of the xDSL standard:'''
{{GraueBox|TEXT=
+
#There are also many products circulating under&nbsp; "DSL"&nbsp; that are not part of the xDSL standard.
$\text{Example 1:}$&nbsp;
+
#They are often only intended to make it clear that fast data access is involved.&nbsp;
The graphic shows the last mile
 
*between local exchange 
 
*and the end customer.}}
 
  
  
 +
These include:
 +
*$\text{cableDSL}$: &nbsp; Brand name of the German company TELES AG, which offers high-speed Internet access via cable. The name was chosen for marketing reasons only.
  
 +
*$\text{skyDSL}$:&nbsp; Brand name for Internet access available throughout Europe via satellite with up to&nbsp; $24$&nbsp; Mbit/s downstream. <br>The upstream here is via POTS&nbsp; $($"Plain old telephone service"$)$&nbsp; or&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN|ISDN ]]&nbsp; $($"Integrated Services Digital Network"$)$.
  
==xDSL types and terms== 
+
*$\text{T-DSL via satellite}$: &nbsp; Brand name for a downstream Internet access of Telekom via satellite;&nbsp; uses a conventional modem or an ISDN connection for transmission.
<br>
 
Before we turn to the historical development of DSL up to the current state, the various types of xDSL must first be defined and some terms explained. The technical features will be covered in depth in the next chapters.
 
*$\text{ADSL}$&nbsp; – ''Asymmetric Digital Subscriber Line'': <br>Asymmetric data transmission technology with data rates of 8 Mbit/s to the subscriber (''downstream'') and 1 Mbit/s in the opposite direction (''upstream'').
 
*$\text{ADSL2}$&nbsp; and&nbsp; $\text{ADSL2+}$: <br>Extensions of ADSL with data rates of up to 25 Mbit/s to the subscriber and up to 1 Mbit/s upstream. The data rate is dynamically negotiated depending on the channel state.
 
*$\text{Re-ADSL2}$: <br>Another extension of ADSL with about 30% range gain at a data rate of 768 kbit/s downstream.
 
*$\text{HDSL}$&nbsp; – ''High Data Rate Digital Subscriber Line'': <br>Symmetrical data transmission technology - i.e. equal rates in downstream and upstream - with data rates between 1.54 Mbit/s and 2.04 Mbit/s. <br>''Note'': The name "HDSL" suggests higher data rates than ADSL; however, this is not the case.
 
*$\text{SDSL}$&nbsp; – ''Symmetric Digital Subscriber Line'': <br>Symmetrical data transmission at rates of up to 3 Mbit/s. With four-wire wiring (two copper twisted pairs), a maximum of 4 Mbit/s can be transmitted. Alternatively, the range can be increased at the expense of bandwidth.
 
*$\text{VDSL}$&nbsp; – ''Very High Data Rate Digital Subscriber Line'': <br>A newer transmission technology based on QAM that operates in the asymmetrical variant with bit rates of 25 to 50 Mbit/s downstream and 5 to 10 Mbit/s upstream. The symmetrical variant has the same data transmission rates in the upstream and downstream.
 
*$\text{VDSL2}$&nbsp; – ''Very High Data Rate Digital Subscriber Line 2'': <br>Transmission technology with the currently (2009) highest total data rate of up to 200 Mbit/s. The process is based on DMT (''Discrete Multitone Transmission'').
 
*$\text{UDSL}$&nbsp; or &nbsp;$\text{UADSL}$&nbsp; - ''Universal (Asymmetric) Digital Subscriber Line''.
 
  
 +
*$\text{WDSL}$&nbsp; –&nbsp; "Wireless Digital Subscriber Line":&nbsp; Brand name of a German company that uses wireless technology to enable data rates of up to&nbsp; $108$&nbsp; Mbit/s in DSL-free areas.
  
There are also many products circulating under "DSL" that are not part of the xDSL standard. They are often only intended to make it clear that fast data access is involved. These include:
+
*$\text{mvoxSatellit}$: &nbsp; Brand name of an Internet access with&nbsp; "WiMAX-like radio technology",&nbsp; which like WDSL and PortableDSL is only an auxiliary construct for DSL-free areas.
*$\text{cableDSL}$: Brand name of the German company TELES AG, which offers high-speed Internet access via cable. The name was chosen for marketing reasons only.
 
*$\text{skyDSL}$:&nbsp; Brand name for Internet access available throughout Europe via satellite with up to 24 Mbit/s downstream. The upstream here is via POTS (''Plain old telephone service'') or [[Examples_of_Communication_Systems/General_Description_of_ISDN|ISDN ]] (''Integrated Services Digital Network'').
 
*$\text{T-DSL via satellite}$:&nbsp; Brand name for a downstream Internet access of Telekom via satellite; uses a conventional modem or an ISDN connection for transmission.
 
*$\text{WDSL}$&nbsp; - ''Wireless Digital Subscriber Line'':&nbsp; Brand name of a German company that uses wireless technology to enable data rates of up to 108 Mbit/s in DSL-free areas.
 
*$\text{mvoxSatellit}$:&nbsp; Brand name of an Internet access with "WiMAX-like radio technology", which, like WDSL and PortableDSL, is only an auxiliary construct for DSL-free areas.
 
  
 
   
 
   
==Historical development of xDSL - standardizations ==
+
==Historical development of xDSL standardizations ==
 
<br>
 
<br>
The need for digital subscriber lines to improve line utilization and increase customer convenience was recognized as early as the 1970s. After the ISDN specification in the early 1980s, the actual development of DSL began.
 
*This development was influenced by the findings of many groups located around the world. Accordingly, standardization proceeded in an unstructured manner. From the list below ("Milestones"), it is clear that different committees around the world were in charge of the various standards.
 
*In the industry, the technical realizations of the individual xDSL standards often deviated noticeably from the specification. For example, some standards were started as projects even before the specification, since the industry parties were also represented in the standardization committees.
 
  
 +
The need for digital subscriber lines to improve line utilization and increase customer convenience was recognized as early as the 1970s.&nbsp; After the ISDN specification in the early 1980s,&nbsp; the actual development of DSL began.
 +
 +
*This development was influenced by the findings of many groups located around the world.&nbsp; Accordingly,&nbsp; the standardization proceeded in an unstructured manner.
 +
 +
*From the list on the right,&nbsp; it is clear that different committees around the world were in charge of the various standards.
 +
 +
*In the industry,&nbsp; the technical realizations of the individual xDSL standards often deviated noticeably from the specification.&nbsp;
 +
 +
*Some standards were started as projects even before the specification,&nbsp; since the industry parties were also represented in the standardization committees.
 +
 +
 +
The graph illustrates the relationships between milestones in the theoretical and practical design of transmission systems.
 +
 +
 +
 +
[[File:EN_Bei_2_1_s3_v4.png|right|frame|Milestones of the industrial xDSL development]]
 +
$\text{Milestones of DSL development in short form:}$
 +
 +
'''1986'''  &nbsp; A first concept for&nbsp; $\rm HDSL$&nbsp; $($"'''H'''igh-bit-rate '''D'''igital '''S'''ubscriber '''L'''ine"$)$&nbsp; is defined by AT&T,&nbsp; Bell Laboratories and Bellcore.
 +
 +
'''1989'''  &nbsp; First HDSL prototypes appear;  &nbsp; &nbsp;  &rArr; &nbsp; &nbsp; Bellcore meanwhile works on the conceptual definition of&nbsp; $\rm  ADSL$ &nbsp; $($"'''A'''symmetric '''D'''igital '''S'''ubscriber '''L'''ine"$)$.
  
[[File:P_ID1906__Bei_2_1_S3_v1.png|right|frame|Industrial xDSL development]]
+
'''1992'''  &nbsp; First publication of the&nbsp; $\text{ANSI Technical Report E1T1/92-002R1}$:<br>"High-bit-rate Digital Subscriber Line";&nbsp; &nbsp;  &rArr; &nbsp; &nbsp; The first ADSL prototypes appear.
The graphic illustrates relationships between.
 
*milestones in the theoretical and practical design of transmission systems,
 
*parallel advances in semiconductor development, and the
 
*realization of the individual xDSL standards with the corresponding data rates.
 
<br clear=all>
 
Here are thenbsp; '''Milestones'''nbsp; of DSL development in short form:
 
*'''1986'''  &nbsp; A first concept for HDSL ('''''H'''igh-bit-rate '''D'''igital '''S'''ubscriber '''L'''ine'') is defined by AT&T, Bell Laboratories and Bellcore.
 
*'''1989'''  &nbsp; First HDSL prototypes appear.  # Bellcore meanwhile works on the conceptual definition of ADSL.
 
*'''1992'''  &nbsp; In February, first publication of '''ANSI Technical Report E1T1/92-002R1''': "''High Bit-rate Digital Subscriber Line'' - HDSL".  # The first prototypes for ADSL ('''''A'''symmetric '''D'''igital '''S'''ubscriber '''L'''ine'') appear.
 
*'''1994'''  &nbsp; The VDSL concept ('''''V'''ery-high-speed '''D'''igital '''S'''ubscriber '''L'''ine'') is discussed for the first time.
 
*'''1995'''  &nbsp; Publication of '''ETSI Technical Report ETR 152''': ''High-bit-rate Digital Subscriber Line'' (HDSL)'' and '''Transmission Systems on Metallic Local Lines'''.  <br># First field trials with ADSL in the USA.  # Publication of '''ADSL Standard ANSI T1.413''': "''Asymmetric Digital Subscriber Line'' (ADSL) ''Metallic Interface''".
 
*'''1996'''  &nbsp; First publication of '''ETSI Technical Report ETR 328''': ''Asymmetric Digital Subscriber Line (ADSL)'' and ''Transmission and Multiplexing (TM)''.
 
*'''1998'''  In April, first publication of the '''ETSI Technical Specification TS 101 270-1 V1.1.1''': "''Very-high-speed Digital Subscriber Line'' (VDSL)".  <br>#  Nahezu zeitgleich erstmalige Veröffentlichung des '''ANSI Draft Technical Document T1E1.4/98–043R1''': „''Very–high–speed Digital Subscriber Lines''”.  #  Im Oktober erste Veröffentlichung der '''ITU–Empfehlung G.991.1''': „''High–bit–rate Digital Subscriber Line'' (HDSL) ''Transceivers''”.  #  Nahezu zeitgleich Veröffentlichung der '''ETSI Technical Specification TS 101 135''': „''High–bit–rate Digital Subscriber Line'' (HDSL) – ''Transmission Systems on Metallic Local Lines''”.  #  Im November Veröffentlichung der '''ETSI Technical Specification TS 101 388 V1.1.1''': „''Asymmetric Digital Subscriber Line'' (ADSL) – ''European Specific Requirements''”.
 
*'''1999'''  &nbsp; Im Juni Veröffentlichung der '''ITU–Empfehlungen G.992.1''': „''Asymmetric Digital Subscriber Line'' (ADSL) ''Transceivers''” und '''G.992.2''': „''Splitterless Asymmetric Digital Subscriber Line'' (ADSL) ''Transceivers''”.  #  Am 22.07. bietet die Deutsche Telekom AG erstmals ADSL in Deutschland an (T–DSL 768).
 
*'''2001''' &nbsp; Im Februar Veröffentlichung der '''ITU–Empfehlung G.991.2''': „''Single–pair High–speed Digital Subscriber Line'' (SHDSL) ''Transceivers''”.  <br>#  Im November Veröffentlichung der '''ITU–Empfehlung G.993.1''': ''Very–high–speed Digital Subscriber Line transceivers'' (VDSL).
 
*'''2002'''  &nbsp; Erstmalige Veröffentlichungen der '''ITU–Empfehlungen G.992.3''': „''Asymmetric Digital Subscriber Line Transceivers 2'' (ADSL2)” sowie '''G.992.4''': „''Splitterless Asymmetric Digital Subscriber Line Transceivers 2'' (splitterless ADSL2)” .
 
*'''2003'''  &nbsp; Erste Veröffentlichung der '''ITU–Empfehlung G.992.5''': „''Asymmetric Digital Subscriber Line'' (ADSL) ''Transceivers – Extended-bandwidth ADSL2'' (ADSL2+)” .
 
*'''2006''' &nbsp; Im Februar Veröffentlichung der '''ITU–Empfehlung G.993.2''': „''Very–high–speed Digital Subscriber Line Transceivers 2'' (VDSL2)”.  #  Im Oktober bietet die Deutsche Telekom AG erstmals für Endkunden in ausgewählten Städten VDSL2 an.
 
 
  
== Europäische ADSL&ndash; und VDSL&ndash;Entwicklung ==
+
'''1994''' &nbsp; The&nbsp; $\rm VDSL$&nbsp; concept&nbsp; $($"'''V'''ery-high-speed '''D'''igital '''S'''ubscriber '''L'''ine"$)$&nbsp; is discussed for the first time.
<br>
 
Aus der obigen Zusammenstellung erkennt man, dass die&nbsp; '''ADSL–Standardisierung'''&nbsp; vorwiegend von&nbsp; [https://de.wikipedia.org/wiki/American_National_Standards_Institute ANSI]&nbsp; (''American National Standards Institute'') vorangetrieben wurde und dass jeweils kurz danach die [https://en.wikipedia.org/wiki/ETSI ETSI]  (''European Telecommunications Standards Institute'') nachlegte:
 
*Der erste ADSL–Standard&nbsp; ('''ANSI T1.413''')&nbsp; aus dem Jahr 1995 war vorwiegend für Video–Abrufdienste optimiert, was auch durch das Verhältnis der hierin definierten Down– und Upstream–Datenraten deutlich wird:&nbsp; 1.5 Mbit/s und 16 kbit/s, 3 Mbit/s und 16 kbit/s, und schließlich 6 Mbit/s und 64 kbit/s.
 
*Der Frequenzbereich war ursprünglich so festgelegt, dass man mit ADSL nur ein analoges Telefon auf der Anschlussleitung betreiben konnte. ETSI veröffentlichte 1996 einen technischen Report &nbsp;('''ETR 328''')&nbsp; mit nur wenigen Detailänderungen und der Möglichkeit, 2048 kbit/s zu übertragen.
 
*Da die zweite Version des ANSI–Standards ebenfalls nur ein zusätzliches Analogtelefon zuließ, definierte die ETSI daraufhin ein ADSL–System, das sich sowohl in den Bitraten als auch in der Möglichkeit der Nutzung eines ISDN–Basisanschlusses auf der gleichen Doppelader unterschied.
 
*Die ANSI– und ETSI–Standardisierungsbestrebungen der Vorjahre mündeten 1999 in die&nbsp; [https://en.wikipedia.org/wiki/International_Telecommunication_Union ITU]–Empfehlung '''G.992.1''', die beide Standards beinhaltet und somit viele Möglichkeiten der Realisierung zulässt.
 
  
 +
'''1995'''  &nbsp; Publication of the&nbsp; $\text{ETSI Technical Report ETR 152:}$&nbsp; "High-bit-rate Digital Subscriber Line"&nbsp; and&nbsp; "Transmission Systems on Metallic Local Lines";  <br>&rArr; &nbsp; &nbsp;  Publication of&nbsp; $\text{ADSL Standard ANSI T1.413}$:&nbsp; $($"Asymmetric Digital Subscriber Line Metallic Interface"$)$; &nbsp; &nbsp;  &rArr; &nbsp; &nbsp; First field trials with ADSL in the USA .
  
Die vielen Optionen führten allerdings Ende der 1990er Jahre zu großen konzeptionellen Unterschieden – weltweit, innereuropäisch und auch national, unter anderem abhängig vom Halbleiterhersteller. Nur wenige Systeme, Modems und Messgeräte interoperierten mit anderen Herstellern.
+
'''1996'''  &nbsp; First publication of the&nbsp; $\text{ETSI Technical Report ETR 328}$:&nbsp; "Asymmetric Digital Subscriber Line"&nbsp; and&nbsp; "Transmission and Multiplexing".
  
Um diesem Wildwuchs entgegenzuwirken, verabschiedete die Deutsche Telekom AG Ende 2001 die Technische Richtlinie&nbsp; '''1TR112''', in der alle nötigen Schnittstellenparameter festgelegt werden, um die Interoperabilität verschiedener Herstellermodems auf Anbieter– und Kundenseite zu gewährleisten. Durch die Marktmacht der Telekom wurde diese zum Quasi–Standard für Deutschland.
+
'''04/1998''' First publication of&nbsp; $\text{ETSI Technical Specification TS 101 270}$:&nbsp; "Very-high-speed Digital Subscriber Line";  &nbsp; &nbsp;  &rArr; &nbsp; &nbsp;  Almost simultaneously, first publication of&nbsp; $\text{ANSI Draft Technical Document T1E1.4/98-043R1}$:&nbsp; "Very-high-speed Digital Subscriber Lines".
Des Weiteren wurden in Deutschland auch nur solche ADSL–Varianten eingesetzt, die jederzeit einen gleichzeitigen Betrieb von ISDN ermöglichten. Somit musste beim Wechsel von POTS auf ISDN nicht auch noch die ADSL–Version gewechselt werden.
 
  
 +
'''10/1998''' First publication of&nbsp; $\text{ITU Recommendation G.991.1}$:&nbsp; "High-bit-rate Digital Subscriber Line Transceivers";  &nbsp; &nbsp;  &rArr; &nbsp; &nbsp; Almost simultaneously publication of&nbsp; $\text{ETSI Technical Specification TS 101 135}$:&nbsp;  "High-bit-rate Digital Subscriber Line &ndash; Transmission Systems on Metallic Local Lines". 
  
Die für Europa relevante&nbsp; '''VDSL–Standardisierung'''&nbsp; wurde maßgeblich von der ETSI geprägt und geschah oft parallel zu den amerikanischen Aktivitäten. Insgesamt lief die Standardisierung von VDSL geordneter ab als bei ADSL. Der von ETSI beschlossene 3–Stufen–Plan sah vor:
+
'''11/1998''' Publication of&nbsp; $\text{ETSI Technical Specification TS 101 388 V1.1.1}$:&nbsp; "Asymmetric Digital Subscriber Line &ndash; European Specific Requirements".
*Stufe 1:&nbsp; Funktionale und elektrische Anforderungen an VDSL–Systeme,
 
*Stufe 2:&nbsp; Anforderungen an die Übertragungscodierung und die Zugriffsmethoden,
 
*Stufe 3:&nbsp; Interoperabilitätsanforderungen.
 
  
 +
'''1999'''  &nbsp; In June,&nbsp; publication of&nbsp; $\text{ITU Recommendations G.992.1}$:&nbsp; "Asymmetric Digital Subscriber Line &ndash; Transceivers"&nbsp; and&nbsp; $\text{G.992.2}$:&nbsp; "Splitterless Asymmetric Digital Subscriber Line &ndash; Transceivers"; &nbsp; &nbsp;  &rArr; &nbsp; &nbsp; On July 22, Deutsche Telekom AG offers ADSL in Germany for the first time&nbsp; $\text{(T-DSL 768)}$.
  
Diese Anstrengungen mündeten im April 1998 in der Veröffentlichung der ETSI Technical Specification&nbsp; '''TS 101 270-1''', die als Modulationsverfahren sowohl&nbsp; [[Modulation_Methods/Weitere_OFDM–Anwendungen#Eine_Kurzbeschreibung_von_DSL_.E2.80.93_Digital_Subscriber_Line|DMT]]&nbsp; (''Discrete Multitone Transmission'') als auch&nbsp; [[Modulation_Methods/Quadratur–Amplitudenmodulation|QAM]]&nbsp; (Quadratur–Amplitudenmodulation) zuließ. Die Halbleiter–Hersteller konnten sich lange nicht auf einen weltweiten Leitungscode–Standard einigen und man sprach sogar vom ''VDSL Line-Code War''. 2003 wurde bei den so genannten ''VDSL Olympics'' zugunsten von DMT und gegen QAM bzw. der leicht modifizierten Variante&nbsp; [[Examples_of_Communication_Systems/xDSL_als_Übertragungstechnik#Carrierless_Amplitude_Phase_Modulation_.28CAP.29|CAP]]&nbsp; (''Carrierless Amplitude Phase Modulation'') entschieden, und zwar
+
'''2001''' &nbsp; In February,&nbsp; publication of&nbsp; $\text{ITU Recommendation G.991.2}$:&nbsp; "Single-pair High-speed Digital Subscriber Line Transceivers"; &nbsp; &nbsp;  &rArr; &nbsp; &nbsp; In November,&nbsp; publication of&nbsp; $\text{ITU Recommendation G.993.1}$:&nbsp; "Very-high-speed Digital Subscriber Line transceivers".
*wegen der Robustheit von DMT gegenüber schmalbandigen Störquellen,
 
*obwohl QAM (CAP) einen schnelleren Verbindungsaufbau ermöglichen würde.
 
  
 +
'''2002'''  &nbsp; First publications of&nbsp; $\text{ITU Recommendations G.992.3}$:&nbsp; "Asymmetric Digital Subscriber Line Transceivers 2"&nbsp; $\rm (ADSL2)$&nbsp; and&nbsp; $\text{G.992.4}$:&nbsp; "Splitterless ADSL2".
  
 +
'''2003'''  &nbsp; First publication of&nbsp; $\text{ITU Recommendation G.992.5}$:&nbsp; "Asymmetric Digital Subscriber Line"&nbsp; $\rm (ADSL)$&nbsp; Transceivers"&nbsp; and &nbsp; "Extended-bandwidth ADSL2"&nbsp; $\rm (ADSL2+)$.
  
 +
'''02/2006'''  &nbsp; Publication of&nbsp; $\text{ITU Recommendation G.993.2}$: "Very-high-speed Digital Subscriber Line Transceivers 2"&nbsp; $\rm  (VDSL2)$. 
  
'''Die folgenden Seiten nicht Übersetzen. Erst wieder Exercises'''
+
'''10/2006''' &nbsp;Deutsche Telekom AG offers VDSL2 to end customers in selected cities for the first time.
 
   
 
   
 +
 +
== Development of ADSL and VDSL in Europe ==
 +
<br>
 +
From the above compilation it can be seen that the&nbsp; &raquo;'''ADSL standardization'''&laquo;&nbsp; was predominantly driven by&nbsp; [https://en.wikipedia.org/wiki/American_National_Standards_Institute $\rm ANSI$]&nbsp; $($"American National Standards Institute"$)$&nbsp; and that&nbsp; [https://en.wikipedia.org/wiki/ETSI $\rm ETSI$]&nbsp; $($"European Telecommunications Standards Institute"$)$&nbsp; followed shortly thereafter in each case:
 +
#The first ADSL standard &nbsp; "$\text{ANSI T1.413}$" &nbsp; from 1995 was predominantly optimized for video-on-demand services,&nbsp; which is also made clear by the ratio of the downstream and upstream data rates defined herein:&nbsp; $1.5$&nbsp; Mbit/s and&nbsp; $16$&nbsp; kbit/s,&nbsp; $3$&nbsp; Mbit/s and&nbsp; $16$&nbsp; kbit/s, and finally&nbsp; $6$&nbsp; Mbit/s and&nbsp; $64$&nbsp;kbit/s.
 +
#The frequency range was originally defined in such a way that ADSL could only be used to operate an analog telephone on the access line.&nbsp; ETSI published a technical report &nbsp; "$\text{ETR 328}$" &nbsp; in 1996 with only a few detailed changes and the possibility to transmit&nbsp; $2048$&nbsp; kbit/s.
 +
#Since the second version of the ANSI standard also allowed only one additional analog telephone,&nbsp; ETSI then defined an ADSL system that differed both in bit rates and in the possibility of using an ISDN basic access on the same twisted pair.
 +
#The ANSI and ETSI standardization efforts of the previous years resulted in the&nbsp; [https://en.wikipedia.org/wiki/International_Telecommunication_Union "ITU"] recommendation&nbsp; "$\text{G.992.1}$" &nbsp; in 1999,&nbsp; which includes both standards and thus allows many options for the implementation.
  
  
 +
However,&nbsp; the many options led to major conceptual differences at the end of the 1990s&nbsp; &ndash;&nbsp; worldwide,&nbsp; within Europe and also nationally&nbsp; &ndash;&nbsp; depending on the semiconductor manufacturer,&nbsp; among other things.&nbsp; Only a few systems,&nbsp; modems,&nbsp; and measuring devices interoperated with other manufacturers.
  
== Die rasante Entwicklung der DSL–Anschlüsse  ==
+
To counteract this proliferation,&nbsp; The&nbsp; "Deutsche Telekom AG"&nbsp; passed the technical guideline&nbsp; "$\text{1TR112}$" &nbsp; at the end of 2001,&nbsp; defining all the necessary interface parameters to ensure the interoperability of different manufacturer modems on the provider and customer side.&nbsp;
<br>
+
*Due to Telekom's market power,&nbsp; this became the quasi-standard for Germany.
Die folgenden sieben Statistiken sind heute sicher nicht mehr aussagekräftig. Sie belegen aber die enorme Entwicklung der DSL–Anschlüsse im ersten Jahrzehnt dieses Jahrtausends.  
+
 
 +
*Furthermore,&nbsp; only those ADSL variants were used in Germany that allowed simultaneous operation of ISDN at any time.&nbsp; Thus,&nbsp; when switching from POTS to ISDN,&nbsp; it was not necessary to change the ADSL version as well.
 +
 
 +
 
 +
The&nbsp; &raquo;'''VDSL standardization'''&laquo;&nbsp; relevant for Europe was decisively shaped by ETSI and often happened in parallel to the American activities.&nbsp; Overall,&nbsp; VDSL standardization proceeded in a more orderly fashion than ADSL.&nbsp; The 3-step plan adopted by ETSI provided for:
 +
*Stage 1:&nbsp; Functional and electrical requirements for VDSL systems,
 +
 
 +
*Stage 2:&nbsp; Transmission coding and access method requirements,
 +
 
 +
*Stage 3:&nbsp; Interoperability requirements.
 +
 
 +
 
 +
These efforts culminated in April 1998 in the publication of the ETSI Technical Specification&nbsp; "$\text{TS 101 270-1}$",&nbsp; which defines as modulation methods both&nbsp; [[Modulation_Methods/Further_OFDM_Applications#A_brief_description_of_DSL_-_Digital_Subscriber_Line|$\rm DMT$]]&nbsp; $($"Discrete Multitone Transmission"$)$&nbsp;  and&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation|$\rm QAM$]]&nbsp; $($"Quadrature Amplitude Modulation"$)$.&nbsp; The semiconductor manufacturers could not agree on a worldwide line code standard for a long time and there was even talk of the&nbsp; "VDSL Line Code War".  
  
[[File:P_ID1908__Bei_2_1_S5a_v3.png|thumb|350px|Grafik 1: Entwicklung der Breitband– und Schmalbandanschlüssen in Deutschland]]
+
In 2003,&nbsp; at the so-called&nbsp; "VDSL Olympics",&nbsp; the decision was made in favor of DMT and against QAM or the slightly modified variant&nbsp; [[Examples_of_Communication_Systems/xDSL_as_Transmission_Technology#Carrierless_Amplitude_Phase_Modulation|$\rm CAP$]]&nbsp; $($"Carrierless Amplitude Phase Modulation"$)$,&nbsp; namely
*Anfang 2000 wurde für das Jahr 2004 eine DSL–Verbreitung von ca. 6 Millionen Anschlüssen (für Europa) und 1.6 Millionen (für Deutschland) prognostiziert.
+
*because of the robustness of DMT against narrowband interference sources,
*Die Prognosen wurden deutlich überboten (siehe Grafik 1). In Deutschland stieg die Zahl der ''Breitbandanschlüsse'' (xDSL und Sonstige, vorwiegend xDSL) durchschnittlich um etwa 50% jährlich.
 
*Gleichzeitig stagnierte die Zahl der ''Schmalbandanschlüsse'' (ISDN + Analog) mit einer Verschiebung zu ISDN. Dies zeigt den Trend zu komfortablen, digitalen Telefonanschlüssen um die Jartausendwende, während der ''Plain Old Telephone Servive'' mehr und mehr verschwand.
 
<br clear=all>
 
[[File:P_ID3117__Bei_2_1_S5b_v2.png|thumb|350px|Grafik 2: xDSL–Anschlüsse und xDSL–Abdeckung im europäischen Vergleich (2005)]]
 
*2005 hielt Deutschland mit fast 8 Millionen xDSL–Teilnehmeranschlüssen die Spitzenposition in Europa, wie die zweite Grafik zeigt (blaue Balken).
 
*In der Bevölkerungsabdeckung (wieviele Bewohner nutzen DSL prozentual?) lagen allerdings andere Länder (Finnland, die Niederlande, Dänemark, Frankreich) mit mehr als 13% im europaweiten Vergleich vorne (rote Balken).
 
<br clear=all>
 
[[File:P_ID1910__Bei_2_1_S6a_v2.png|thumb|350px|Grafik 3: Entwicklung der Breitbandanschlüsse in Europa, aufgeteilt nach Technologie (2000–2008)]]
 
Zwischen 2000 bis 2008 haben sich die Zahlen in Europa fast explosionsartig weiterentwickelt. xDSL war 2008 in fast allen Ländern die führende Zugangstechnologie mit einer beachtenswerten Entwicklung:
 
*In der Europäischen Union wurde für 2008 eine Breitbandverfügbarkeit für mindestens 95% der Bevölkerung angestrebt. Die „weißen Flecken” komplett abzuschaffen, war derzeit leider noch nicht möglich.
 
*Ende 2008 verfügten mehr als 114 Millionen Europäer über einen Breitbandanschluss, größtenteils xDSL–Anschlüsse. Dies entsprach einer Steigerung von ca. 29% pro Jahr über die Jahre 2004–2008 gemittelt (siehe die für Europa geltende Grafik 3).
 
<br clear=all>
 
[[File:P_ID1911__Bei_2_1_S6b_v2.png|thumb|350px|Grafik 4: xDSL im weltweiten Vergleich 2007 („Top 10”)]]
 
Die Grafik 4 zeigt die „Top 10” weltweit im Jahr 2008:
 
*Hier wies China mit ca. 43 Millionen die meisten xDSL–Teilnehmeranschlüsse auf.
 
*In der Bevölkerungsabdeckung lieferte Frankreich ein beachtliches Ergebnis mit 24%.
 
*Deutschland lag bei beiden Betrachtungsweisen im oberen Mittelfeld.
 
*Die Prognosen des DSL–Forums gingen für 2010 weltweit von 500 Millionen xDSL–Anschlüssen aus.
 
<br clear=all>
 
[[File:P_ID1912__Bei_2_1_S6c_v2.png|thumb|350px|Grafik 5: Breitbandanschlüsse in den OECD-Länder Ende 2008]]
 
Die Grafik 5 zeigt die Anzahl der Breitbandanschlüsse Ende 2008 ingesamt (xDSL, Kabel und Glasfaser) in 15 Mitgliedsländern der ''Organisation for Economic Co–operation and Development'' (OECD).
 
*Die USA lagen hier mit knapp über 30 Millionen xDSL–Zugängen vorne.
 
*Deutschland folgte an zweiter Stelle mit rund 20 Millionen xDSL–Zugängen.
 
<br clear=all>
 
[[File:P_ID3118__Bei_2_1_S6d_v3.png|thumb|350px|Grafik 6: Breitbandabdeckung in der Bevölkerung der OECD-Länder Ende 2008]]
 
Die Statistik ändert sich grundlegend, wenn man die Breitbandabdeckung in der Bevölkerung betrachtet (siehe Grafik 6).
 
*Hier war (das einwohnermäßig kleine) Island mit einer xDSL–Abdeckung von 31.6% der Bevölkerung führend vor Frankreich mit 26.6%.
 
*Deutschland lag an fünfter Stelle mit 25.4%.
 
*Die USA, Japan und Südkorea waren 2008 bezüglich Flächenabdechung mit jeweils unter 10% nicht unter den ersten 15 Ländern.
 
*Zu berücksichtigen ist allerdings, dass in diesen Ländern bereits zu dieser Zeit begonnen wurde, Glasfaserleitungen bis zum Kunden zu verlegen (''Fiber–to–the–Home'', FttH). Diese Anschlüsse fallen aus der xDSL–Statistik heraus.
 
<br clear=all>
 
[[File:P_ID1914__Bei_2_1_S6e_v1.png|thumb|350px|Grafik 7: „Top 30” der schnellsten DSL–Angebote 2008]]
 
Die Grafik 7 zeigt, in welchen OECD–Ländern 2008 die schnellsten DSL–Zugänge angeboten wurden („Top 30”).
 
*Vorne lagen mit 100 Mbit/s Datenrate Korea und Japan dank der VDSL(2)–Technologie.
 
*Deutschland kam gemeinsam mit Dänemark an dritter Stelle mit 50 Mbit/s. Hier wird ebenfalls der VDSL(2)–Standard verwendet; die kleinere Datenrate ergibt sich aufgrund der größeren Leitungslänge im Teilnehmeranschlussbereich.
 
*Allerdings war diese hochratige Breitbandversorgung auch in Deutschland derzeit noch auf nur wenige städtische Gebiete beschränkt.
 
*Auch heute (2018) ist die "Digital&ndash;Situation" allerdings noch nicht befriedigend und hinkt der Versorgung in anderen Ländern hinterher.
 
<br clear=all>
 
  
 +
*although QAM/ CAP would allow a faster call setup.
  
  
==DSL&ndash;Zielvorgaben für Deutschland aus Sicht des Jahres 2008== 
 
<br>
 
Die Bundesregierung legte 2003 in ihrem Programm „Informationsgesellschaft Deutschland 2006” für 2010 das Ziel von mindestens 20 Millionen Breitbandanschlüssen fest. Ende 2008 gab es in Deutschland laut ''Bundesministerium für Wirtschaft und Technologie'' rund 23 Millionen Breitbandzugänge, womit 60% der Haushalte abgedeckt waren. Mehr als 21 Millionen (91%) davon sind xDSL–Anschlüsse und 8% Kabelanschlüsse. Die restlichen Breitbandzugänge verteilen sich auf Satellit, Glasfaser und WLAN.
 
  
Laut der Breitbandstrategie der Bundesregierung vom Februar 2009 sollten
 
*alle Lücken in der Breitbandversorgung bis Ende 2010 geschlossen werden und flächendeckend leistungsfähige Breitbandanschlüsse – darunter versteht man Datenraten im ''Downstream'' von mindestens 1 Mbit/s – verfügbar sein,
 
*bis 2014 bereits für 75% der Haushalte Anschlüsse mit Datenraten von mindestens 50 Mbit/s zur Verfügung stehen und möglichst bald flächendeckend verfügbar sein.
 
  
  
[[File:P_ID1915__Bei_2_1_S7_v1.png||thumb|350px|Grafik 8: DSL–Verfügbarkeit in Deutschland (Breitbandatlas)]]
+
==Exercises for the chapter ==  
Die letzte Grafik dieses Kapitels zeigt die DSL–Verfügbarkeit in Deutschland Ende 2008 allgemein (links) bzw. mit Datenraten größer als 1 Mbit/s (rechts).
 
*Im linken Bild erkennt man viele sattgrüne oder zumindest hellgrüne Bereiche, die eine DSL–Verfügbarkeit von mehr als 75% kennzeichnen.
 
* Allerdings gab es insbesondere in Ostdeutschland auch noch viele weiße und rote Gebiete (Verfügbarkeit unter 25%).
 
*Im rechten Bild überwiegt gelb (Verfügbarkeit zwischen 50 und 75%).
 
<br clear=all>
 
==Aufgabe zum Kapitel ==  
 
 
<br>
 
<br>
[[Aufgabe_2.1:_Grundsätzliches_zu_xDSL|Aufgabe 2.1: Grundsätzliches zu xDSL]]  
+
[[Exercise_2.1:_General_Description_of_xDSL|Exercise 2.1: General Description of xDSL]]  
  
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 23:01, 21 March 2023

# OVERVIEW OF THE SECOND MAIN CHAPTER #


$\rm D$igital $\rm S$ubscriber $\rm L$ine  – in short  $\rm DSL$ –  literally means only  "digital subscriber line".  At the same time,  "DSL"  was a synonym for  "high-speed Internet access in the local loop to the end customer",  although "high-speed"  must be put into perspective today  $(2018)$.

xDSL has been significantly standardized by the standards committees  $\rm ANSI$  $($USA$)$  and  $\rm ETSI$  $($Europe$)$  as well as the  $\rm ITU$  $($worldwide$)$.  Due to different pre-existing technical conditions and preferences of developers and operators,  a large variety of nationally different versions of nominally identical xDSL standards resulted.  In the following,  we will restrict ourselves primarily to the German xDSL versions.

This chapter contains in detail:

  1. An  »overview of the historical development and standardization«  of xDSL,
  2. the  »differences between ADSL and VDSL«  as well as statistics on their penetration,
  3. a brief description of xDSL from a  »communications protocol perspective«,
  4. the bandwidth allocations for the two  »xDSL variants ADSL and VDSL«, 
  5. a detailed description of the  »DSL transmission methods QAM, CAP and DMT«,
  6. the problems of  »digital signal transmission over copper twisted pairs«  in general,
  7. the relationship between  »SNR,  range and transmission rate«,
  8. the  »error correction measures«  used to reduce the bit error rate.


Network infrastructure for DSL


We start as in the  "ISDN chapter"  with the network infrastructure.  DSL was intended to use the existing analog telephone network for cost reasons. 

The greatest cost factor of the entire infrastructure is the  »subscriber line area«  between a main distribution frame  $($e.g. "switching office"$)$  and the subscribers.

Structure of the local loop area
  • In Germany,  this so-called  »last mile«  is shorter than  $4$  kilometers on average,  and in urban areas  $90\%$  of the time it is even shorter than  $2.8$  kilometers.
  • Due to the topological conditions,  the telephone network is increasingly branching out in a star configuration toward the end customer.
  • In order to avoid having to lay a separate copper cable to the local exchange for each subscriber,  splitters have been installed in between and the lines bundled in correspondingly large cables.


The  »local loop area»  is therefore usually made up as follows:

  1.   The  "main cable"  with up to  $2000$  pairs between the local exchange  (or the switching office)  frame and a cable branch,
  2.  the  "branch cable"  between the cable branch and the final branch, with up to  $300$  pairs and a maximum length of 500 meters,  which is significantly shorter than a main cable,
  3.  the  "house connection cable"  between the terminal box and the network termination box at the subscriber with two pairs of wires.


xDSL types and terms


$\text{Motivation for Digital Subscriber Line}$ 

$\rm DSL$  $($"Digital Subscriber Line"$)$  arose from the need,  to provide low cost high rate digital data access to the end user
During the design process,  it was necessary to take into account:

  • As explained in the last section,  the  "last mile"  is the largest cost factor in a communications network.
  • Considerations to replace the estimated  130  million kilometers of copper twisted pairs in the local loop network with fiber optic lines  $($fiber-to-the-home,  $\rm FttH)$  have failed to date due to the enormous costs of the mostly underground laying work.
  • A viable solution was to offer a broadband connection with somewhat lower data rates than in a fiber optic network by using the existing telephone line network and by cleverly combining different transmission techniques and coding methods.
  • The telephone service – either analog or digital  $\rm (ISDN)$  – should be able to operate simultaneously on the same network.


Before we turn to the historical DSL development up to the current state,  the various types of  "$\rm xDSL$"  must first be defined and some terms explained.  Note:

  1. Here, "$\rm x$"  is merely a placeholder that designates the various DSL standards.
  2. The technical features will be covered in depth in the next chapters.


Part of the xDSL standard:

  • $\text{ADSL}$  –  "Asymmetric Digital Subscriber Line:
    Asymmetric data transmission technology with data rates of  $8$  Mbit/s to the subscriber  $($"downstream"$)$  and  $1$  Mbit/s in the opposite direction  $($"upstream"$)$.
  • $\text{ADSL2}$  and  $\text{ADSL2+}$:
    Extensions of ADSL with data rates of up to  $25$  Mbit/s  $($"downstream"$)$  and up to  $1$  Mbit/s  $($"upstream"$)$.
    The data rate is dynamically negotiated depending on the channel state.
  • $\text{Re – ADSL2}$:
    Another extension of ADSL with about  $30\%$  range gain at a data rate of  $768$  kbit/s downstream.
  • $\text{HDSL}$  –  "High Data Rate Digital Subscriber Line":
    Symmetrical data transmission technology  –  i.e. equal rates in downstream and upstream  –  with data rates between  $1.54$  Mbit/s and  $2.04$  Mbit/s.
    Note:  The name  "HDSL"  suggests higher data rates than ADSL;  however,  this is not the case.
  • $\text{SDSL}$  –  "Symmetric Digital Subscriber Line":
    Symmetrical data transmission at rates of up to  $3$  Mbit/s.  With four-wire wiring  $($two copper twisted pairs$)$,  a maximum of  $4$  Mbit/s can be transmitted.  Alternatively,  the range can be increased at the expense of bandwidth.
  • $\text{VDSL}$  –  "Very High Data Rate Digital Subscriber Line":
    A newer transmission technology based on QAM that operates in the asymmetrical variant with bit rates of  $25$  to  $50$  Mbit/s  downstream and  $5$ to  $10$  Mbit/s upstream.  The symmetrical variant has the same data transmission rates in upstream and downstream.
  • $\text{VDSL2}$  –  "Very High Data Rate Digital Subscriber Line 2":
    Transmission technology with the currently (2009) highest total data rate of up to  $200$  Mbit/s.  The process is based on DMT  $($"Discrete Multitone Transmission"$)$.
  • $\text{UDSL}$   or   $\text{UADSL}$    –  "Universal (Asymmetric) Digital Subscriber Line".


Not part of the xDSL standard:

  1. There are also many products circulating under  "DSL"  that are not part of the xDSL standard.
  2. They are often only intended to make it clear that fast data access is involved. 


These include:

  • $\text{cableDSL}$:   Brand name of the German company TELES AG, which offers high-speed Internet access via cable. The name was chosen for marketing reasons only.
  • $\text{skyDSL}$:  Brand name for Internet access available throughout Europe via satellite with up to  $24$  Mbit/s downstream.
    The upstream here is via POTS  $($"Plain old telephone service"$)$  or  ISDN   $($"Integrated Services Digital Network"$)$.
  • $\text{T-DSL via satellite}$:   Brand name for a downstream Internet access of Telekom via satellite;  uses a conventional modem or an ISDN connection for transmission.
  • $\text{WDSL}$  –  "Wireless Digital Subscriber Line":  Brand name of a German company that uses wireless technology to enable data rates of up to  $108$  Mbit/s in DSL-free areas.
  • $\text{mvoxSatellit}$:   Brand name of an Internet access with  "WiMAX-like radio technology",  which like WDSL and PortableDSL is only an auxiliary construct for DSL-free areas.


Historical development of xDSL standardizations


The need for digital subscriber lines to improve line utilization and increase customer convenience was recognized as early as the 1970s.  After the ISDN specification in the early 1980s,  the actual development of DSL began.

  • This development was influenced by the findings of many groups located around the world.  Accordingly,  the standardization proceeded in an unstructured manner.
  • From the list on the right,  it is clear that different committees around the world were in charge of the various standards.
  • In the industry,  the technical realizations of the individual xDSL standards often deviated noticeably from the specification. 
  • Some standards were started as projects even before the specification,  since the industry parties were also represented in the standardization committees.


The graph illustrates the relationships between milestones in the theoretical and practical design of transmission systems.


Milestones of the industrial xDSL development

$\text{Milestones of DSL development in short form:}$

1986   A first concept for  $\rm HDSL$  $($"High-bit-rate Digital Subscriber Line"$)$  is defined by AT&T,  Bell Laboratories and Bellcore.

1989   First HDSL prototypes appear;     ⇒     Bellcore meanwhile works on the conceptual definition of  $\rm ADSL$   $($"Asymmetric Digital Subscriber Line"$)$.

1992   First publication of the  $\text{ANSI Technical Report E1T1/92-002R1}$:
"High-bit-rate Digital Subscriber Line";    ⇒     The first ADSL prototypes appear.

1994   The  $\rm VDSL$  concept  $($"Very-high-speed Digital Subscriber Line"$)$  is discussed for the first time.

1995   Publication of the  $\text{ETSI Technical Report ETR 152:}$  "High-bit-rate Digital Subscriber Line"  and  "Transmission Systems on Metallic Local Lines";
⇒     Publication of  $\text{ADSL Standard ANSI T1.413}$:  $($"Asymmetric Digital Subscriber Line Metallic Interface"$)$;     ⇒     First field trials with ADSL in the USA .

1996   First publication of the  $\text{ETSI Technical Report ETR 328}$:  "Asymmetric Digital Subscriber Line"  and  "Transmission and Multiplexing".

04/1998 First publication of  $\text{ETSI Technical Specification TS 101 270}$:  "Very-high-speed Digital Subscriber Line";     ⇒     Almost simultaneously, first publication of  $\text{ANSI Draft Technical Document T1E1.4/98-043R1}$:  "Very-high-speed Digital Subscriber Lines".

10/1998 First publication of  $\text{ITU Recommendation G.991.1}$:  "High-bit-rate Digital Subscriber Line Transceivers";     ⇒     Almost simultaneously publication of  $\text{ETSI Technical Specification TS 101 135}$:  "High-bit-rate Digital Subscriber Line – Transmission Systems on Metallic Local Lines".

11/1998 Publication of  $\text{ETSI Technical Specification TS 101 388 V1.1.1}$:  "Asymmetric Digital Subscriber Line – European Specific Requirements".

1999   In June,  publication of  $\text{ITU Recommendations G.992.1}$:  "Asymmetric Digital Subscriber Line – Transceivers"  and  $\text{G.992.2}$:  "Splitterless Asymmetric Digital Subscriber Line – Transceivers";     ⇒     On July 22, Deutsche Telekom AG offers ADSL in Germany for the first time  $\text{(T-DSL 768)}$.

2001   In February,  publication of  $\text{ITU Recommendation G.991.2}$:  "Single-pair High-speed Digital Subscriber Line Transceivers";     ⇒     In November,  publication of  $\text{ITU Recommendation G.993.1}$:  "Very-high-speed Digital Subscriber Line transceivers".

2002   First publications of  $\text{ITU Recommendations G.992.3}$:  "Asymmetric Digital Subscriber Line Transceivers 2"  $\rm (ADSL2)$  and  $\text{G.992.4}$:  "Splitterless ADSL2".

2003   First publication of  $\text{ITU Recommendation G.992.5}$:  "Asymmetric Digital Subscriber Line"  $\rm (ADSL)$  Transceivers"  and   "Extended-bandwidth ADSL2"  $\rm (ADSL2+)$.

02/2006   Publication of  $\text{ITU Recommendation G.993.2}$: "Very-high-speed Digital Subscriber Line Transceivers 2"  $\rm (VDSL2)$.

10/2006  Deutsche Telekom AG offers VDSL2 to end customers in selected cities for the first time.


Development of ADSL and VDSL in Europe


From the above compilation it can be seen that the  »ADSL standardization«  was predominantly driven by  $\rm ANSI$  $($"American National Standards Institute"$)$  and that  $\rm ETSI$  $($"European Telecommunications Standards Institute"$)$  followed shortly thereafter in each case:

  1. The first ADSL standard   "$\text{ANSI T1.413}$"   from 1995 was predominantly optimized for video-on-demand services,  which is also made clear by the ratio of the downstream and upstream data rates defined herein:  $1.5$  Mbit/s and  $16$  kbit/s,  $3$  Mbit/s and  $16$  kbit/s, and finally  $6$  Mbit/s and  $64$ kbit/s.
  2. The frequency range was originally defined in such a way that ADSL could only be used to operate an analog telephone on the access line.  ETSI published a technical report   "$\text{ETR 328}$"   in 1996 with only a few detailed changes and the possibility to transmit  $2048$  kbit/s.
  3. Since the second version of the ANSI standard also allowed only one additional analog telephone,  ETSI then defined an ADSL system that differed both in bit rates and in the possibility of using an ISDN basic access on the same twisted pair.
  4. The ANSI and ETSI standardization efforts of the previous years resulted in the  "ITU" recommendation  "$\text{G.992.1}$"   in 1999,  which includes both standards and thus allows many options for the implementation.


However,  the many options led to major conceptual differences at the end of the 1990s  –  worldwide,  within Europe and also nationally  –  depending on the semiconductor manufacturer,  among other things.  Only a few systems,  modems,  and measuring devices interoperated with other manufacturers.

To counteract this proliferation,  The  "Deutsche Telekom AG"  passed the technical guideline  "$\text{1TR112}$"   at the end of 2001,  defining all the necessary interface parameters to ensure the interoperability of different manufacturer modems on the provider and customer side. 

  • Due to Telekom's market power,  this became the quasi-standard for Germany.
  • Furthermore,  only those ADSL variants were used in Germany that allowed simultaneous operation of ISDN at any time.  Thus,  when switching from POTS to ISDN,  it was not necessary to change the ADSL version as well.


The  »VDSL standardization«  relevant for Europe was decisively shaped by ETSI and often happened in parallel to the American activities.  Overall,  VDSL standardization proceeded in a more orderly fashion than ADSL.  The 3-step plan adopted by ETSI provided for:

  • Stage 1:  Functional and electrical requirements for VDSL systems,
  • Stage 2:  Transmission coding and access method requirements,
  • Stage 3:  Interoperability requirements.


These efforts culminated in April 1998 in the publication of the ETSI Technical Specification  "$\text{TS 101 270-1}$",  which defines as modulation methods both  $\rm DMT$  $($"Discrete Multitone Transmission"$)$  and  $\rm QAM$  $($"Quadrature Amplitude Modulation"$)$.  The semiconductor manufacturers could not agree on a worldwide line code standard for a long time and there was even talk of the  "VDSL Line Code War".

In 2003,  at the so-called  "VDSL Olympics",  the decision was made in favor of DMT and against QAM or the slightly modified variant  $\rm CAP$  $($"Carrierless Amplitude Phase Modulation"$)$,  namely

  • because of the robustness of DMT against narrowband interference sources,
  • although QAM/ CAP would allow a faster call setup.



Exercises for the chapter


Exercise 2.1: General Description of xDSL