Difference between revisions of "Exercise 2.4Z: Characteristics Measurement"

From LNTwww
m (Text replacement - "Category:Exercises for Linear and Time-Invariant Systems" to "Category:Linear and Time-Invariant Systems: Exercises")
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Nichtlineare Verzerrungen
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Nonlinear_Distortion
 
}}
 
}}
  
[[File:P_ID898__LZI_Z_2_4.png|right|frame|Vorgegebene Kennlinie  $y = g(x)$]]
+
[[File:P_ID898__LZI_Z_2_4.png|right|frame|Given characteristic  $y = g(x)$]]
Von einem nichtlinearen System ist bekannt, dass die Kennlinie wie folgt dargestellt werden kann:
+
It is known that the characteristic curve can be represented as follows for a nonlinear system:
 
:$$y(t) =  c_1  \cdot x(t) + c_2  \cdot x^2(t).$$
 
:$$y(t) =  c_1  \cdot x(t) + c_2  \cdot x^2(t).$$
  
Da die Verzerrungen nichtlinear sind, ist kein Frequenzgang  $H(f)$  angebbar.
+
Since the distortions are nonlinear no frequency response  $H(f)$  can be given.
  
Zur Bestimmung des dimensionslosen Koeffizienten  $c_1$  sowie des quadratischen Koeffizienten  $c_2$  werden nun verschiedene Rechteckimpulse  $x(t)$  – gekennzeichnet durch die Amplitude  $A_x$  und Breite  $T_x$  – an den Eingang gelegt und jeweils die Impulsamplitude  $A_y$  am Ausgang gemessen.  
+
To determine the dimensionless coefficient  $c_1$  as well as the quadratic coefficient  $c_2$  different rectangular pulses  $x(t)$  – characterized by the amplitude  $A_x$  and the width  $T_x$  – are now applied to the input and the pulse amplitude  $A_y$  at the output is measured in each case.  
  
Die ersten drei Versuchen ergeben folgende Werte:
+
The first three trials generate the following values:
 
* $A_x = 1 \ {\rm V}, \; \; T_x = 8 \ {\rm ms}$ :     $A_y = 0.55 \ {\rm V}$,
 
* $A_x = 1 \ {\rm V}, \; \; T_x = 8 \ {\rm ms}$ :     $A_y = 0.55 \ {\rm V}$,
 
* $A_x = 2 \ {\rm V}, \; \; T_x = 4 \ {\rm ms}$ :     $A_y = 1.20 \ {\rm V}$,
 
* $A_x = 2 \ {\rm V}, \; \; T_x = 4 \ {\rm ms}$ :     $A_y = 1.20 \ {\rm V}$,
Line 17: Line 17:
  
  
Bei den Teilaufgaben  '''(3)'''  und  '''(4)'''  sei das Eingangssignal  $x(t)$  eine harmonische Schwingung, da nur für eine solche ein Klirrfaktor angegeben werden kann.  
+
For the subtasks  '''(3)'''  and  '''(4)'''  let the input signal  $x(t)$  be a harmonic oscillation because only for such an oscillation a distortion factor can be specified.  
  
Dagegen wird für die Teilaufgabe  '''(5)'''  ein Dreieckimpuls mit Amplitude  $A_x = 3 \ {\rm V}$  und der einseitigen Impulsdauer  $T_x = 2 \ {\rm ms}$  betrachtet:
+
In contrast, a triangular pulse with amplitude  $A_x = 3 \ {\rm V}$  and the one-sided pulse duration  $T_x = 2 \ {\rm ms}$  is considered for the subtask  '''(5)''' :
 
:$$x(t) =  A_x \cdot ( 1 - {|t|}/{T_x})  $$
 
:$$x(t) =  A_x \cdot ( 1 - {|t|}/{T_x})  $$
  
Line 26: Line 26:
  
  
 
+
''Please note:''  
 
+
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion|Nonlinear Distortions]].
 
 
 
 
''Hinweise:''  
 
*Die Aufgabe gehört zum Kapitel  [[Linear_and_Time_Invariant_Systems/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]].
 
 
   
 
   
*Im Fragenkatalog werden folgende Abkürzungen benutzt:
+
*The following abbreviations are used in the formulation of the questions:
 
:$$y_1(t) =  c_1  \cdot x(t), \hspace{0.5cm} y_2(t) = c_2  \cdot
 
:$$y_1(t) =  c_1  \cdot x(t), \hspace{0.5cm} y_2(t) = c_2  \cdot
 
x^2(t).$$
 
x^2(t).$$
Line 39: Line 35:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Am Eingang liegt ein Rechteckimpuls&nbsp; $x(t)$&nbsp; mit Amplitude&nbsp; $A_x$&nbsp; und Dauer&nbsp; $T_x$&nbsp; an.&nbsp; <br>Welche Aussagen gelten für den Ausgangsimpuls&nbsp; $y(t)$?
+
{A rectangular pulse&nbsp; $x(t)$&nbsp; with amplitude&nbsp; $A_x$&nbsp; and duration&nbsp; $T_x$&nbsp; is applied to the input.&nbsp; <br>Which statements hold for the output pulse&nbsp; $y(t)$?
 
|type="[]"}
 
|type="[]"}
- Der Ausgangsimpuls&nbsp; $y(t)$&nbsp; ist dreieckförmig.
+
- The output pulse&nbsp; $y(t)$&nbsp; is triangular in shape.
- Die Amplituden am Eingang und Ausgang sind gleich &nbsp; &rArr; &nbsp; $A_y = A_x$.
+
- The amplitudes at the input and output are the same&nbsp; &rArr; &nbsp; $A_y = A_x$.
+ Die Impulsdauer wird durch das System nicht verändert &nbsp; &rArr; &nbsp; $T_y = T_x$.
+
+ The pulse duration is not changed by the system&nbsp; &rArr; &nbsp; $T_y = T_x$.
  
  
{Berechnen Sie die beiden ersten Koeffizienten der Taylorreihe.
+
{Compute the first two coefficients of the Taylor series.
 
|type="{}"}
 
|type="{}"}
 
$c_1 \ = \ $ { 0.5 3% }
 
$c_1 \ = \ $ { 0.5 3% }
Line 55: Line 51:
  
  
{Welcher Klirrfaktor&nbsp; $K$&nbsp; wird mit dem Testsignal&nbsp; $x(t) = 1 \hspace{0.08cm} {\rm V} \cdot \cos(\omega_0 \cdot t)$&nbsp; gemessen? Das heißt: &nbsp; $\underline{A_x = 1\hspace{0.08cm} \rm  V}$.
+
{Which distortion factor&nbsp; $K$&nbsp; is measured with the test signal&nbsp; $x(t) = 1 \hspace{0.08cm} {\rm V} \cdot \cos(\omega_0 \cdot t)$&nbsp;?&nbsp; That is: &nbsp; $\underline{A_x = 1\hspace{0.08cm} \rm  V}$.
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $  { 5 3% } $\ \%$
 
$K \ = \ $  { 5 3% } $\ \%$
  
  
{Welcher Klirrfaktor&nbsp; $K$&nbsp; wird mit dem Testsignal&nbsp; $x(t) = 3 \hspace{0.08cm} {\rm V} \cdot \cos(\omega_0 \cdot t)$&nbsp; gemessen? Das heißt: &nbsp; $\underline{A_x = 3\hspace{0.08cm} \rm  V}$.
+
{Which distortion factor&nbsp; $K$&nbsp; is measured with the test signal&nbsp; $x(t) = 3 \hspace{0.08cm} {\rm V} \cdot \cos(\omega_0 \cdot t)$&nbsp;?&nbsp; That is: &nbsp; $\underline{A_x = 3\hspace{0.08cm} \rm  V}$.
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $ { 15 3% } $\ \%$
 
$K \ = \ $ { 15 3% } $\ \%$
  
  
{Welcher Ausgangsimpuls&nbsp; $y(t)$&nbsp; ergibt sich bei dreieckförmigem Eingangsimpuls? Wie lauten die Signalwerte bei&nbsp; $ t = 0$&nbsp; und&nbsp; $ t = T_x/2$?
+
{Which output pulse&nbsp; $y(t)$&nbsp; arises as a result when the input pulse is triangular?&nbsp; What are the signal values at&nbsp; $ t = 0$&nbsp; and&nbsp; $ t = T_x/2$?
 
|type="{}"}
 
|type="{}"}
 
$y(t = 0) \ = \ $ { 1.95 3% } $\ \rm V$
 
$y(t = 0) \ = \ $ { 1.95 3% } $\ \rm V$
Line 74: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist nur der <u>Lösungsvorschlag 3</u>:
+
'''(1)'''&nbsp; <u>Proposed solution 3</u> is the only correct one:
*Ist der Eingangsimpuls &nbsp;$x(t)$&nbsp; rechteckförmig, so ist auch  &nbsp;$x^2(t)$&nbsp; ein Rechteck mit Höhe &nbsp;$A_x^2$&nbsp; zwischen&nbsp; $0$&nbsp; und&nbsp; $T_x$; außerhalb Null.  
+
*If the input pulse&nbsp;$x(t)$&nbsp; is rectangular, then&nbsp;$x^2(t)$&nbsp; is also a rectangle with height&nbsp;$A_x^2$&nbsp; between&nbsp; $0$&nbsp; and&nbsp; $T_x$,&nbsp; outside zero.  
*Auch das gesamte Ausgangssignal &nbsp;$y(t)$&nbsp; ist somit rechteckförmig mit der Amplitude
+
*The overall output signal&nbsp;$y(t)$&nbsp; is thus also rectangular with the amplitude
 
:$$A_y= c_1 \cdot A_x + c_2 \cdot A_x^2 .$$
 
:$$A_y= c_1 \cdot A_x + c_2 \cdot A_x^2 .$$
*Für die Impulsdauer gilt: &nbsp; $T_y  = T_x$.  
+
*The following holds for the pulse duration: &nbsp; $T_y  = T_x$.  
  
  
  
'''(2)'''&nbsp; Mit den beiden ersten Parametersätzen kann folgendes lineares Gleichungssystem angegeben werden:
+
'''(2)'''&nbsp; The following system of linear equations can be specified with the first two sets of parameters:
 
:$$c_1  \cdot 1\,{\rm V} + c_2 \cdot (1\,{\rm V})^2  = 0.55\,{\rm
 
:$$c_1  \cdot 1\,{\rm V} + c_2 \cdot (1\,{\rm V})^2  = 0.55\,{\rm
 
  V},$$
 
  V},$$
Line 90: Line 86:
 
  V}.\hspace{0.05cm}$$
 
  V}.\hspace{0.05cm}$$
  
*Durch Multiplikation der ersten Gleichung mit&nbsp; $-2$&nbsp; und Addition der beiden Gleichungen erhält man:
+
*The following is obtained by multiplying the first equation by&nbsp; $-2$&nbsp; and adding the two equations:
 
:$$c_2 \cdot 2\,{\rm V}^2  = 0.1\,{\rm
 
:$$c_2 \cdot 2\,{\rm V}^2  = 0.1\,{\rm
 
  V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_2  \hspace{0.15cm}\underline{= 0.05\cdot{1/\rm
 
  V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_2  \hspace{0.15cm}\underline{= 0.05\cdot{1/\rm
 
  V}}.$$
 
  V}}.$$
*Der Linearkoeffizient ist somit&nbsp; $c_1  \hspace{0.15cm}\underline{= 0.5}.$
+
*The linear coefficient is thus&nbsp; $c_1  \hspace{0.15cm}\underline{= 0.5}.$
  
*Der dritte Parametersatz kann genutzt werden, um das Ergebnis zu kontrollieren:
+
*The third set of parameters can be used to verify the result:
 
:$$c_1  \cdot 3\,{\rm V} + c_2 \cdot (3\,{\rm V})^2  = 0.5 \cdot 3\,{\rm
 
:$$c_1  \cdot 3\,{\rm V} + c_2 \cdot (3\,{\rm V})^2  = 0.5 \cdot 3\,{\rm
 
  V}+ 0.05 \  {1}/{\rm V}\cdot 9\,{\rm V}^2  = 1.95\,{\rm
 
  V}+ 0.05 \  {1}/{\rm V}\cdot 9\,{\rm V}^2  = 1.95\,{\rm
Line 102: Line 98:
  
  
'''(3)'''&nbsp; Die Angabe eines Klirrfaktors bedingt die Verwendung einer harmonischen Schwingung am Eingang.  
+
'''(3)'''&nbsp; The specification of a distortion factor requires the use of a harmonic oscillation at the input.  
  
*Ist&nbsp; $X_+(f) = 1 \ {\rm V} \cdot \delta (f - f_0)$, so lautet das Spektrum des analytischen Signals am Ausgang:
+
*If&nbsp; $X_+(f) = 1 \ {\rm V} \cdot \delta (f - f_0)$&nbsp; holds,&nbsp; then the spectrum of the analytic signal at the output is:
 
:$$ Y_{+}(f)={c_2}/{2}\cdot A_x^2 \cdot \delta(f) + c_1\cdot A_x \cdot \delta(f- f_0)+ {c_2}/{2}\cdot A_x^2 \cdot \delta(f- 2 f_0). $$
 
:$$ Y_{+}(f)={c_2}/{2}\cdot A_x^2 \cdot \delta(f) + c_1\cdot A_x \cdot \delta(f- f_0)+ {c_2}/{2}\cdot A_x^2 \cdot \delta(f- 2 f_0). $$
  
*Die Diracfunktion bei&nbsp; $f = 0$&nbsp; folgt aus der trigonometrischen Umformung&nbsp; $\cos^2(\alpha) = 1/2 + 1/2 \cdot \cos(\alpha).$
+
*The Dirac function at&nbsp; $f = 0$&nbsp; follows from the trigonometric transformation&nbsp; $\cos^2(\alpha) = 1/2 + 1/2 \cdot \cos(\alpha).$
 
   
 
   
*Mit&nbsp; $A_1 = c_1 \cdot A_x =  0.5 \ {\rm V} $&nbsp; und&nbsp;  $A_2 = (c_2/2) \cdot A_x^2 =  0.025 \ {\rm V}^2 $&nbsp; ergibt sich somit für den Klirrfaktor:
+
*With&nbsp; $A_1 = c_1 \cdot A_x =  0.5 \ {\rm V} $&nbsp; and&nbsp;  $A_2 = (c_2/2) \cdot A_x^2 =  0.025 \ {\rm V}^2 $&nbsp; the following is thus obtained for the distortion factor:
 
:$$K= \frac{A_2}{A_1}= \frac{c_2/2 \cdot A_x}{c_1 }= \frac{0.025}{0.5}  \hspace{0.15cm}\underline{= 5 \%}.$$
 
:$$K= \frac{A_2}{A_1}= \frac{c_2/2 \cdot A_x}{c_1 }= \frac{0.025}{0.5}  \hspace{0.15cm}\underline{= 5 \%}.$$
  
  
'''(4)'''&nbsp; Entsprechend der Musterlösung zur letzten Teilaufgabe ist&nbsp; $K$&nbsp; proportional zu&nbsp; $A_x$. Deshalb erhält man nun&nbsp; $K \hspace{0.15cm}\underline{= 15 \%}.$
+
'''(4)'''&nbsp; According to the solution of the last subtask&nbsp; $K$&nbsp; is proportional to&nbsp; $A_x$. Therefore, one now obtains&nbsp; $K \hspace{0.15cm}\underline{= 15 \%}.$
  
  
  
'''(5)'''&nbsp; Nun lautet das Ausgangssignal:
+
'''(5)'''&nbsp; Now the output signal is:
 
:$$y(t)=  c_1\cdot A_x \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right) +\hspace{0.1cm}
 
:$$y(t)=  c_1\cdot A_x \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right) +\hspace{0.1cm}
 
  {c_2}\cdot A_x^2 \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right)^2.$$
 
  {c_2}\cdot A_x^2 \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right)^2.$$
  
*Zum Zeitpunkt &nbsp;$t = 0$&nbsp; bzw. &nbsp;$t = T_x/2$&nbsp; treten folgende Werte auf:
+
*The following values occur at times&nbsp;$t = 0$&nbsp; and &nbsp;$t = T_x/2$:
 
:$$y(t=0) = c_1\cdot A_x  + {c_2}\cdot A_x^2  \hspace{0.15cm}\underline{= 1.95\,{\rm
 
:$$y(t=0) = c_1\cdot A_x  + {c_2}\cdot A_x^2  \hspace{0.15cm}\underline{= 1.95\,{\rm
 
  V}},$$
 
  V}},$$
Line 131: Line 127:
  
  
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nichtlineare Verzerrungen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nonlinear Distortions^]]

Latest revision as of 15:29, 1 October 2021

Given characteristic  $y = g(x)$

It is known that the characteristic curve can be represented as follows for a nonlinear system:

$$y(t) = c_1 \cdot x(t) + c_2 \cdot x^2(t).$$

Since the distortions are nonlinear no frequency response  $H(f)$  can be given.

To determine the dimensionless coefficient  $c_1$  as well as the quadratic coefficient  $c_2$  different rectangular pulses  $x(t)$  – characterized by the amplitude  $A_x$  and the width  $T_x$  – are now applied to the input and the pulse amplitude  $A_y$  at the output is measured in each case.

The first three trials generate the following values:

  • $A_x = 1 \ {\rm V}, \; \; T_x = 8 \ {\rm ms}$ :     $A_y = 0.55 \ {\rm V}$,
  • $A_x = 2 \ {\rm V}, \; \; T_x = 4 \ {\rm ms}$ :     $A_y = 1.20 \ {\rm V}$,
  • $A_x = 3 \ {\rm V}, \; \; T_x = 2 \ {\rm ms}$ :     $A_y = 1.95 \ {\rm V}$.


For the subtasks  (3)  and  (4)  let the input signal  $x(t)$  be a harmonic oscillation because only for such an oscillation a distortion factor can be specified.

In contrast, a triangular pulse with amplitude  $A_x = 3 \ {\rm V}$  and the one-sided pulse duration  $T_x = 2 \ {\rm ms}$  is considered for the subtask  (5) :

$$x(t) = A_x \cdot ( 1 - {|t|}/{T_x}) $$



Please note:

  • The following abbreviations are used in the formulation of the questions:
$$y_1(t) = c_1 \cdot x(t), \hspace{0.5cm} y_2(t) = c_2 \cdot x^2(t).$$


Questions

1

A rectangular pulse  $x(t)$  with amplitude  $A_x$  and duration  $T_x$  is applied to the input. 
Which statements hold for the output pulse  $y(t)$?

The output pulse  $y(t)$  is triangular in shape.
The amplitudes at the input and output are the same  ⇒   $A_y = A_x$.
The pulse duration is not changed by the system  ⇒   $T_y = T_x$.

2

Compute the first two coefficients of the Taylor series.

$c_1 \ = \ $

$c_2 \ = \ $

$\ \rm 1/V$

3

Which distortion factor  $K$  is measured with the test signal  $x(t) = 1 \hspace{0.08cm} {\rm V} \cdot \cos(\omega_0 \cdot t)$ ?  That is:   $\underline{A_x = 1\hspace{0.08cm} \rm V}$.

$K \ = \ $

$\ \%$

4

Which distortion factor  $K$  is measured with the test signal  $x(t) = 3 \hspace{0.08cm} {\rm V} \cdot \cos(\omega_0 \cdot t)$ ?  That is:   $\underline{A_x = 3\hspace{0.08cm} \rm V}$.

$K \ = \ $

$\ \%$

5

Which output pulse  $y(t)$  arises as a result when the input pulse is triangular?  What are the signal values at  $ t = 0$  and  $ t = T_x/2$?

$y(t = 0) \ = \ $

$\ \rm V$
$y(t = T_x/2) \ = \ $

$\ \rm V$


Solution

(1)  Proposed solution 3 is the only correct one:

  • If the input pulse $x(t)$  is rectangular, then $x^2(t)$  is also a rectangle with height $A_x^2$  between  $0$  and  $T_x$,  outside zero.
  • The overall output signal $y(t)$  is thus also rectangular with the amplitude
$$A_y= c_1 \cdot A_x + c_2 \cdot A_x^2 .$$
  • The following holds for the pulse duration:   $T_y = T_x$.


(2)  The following system of linear equations can be specified with the first two sets of parameters:

$$c_1 \cdot 1\,{\rm V} + c_2 \cdot (1\,{\rm V})^2 = 0.55\,{\rm V},$$
$$c_1 \cdot 2\,{\rm V} + c_2 \cdot (2\,{\rm V})^2 = 1.20\,{\rm V}.\hspace{0.05cm}$$
  • The following is obtained by multiplying the first equation by  $-2$  and adding the two equations:
$$c_2 \cdot 2\,{\rm V}^2 = 0.1\,{\rm V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_2 \hspace{0.15cm}\underline{= 0.05\cdot{1/\rm V}}.$$
  • The linear coefficient is thus  $c_1 \hspace{0.15cm}\underline{= 0.5}.$
  • The third set of parameters can be used to verify the result:
$$c_1 \cdot 3\,{\rm V} + c_2 \cdot (3\,{\rm V})^2 = 0.5 \cdot 3\,{\rm V}+ 0.05 \ {1}/{\rm V}\cdot 9\,{\rm V}^2 = 1.95\,{\rm V}.$$


(3)  The specification of a distortion factor requires the use of a harmonic oscillation at the input.

  • If  $X_+(f) = 1 \ {\rm V} \cdot \delta (f - f_0)$  holds,  then the spectrum of the analytic signal at the output is:
$$ Y_{+}(f)={c_2}/{2}\cdot A_x^2 \cdot \delta(f) + c_1\cdot A_x \cdot \delta(f- f_0)+ {c_2}/{2}\cdot A_x^2 \cdot \delta(f- 2 f_0). $$
  • The Dirac function at  $f = 0$  follows from the trigonometric transformation  $\cos^2(\alpha) = 1/2 + 1/2 \cdot \cos(\alpha).$
  • With  $A_1 = c_1 \cdot A_x = 0.5 \ {\rm V} $  and  $A_2 = (c_2/2) \cdot A_x^2 = 0.025 \ {\rm V}^2 $  the following is thus obtained for the distortion factor:
$$K= \frac{A_2}{A_1}= \frac{c_2/2 \cdot A_x}{c_1 }= \frac{0.025}{0.5} \hspace{0.15cm}\underline{= 5 \%}.$$


(4)  According to the solution of the last subtask  $K$  is proportional to  $A_x$. Therefore, one now obtains  $K \hspace{0.15cm}\underline{= 15 \%}.$


(5)  Now the output signal is:

$$y(t)= c_1\cdot A_x \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right) +\hspace{0.1cm} {c_2}\cdot A_x^2 \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right)^2.$$
  • The following values occur at times $t = 0$  and  $t = T_x/2$:
$$y(t=0) = c_1\cdot A_x + {c_2}\cdot A_x^2 \hspace{0.15cm}\underline{= 1.95\,{\rm V}},$$
$$y(t=T_x/2) = c_1\cdot A_x \cdot {1}/{2} + \hspace{0.1cm}{c_2}\cdot A_x^2 \cdot {1}/{4}= 0.75\,{\rm V}+ 0.1125\,{\rm V} \hspace{0.15cm}\underline{ = 0.8625\,{\rm V}}.$$