Difference between revisions of "Linear and Time Invariant Systems/Some Results from Line Transmission Theory"

From LNTwww
Line 1: Line 1:
 +
 
   
 
   
 
{{Header
 
{{Header
Line 8: Line 9:
 
== # OVERVIEW OF THE FOURTH MAIN CHAPTER # ==
 
== # OVERVIEW OF THE FOURTH MAIN CHAPTER # ==
 
<br>
 
<br>
Ein Sonderfall kausaler und zeitinvarianter Systeme sind elektrische Leitungen. Hier muss aufgrund der Hilbert–Transformation stets von einem komplexwertigen Frequenzgang &nbsp;$H(f)$&nbsp; und stark unsymmetrischen Impulsantworten &nbsp;$h(t)$&nbsp; ausgegangen werden.  
+
A special case of causal and time-invariant systems are electrical cables. Here, due to the Hilbert transformation, a complex-valued frequency response &nbsp;$H(f)$&nbsp; and strongly unbalanced impulse responses &nbsp;$h(t)$&nbsp; must always be assumed.  
  
Das vierte Kapitel bringt eine zusammenfassende Darstellung leitungsgebundener Übertragungskanäle, im Einzelnen
+
The fourth chapter presents a summary of conducted transmission channels, specifically
 
 
*wichtige Ergebnisse und Beschreibungsgrößen der Leitungstheorie, insbesondere Leitungsbeläge, Übertragungsmaß, Dämpfungsmaß, Phasenmaß, Wellenwiderstand und die Betriebsdämpfung zur Berücksichtigung von Fehlanpassungen und Reflexionen,
 
*die Frequenzgänge und die Impulsantworten von Koaxialkabeln, bei denen aufgrund der guten Schirmung alle anderen Störungen gegenüber dem Thermischen Rauschen (gaußverteilt und weiß) vernachlässigbar sind, und
 
*die Beschreibung symmetrischer Kupferleitungen, die das wichtigste Übertragungsmedium im Zugangsnetz von Telekommunikationssystemen darstellen. Da viele Doppeladern in einem Kabel parallel laufen, kommt es aufgrund kapazitiver und induktiver Kopplungen zu Nebensprechen.
 
  
 +
*important results and descriptive quantities of Line Transmission Theory, in particular primary line parameters, complex propagation function per unit length, attenuation function per unit length, phase function per unit length, wave impedance, and the operating attenuation to take account of mismatches and reflections,
 +
*the frequency responses and impulse responses of coaxial cables, in which, due to good shielding, all other noise is negligible compared to thermal noise (Gaussian distributed and white), and
 +
*the description of symmetrical copper cables, which are the main transmission medium in the access network of telecommunication systems. Since many pairs run in parallel in a cable, crosstalk occurs due to capacitive and inductive couplings.
  
  
 
==Equivalent circuit diagram of a short transmission line section==
 
==Equivalent circuit diagram of a short transmission line section==
 
<br>
 
<br>
Zur Herleitung der Leitungsgleichungen wird zunächst ein sehr kurzer Leitungsabschnitt der Länge &nbsp;${\rm d}x$&nbsp; betrachtet, so dass sich die Werte für Spannung und Strom am Leitungsanfang &nbsp;$(U$&nbsp; bzw.&nbsp; $I$&nbsp; bei&nbsp; $x)$&nbsp; und Leitungsende &nbsp;$(U + {\rm d}U$&nbsp; sowie &nbsp;$I + {\rm d}I$&nbsp; bei &nbsp;$x + {\rm d}x)$&nbsp; nur geringfügig unterscheiden. Die Grafik zeigt das zugrundeliegende Modell.
+
To derive the line equations, first a very short line section of length &nbsp;${\rm d}x$&nbsp; is considered, so that the values for voltage and current at the beginning of the line &nbsp;$(U$&nbsp; resp. &nbsp; $I$&nbsp; at&nbsp; $x)$&nbsp; and end of the line &nbsp;$(U + {\rm d}U$&nbsp; and &nbsp;$I + {\rm d}I$&nbsp; at &nbsp;$x + {\rm d}x)$&nbsp; differ only slightly. The diagram shows the underlying model.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Oder anders ausgedrückt:}$&nbsp;  
+
$\text{Or in other words:}$&nbsp;  
 +
 
 +
Let the line length &nbsp;${\rm d}x$&nbsp; be very small compared to the wavelength &nbsp;$\lambda$&nbsp; of the electromagnetic wave propagating along the line, which results because
 +
*there is a magnetic field connected to the current,
 +
*the voltage between the conductors causes an electric field. }}
  
Die Leitungslänge &nbsp;${\rm d}x$&nbsp; sei sehr klein gegenüber der Wellenlänge &nbsp;$\lambda$&nbsp; der sich entlang der Leitung ausbreitenden elektromagnetischen Welle, die sich ergibt, da
 
*mit dem Strom ein magnetisches Feld verbunden ist,
 
*die Spannung zwischen den Leitern ein elektrisches Feld bewirkt. }}
 
  
 +
[[File:P_ID1792__LZI_T_4_1_S1_neu.png |right|frame| Equivalent circuit diagram of a short line section]]
 +
All infinitesimal "components" in the equivalent circuit sketched on the right are location-independent for homogeneous lines:
 +
*The inductance of the considered line section is &nbsp;$L\hspace{0.05cm}' - {\rm d}x$, where &nbsp;$L'$&nbsp; is called&nbsp; '''serial inductance per unit length'''&nbsp;.
 +
*Similarly, the&nbsp; '''parallel capacitance per unit length''' &nbsp;$C\hspace{0.05cm}'$&nbsp; is an infinitesimally small quantity which, similar to &nbsp;$L'$&nbsp;, depends only slightly on frequency.
 +
*The&nbsp; '''parallel conductance per unit length''' &nbsp;$G\hspace{0.05cm}'$&nbsp; takes into account the losses of the dielectric between the wires. It increases approximately proportionally with frequency.
 +
*By far the largest (negative) influence on signal transmission is the&nbsp; '''serial resistance per unit length''' &nbsp;$R\hspace{0.05cm}'$, which increases almost proportionally with the root of the frequency for high frequencies due to the so-called&nbsp; [[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Frequenzgang_eines_Koaxialkabels|Skin effect]]&nbsp;.
  
[[File:P_ID1792__LZI_T_4_1_S1_neu.png |right|frame| Ersatzschaltbild eines kurzen Leitungsabschnitts]]
 
Alle infinitesimalen „Bauelemente” im rechts skizzierten Ersatzschaltbild sind bei homogenen Leitungen ortsunabhängig:
 
*Die Induktivität des betrachteten Leitungsabschnitts beträgt &nbsp;$L\hspace{0.05cm}' · {\rm d}x$, wobei man &nbsp;$L'$&nbsp; als&nbsp; '''Induktivitätsbelag'''&nbsp; bezeichnet.
 
*Ebenso ist der&nbsp; '''Kapazitätsbelag''' &nbsp;$C\hspace{0.05cm}'$&nbsp; eine infinitesimal kleine Größe, der ebenso wie &nbsp;$L'$&nbsp; nur wenig von der Frequenz abhängt.
 
*Der&nbsp; '''Ableitungsbelag''' &nbsp;$G\hspace{0.05cm}'$&nbsp; berücksichtigt die Verluste des Dielektrikums zwischen den Drähten. Er nimmt etwa proportional mit der Frequenz zu.
 
*Den weitaus größten (negativen) Einfluss auf die Signalübertragung hat der&nbsp; '''Widerstandsbelag''' &nbsp;$R\hspace{0.05cm}'$, der für hohe Frequenzen aufgrund des so genannten&nbsp;  [[Digital_Signal_Transmission/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#Frequenzgang_eines_Koaxialkabels|Skineffekts]]&nbsp;  nahezu proportional mit der Wurzel der Frequenz ansteigt.
 
  
 +
From the mesh and node equations of the line section, &nbsp;$ω = 2πf$&nbsp; results in the two difference equations
 +
:$$ U = I \cdot (R\hspace{0.05cm}' + {\rm j} \cdot \omega L\hspace{0.05cm}') \cdot {\rm d}x + (U + {\rm d}U)\hspace{0.05cm},$$
 +
:$$ I = (U + {\rm d}U) \cdot (G\hspace{0.05cm}' + {\rm j} \cdot \omega C\hspace{0.05cm}') \cdot {\rm d}x + (I + {\rm d}I)\hspace{0.05cm}. $$
  
Aus den Maschen– und Knotengleichungen des Leitungsabschnitts ergeben sich mit &nbsp;$ω = 2πf$&nbsp; die beiden Differenzengleichungen
+
For very short line sections&nbsp; $($infinitesimally small &nbsp;${\rm d}x)$&nbsp; and neglecting the small second order quantities&nbsp; $($for example &nbsp;${\rm d}U - {\rm d}x)$&nbsp;, one can now form two differential quotients whose joint consideration leads to a second order linear differential equation:
:$$ U  =  I \cdot (R\hspace{0.05cm}' + {\rm j}  \cdot \omega  L\hspace{0.05cm}') \cdot {\rm d}x + (U + {\rm d}U)\hspace{0.05cm},$$
 
:$$ I  =  (U + {\rm d}U) \cdot (G\hspace{0.05cm}' + {\rm j}  \cdot \omega  C\hspace{0.05cm}') \cdot {\rm d}x + (I + {\rm d}I)\hspace{0.05cm}. $$
 
Für sehr kurze Leitungsabschnitte&nbsp; $($infinitesimal kleines &nbsp;${\rm d}x)$&nbsp; und bei Vernachlässigung der kleinen Größen zweiter Ordnung&nbsp; $($zum Beispiel &nbsp;${\rm d}U · {\rm d}x)$&nbsp; kann man nun zwei Differentialquotienten bilden, deren gemeinsame Betrachtung zu einer linearen Differentialgleichung zweiter Ordnung führt:
 
 
:$$\frac{ {\rm  d}U}{ {\rm  d}x}  =  - (R\hspace{0.05cm}' + {\rm j}  \cdot \omega  L\hspace{0.05cm}')  \cdot I,\hspace{0.5cm} \frac{ {\rm  d}I}{ {\rm  d}x}  =  - (G\hspace{0.05cm}' + {\rm j}  \cdot \omega  C\hspace{0.05cm}')
 
:$$\frac{ {\rm  d}U}{ {\rm  d}x}  =  - (R\hspace{0.05cm}' + {\rm j}  \cdot \omega  L\hspace{0.05cm}')  \cdot I,\hspace{0.5cm} \frac{ {\rm  d}I}{ {\rm  d}x}  =  - (G\hspace{0.05cm}' + {\rm j}  \cdot \omega  C\hspace{0.05cm}')
 
  \cdot U\hspace{0.3cm}
 
  \cdot U\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}\frac{{\rm  d}^2U}{{\rm  d}x^2}  =  (R\hspace{0.05cm}' + {\rm j}  \cdot \omega  L\hspace{0.05cm}')  \cdot  (G\hspace{0.05cm}' + {\rm j}  \cdot \omega  C\hspace{0.05cm}')
 
\Rightarrow \hspace{0.3cm}\frac{{\rm  d}^2U}{{\rm  d}x^2}  =  (R\hspace{0.05cm}' + {\rm j}  \cdot \omega  L\hspace{0.05cm}')  \cdot  (G\hspace{0.05cm}' + {\rm j}  \cdot \omega  C\hspace{0.05cm}')
 
  \cdot U\hspace{0.05cm}.$$
 
  \cdot U\hspace{0.05cm}.$$
Die Lösung dieser Differentialgleichung lautet:
+
The solution of this differential equation is:
 
:$$U(x)  =  U_{\rightarrow}(x=0) \cdot  {\rm e}^{-\hspace{0.02cm}\gamma \hspace{0.03cm} \cdot \hspace{0.05cm}x}  + U_{\leftarrow}(x=0) \cdot  {\rm e}^{\gamma \hspace{0.03cm} \cdot \hspace{0.05cm}x}  \hspace{0.05cm}.$$
 
:$$U(x)  =  U_{\rightarrow}(x=0) \cdot  {\rm e}^{-\hspace{0.02cm}\gamma \hspace{0.03cm} \cdot \hspace{0.05cm}x}  + U_{\leftarrow}(x=0) \cdot  {\rm e}^{\gamma \hspace{0.03cm} \cdot \hspace{0.05cm}x}  \hspace{0.05cm}.$$
  
Der Spannungsverlauf hängt außer vom Ort &nbsp;$x$&nbsp; auch von der Frequenz &nbsp;$f$&nbsp; ab, was in der hier angegebenen Gleichung nicht explizit vermerkt ist.  
+
The voltage curve depends not only on the location &nbsp;$x$&nbsp; but also on the frequency &nbsp;$f$&nbsp; which is not explicitly noted in the equation given here.  
  
Formelmäßig erfasst wird diese Frequenzabhängigkeit durch das&nbsp; '''Übertragungsmaß'''
+
Formula-wise, this frequency dependence is captured by the&nbsp; '''complex propagation function per unit length'''
:$$\gamma(f) = \sqrt{(R\hspace{0.05cm}' + {\rm j}   \cdot 2\pi f \cdot L\hspace{0.05cm}') \cdot (G\hspace{0.05cm}' + {\rm j} \cdot 2\pi f \cdot   C\hspace{0.05cm}')} = \alpha (f) + {\rm j}  \cdot \beta (f)\hspace{0.05cm}.$$
+
:$$\gamma(f) = \sqrt{(R\hspace{0.05cm}' + {\rm j} \cdot 2\pi f \cdot L\hspace{0.05cm}') \cdot (G\hspace{0.05cm}' + {\rm j} \cdot 2\pi f \cdot C\hspace{0.05cm}')} = \alpha (f) + {\rm j}  \cdot \beta (f)\hspace{0.05cm}.$$
  
Die beiden letzten Gleichungen beschreiben gemeinsam den Spannungsverlauf entlang der Leitung, der sich aus der Überlagerung einer in positiver &nbsp;$x$–Richtung laufenden Welle &nbsp;$U_→(x)$&nbsp; und der Welle &nbsp;$U_←(x)$&nbsp; in Gegenrichtung zusammensetzt.  
+
The last two equations together describe the voltage curve along the line, which results from the superposition of a wave running in the positive &nbsp;$x$ direction &nbsp;$U_→(x)$&nbsp; and the wave &nbsp;$U_←(x)$&nbsp; in the opposite direction.
  
*Der Realteil &nbsp;$α(f)$&nbsp; des komplexen Übertragungsmaßes &nbsp;$γ(f)$&nbsp; dämpft die sich ausbreitende Welle und wird daher&nbsp; '''Dämpfungsmaß'''&nbsp; genannt.&nbsp; Diese stets gerade Funktion &nbsp; &rArr; &nbsp; $α(–f) = α(f)$&nbsp; ergibt sich aus obiger &nbsp;$γ(f)$–Gleichung wie folgt:
+
*The real part &nbsp;$α(f)$&nbsp; of the complex propagation function per unit length &nbsp;$γ(f)$&nbsp; attenuates the propagating wave and is therefore called&nbsp; '''attenuation function per unit length'''&nbsp; This always even function &nbsp; &rArr; &nbsp; $α(-f) = α(f)$&nbsp; results from the above &nbsp;$γ(f)$ equation as follows:
 
:$$\alpha(f)  =  \sqrt{{1}/{2}\cdot \left (R\hspace{0.05cm}' \cdot G\hspace{0.05cm}' - \omega^2 \cdot L\hspace{0.05cm}'  \cdot C\hspace{0.05cm}'\right)+  {1}/{2} \cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.05cm}'\hspace{0.05cm}^2)}} \bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
 
:$$\alpha(f)  =  \sqrt{{1}/{2}\cdot \left (R\hspace{0.05cm}' \cdot G\hspace{0.05cm}' - \omega^2 \cdot L\hspace{0.05cm}'  \cdot C\hspace{0.05cm}'\right)+  {1}/{2} \cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.05cm}'\hspace{0.05cm}^2)}} \bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
*Der ungerade Imaginärteil  &nbsp; &rArr; &nbsp; $β(- f) = - β(f)$&nbsp; heißt&nbsp; '''Phasenmaß'''&nbsp; und beschreibt die Phasendrehung der Welle entlang der Leitung:
+
*The odd imaginary part &nbsp; &rArr; &nbsp; $β(- f) = - β(f)$&nbsp; is called&nbsp; '''phase function per unit length'''&nbsp; and describes the phase rotation of the wave along the line:
 
:$$\beta(f)  =  \sqrt{ {1}/{2}\cdot \left (-R\hspace{0.05cm}' \cdot G\hspace{0.05cm}' + \omega^2 \cdot L\hspace{0.05cm}'  \cdot C\hspace{0.05cm}'\right)+  {1}/{2} \cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.05cm}'\hspace{0.05cm}^2)}} \bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
 
:$$\beta(f)  =  \sqrt{ {1}/{2}\cdot \left (-R\hspace{0.05cm}' \cdot G\hspace{0.05cm}' + \omega^2 \cdot L\hspace{0.05cm}'  \cdot C\hspace{0.05cm}'\right)+  {1}/{2} \cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.05cm}'\hspace{0.05cm}^2)}} \bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
  
==Wellenwiderstand und Reflexionen==
+
==Wave impedance and reflections==
 
<br>
 
<br>
Wir betrachten eine homogene Leitung der Länge &nbsp;$l$, an dessen Eingang eine harmonische Schwingung &nbsp;$U_0(f)$&nbsp; mit der Frequenz $f$ anliegt.  
+
We consider a homogeneous line of length &nbsp;$l$ with a harmonic oscillation &nbsp;$U_0(f)$&nbsp; of frequency $f$ applied to its input.  
*Der Sender besitzt den Innenwiderstand &nbsp;$Z_1$, der Empfänger den Eingangswiderstand &nbsp;$Z_2$ (dieser ist gleichzeitig der Abschlusswiderstand der Leitung).  
+
*The transmitter has the internal resistance &nbsp;$Z_1$, the receiver has the input impedance &nbsp;$Z_2$ (this is also the terminating resistor of the line).  
*Wir gehen vereinfachend davon aus, dass &nbsp;$Z_1$&nbsp; und &nbsp;$Z_2$&nbsp; reelle Widerstände sind.
+
*We assume for simplicity that &nbsp;$Z_1$&nbsp; and &nbsp;$Z_2$&nbsp; are real resistors.
  
  
[[File:P_ID1793__LZI_T_4_1_S2a_neu.png |right|frame| Leitung der Länge &nbsp;$l$&nbsp; mit Beschaltung]]
+
[[File:P_ID1793__LZI_T_4_1_S2a_neu.png |right|frame| Line of length &nbsp;$l$&nbsp; with wiring]]
  
Strom und Spannung von hinlaufender und rücklaufender Welle sind jeweils über den Wellenwiderstand &nbsp;$Z_{\rm W}(f)$&nbsp; miteinander verknüpft:
+
The current and voltage of the outgoing and return waves are linked via the wave impedance &nbsp;$Z_{\rm W}(f)$&nbsp;:
 
:$$I_{\rightarrow}(x, f) = \frac{U_{\rightarrow}(x, f)}{Z_{\rm W}(f)}\hspace{0.05cm}, $$
 
:$$I_{\rightarrow}(x, f) = \frac{U_{\rightarrow}(x, f)}{Z_{\rm W}(f)}\hspace{0.05cm}, $$
 
:$$ I_{\leftarrow}(x, f) = \frac{U_{\leftarrow}(x, f)}{Z_{\rm W}(f)}\hspace{0.05cm}.$$
 
:$$ I_{\leftarrow}(x, f) = \frac{U_{\leftarrow}(x, f)}{Z_{\rm W}(f)}\hspace{0.05cm}.$$
Für den Wellenwiderstand gilt dabei:
+
The following applies to the wave impedance:
 
:$$Z_{\rm W}(f)  =  \sqrt{\frac {R\hspace{0.05cm}' + {\rm j}  \cdot \omega  L\hspace{0.05cm}'}{G\hspace{0.05cm}' + {\rm j}  \cdot \omega  C\hspace{0.05cm}'}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
 
:$$Z_{\rm W}(f)  =  \sqrt{\frac {R\hspace{0.05cm}' + {\rm j}  \cdot \omega  L\hspace{0.05cm}'}{G\hspace{0.05cm}' + {\rm j}  \cdot \omega  C\hspace{0.05cm}'}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
  
*Die in positiver &nbsp;$x$–Richtung laufende Welle wird durch die Wechselspannungsquelle am Leitungsanfang&nbsp; $($also bei &nbsp;$x = 0)$&nbsp; erzeugt.  
+
*The wave traveling in the positive &nbsp;$x$ direction is generated by the AC voltage source at the beginning of the line&nbsp; $($so at &nbsp;$x = 0)$&nbsp;.  
*Die rücklaufende Welle entsteht erst durch Reflektion der Vorwärtswelle am Leitungsende &nbsp;$(x = l)$:
+
*The backward wave is only generated by the reflection of the forward wave at the end of the line &nbsp;$(x = l)$:
 
:$$U_{\leftarrow}(x = l) = {U_{\rightarrow}(x = l)}\cdot \frac{Z_2 -Z_{\rm W}(f)}{Z_2 + Z_{\rm W}(f)}\hspace{0.05cm}.$$
 
:$$U_{\leftarrow}(x = l) = {U_{\rightarrow}(x = l)}\cdot \frac{Z_2 -Z_{\rm W}(f)}{Z_2 + Z_{\rm W}(f)}\hspace{0.05cm}.$$
* An dieser Stelle wird durch den Abschlusswiderstand &nbsp;$Z_2$&nbsp; ein festes Verhältnis zwischen Spannung und Strom erzwungen:  
+
*At this point, the terminating resistor &nbsp;$Z_2$&nbsp; forces a fixed relationship between the voltage and the current:  
 
:$$U_2(f) = Z_2 · I_2(f).$$  
 
:$$U_2(f) = Z_2 · I_2(f).$$  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;  
+
$\text{Conclusion:}$&nbsp;  
Man erkennt aus obiger Gleichung, dass nur für &nbsp;$Z_2 = Z_{\rm W}(f)$&nbsp; keine rücklaufende Welle entsteht.
+
It can be seen from the above equation that there is no returning wave only for &nbsp;$Z_2 = Z_{\rm W}(f)$&nbsp;.
* Eine solche Widerstandanpassung wird in der Nachrichtentechnik stets angestrebt.  
+
*Such resistance matching is always sought in communications engineering.  
*Diese Anpassung ist wegen der Frequenzabhängigkeit  &nbsp;$Z_{\rm W}(f)$&nbsp; bei festem Abschluss &nbsp;$Z_2$&nbsp; nicht über einen größeren Frequenzbereich möglich. }}
+
*This matching is not possible over a larger frequency range at fixed termination &nbsp;$Z_2$&nbsp; due to the frequency dependence &nbsp;$Z_{\rm W}(f)$&nbsp;. }}
  
  
Nachfolgend werden diese Gleichungen an einem Beispiel erläutert.
+
In the following, these equations are explained with an example.
  
[[File:P_ID2844__LZI_T_4_1_S2c_neu.png |right|frame| Modell zur Beschreibung der Wellenreflexion]]
+
[[File:P_ID2844__LZI_T_4_1_S2c_neu.png |right|frame| Model to describe the wave reflection]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp;  
+
$\text{Example 1:}$&nbsp;  
Wir betrachten den rechts dargestellten Fall:  
+
We consider the case shown on the right:  
*Der Abschlusswiderstand &nbsp;$Z_2$&nbsp; der Leitung&nbsp; (gleichzeitig der Eingangswiderstand des nachfolgenden Empfängers)&nbsp; unterscheidet sich vom Wellenwiderstand &nbsp;$Z_{\rm W}(f)$&nbsp;.  
+
*The terminating resistor &nbsp;$Z_2$&nbsp; of the line&nbsp; (at the same time the input impedance of the following receiver)&nbsp; differs from the wave impedance &nbsp;$Z_{\rm W}(f)$&nbsp;.
*Die Fehlanpassung am Leitungsanfang lassen wir außer Betracht.
+
*We disregard the mismatch at the beginning of the line.
  
  
Die untere  Grafik aus [Han17]<ref name='Han17'>Hanik, N.: ''Leitungsgebundene Übertragungstechnik.'' Vorlesungsmanuskript. Lehrstuhl für Nachrichtentechnik, TU München, 2017.</ref> soll deutlich machen, wie sich die resultierende Welle &nbsp;$U(x)$&nbsp; – als durchgezogene Kurve dargestellt – &nbsp;von der hinlaufenden Welle &nbsp;$U_→(x)$&nbsp; unterscheidet.
+
The diagram below from [Han17]<ref name='Han17'>Hanik, N.: ''Leitungsgebundene Übertragungstechnik.'' Vorlesungsmanuskript. Lehrstuhl für Nachrichtentechnik, TU München, 2017.</ref> is intended to make clear how the resulting wave &nbsp;$U(x)$&nbsp; - shown as a solid curve - &nbsp;differs from the outgoing wave &nbsp;$U_→(x)$&nbsp;.
  
[[File:P_ID2840__LZI_T_4_1_S2b_V2.png |left|frame| Hinlaufende, rücklaufende und resultierende Welle]]
+
[[File:P_ID2840__LZI_T_4_1_S2b_V2.png |left|frame| Incoming, returning and resulting wave]]
  
  
Zur Erläuterung:
+
To clarify:
*Rot markiert ist die hinlaufende Welle &nbsp;$U_→(x)$, die ausgehend vom Sender  &nbsp; &rArr; &nbsp; $U_→(x = 0)$&nbsp; sich längs der Leitung abschwächt.&nbsp; $U_→(x = l)$&nbsp; bezeichnet die Welle am Leitungsende.  
+
*Marked in red is the outgoing wave &nbsp;$U_→(x)$, which, starting from the transmitter &nbsp; &rArr; &nbsp; $U_→(x = 0)$&nbsp;, attenuates along the line.&nbsp; $U_→(x = l)$&nbsp; denotes the wave at the end of the line.  
*Aufgrund der Fehlanpassung &nbsp; &rArr; &nbsp; Reflexion kommt es zur rücklaufenden Welle &nbsp;$U_←(x)$&nbsp; vom Leitungsende zum Sender, in der Grafik grün markiert.&nbsp; Für diese gilt am Leitungsende &nbsp;$(x = l)$:
+
*Due to the mismatch &nbsp; &rArr; &nbsp; reflection results in the returning wave &nbsp;$U_←(x)$&nbsp; from the end of the line to the transmitter, marked in green in the diagram.&nbsp; For this the following applies at the end of the line &nbsp;$(x = l)$:
 
::$$U_{\leftarrow}(x = l) = {U_{\rightarrow}(x = l)}\cdot \frac{Z_2 -Z_{\rm W}(f)}{Z_2 + Z_{\rm W}(f)}\hspace{0.05cm}.$$
 
::$$U_{\leftarrow}(x = l) = {U_{\rightarrow}(x = l)}\cdot \frac{Z_2 -Z_{\rm W}(f)}{Z_2 + Z_{\rm W}(f)}\hspace{0.05cm}.$$
*Die resultierende (blaue) Welle &nbsp;$U(x)$&nbsp; ergibt sich aus der phasenrichtigen Addition dieser beiden für sich allein nicht sichtbaren Anteile.  
+
*The resulting (blue) wave &nbsp;$U(x)$&nbsp; results from the in-phase addition of these two parts which are not visible by themselves.  
  
*Mit zunehmendem &nbsp;$x$&nbsp; wird &nbsp;$U(x)$&nbsp; ebenso wie &nbsp;$U_→(x)$&nbsp; wegen der Leitungsdämpfung kleiner. Auch die rücklaufende Welle &nbsp;$U_←(x)$&nbsp; wird mit zunehmender Länge&nbsp; (von rechts nach links)&nbsp; gedämpft.}}
+
*As &nbsp;$x$&nbsp; increases, &nbsp;$U(x)$&nbsp; becomes smaller, as does &nbsp;$U_→(x)$&nbsp; due to line attenuation. Also the returning wave &nbsp;$U_←(x)$&nbsp; is attenuated with increasing length&nbsp; (from right to left)&nbsp; }}
  
==Verlustlose und verlustarme Leitungen==
+
==Lossless and low-loss lines==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Für sehr kurze Koaxialleitungen, wie sie für Verbindungen von Hochfrequenz–Messgeräten im Labor verwendet werden, kann von &nbsp;$R\hspace{0.05cm}' \approx 0$ und $G\hspace{0.05cm}' \approx 0$&nbsp; ausgegangen werden. Man spricht dann von einer&nbsp; '''verlustlosen Leitung'''. &nbsp;Für eine solche vereinfachen sich die obigen Gleichungen:
+
$\text{Definition:}$&nbsp; For very short coaxial lines, such as those used for connections of high-frequency measuring instruments in the laboratory, from &nbsp;$R\hspace{0.05cm}' \approx 0$ and $G\hspace{0.05cm}' \approx 0$&nbsp; can be assumed. One then speaks of a&nbsp; '''lossless line'''. &nbsp;For such a one, the above equations simplify:
*Dämpfungsmaß &nbsp; &rArr; &nbsp;  Dämpfungsfunktion&nbsp; $a(f)$&nbsp; pro Länge &nbsp;$l$:
+
*Attenuation function per unit length &nbsp; &rArr; &nbsp;  Attenuation function&nbsp; $a(f)$&nbsp; per length &nbsp;$l$:
 
:$$\alpha(f)  = a(f)/l = 0\hspace{0.05cm}.$$
 
:$$\alpha(f)  = a(f)/l = 0\hspace{0.05cm}.$$
*Phasenmaß &nbsp; &rArr; &nbsp;  Phasenfunktion&nbsp; $b(f)$&nbsp; pro Länge &nbsp;$l$:
+
*Phase function per unit length &nbsp; &rArr; &nbsp;  Phasen function&nbsp; $b(f)$&nbsp; per length &nbsp;$l$:
 
:$$\beta(f)  = b(f)/l =  2\pi \cdot f \cdot \sqrt{L\hspace{0.05cm}' \cdot C\hspace{0.05cm}' }\hspace{0.05cm}, $$
 
:$$\beta(f)  = b(f)/l =  2\pi \cdot f \cdot \sqrt{L\hspace{0.05cm}' \cdot C\hspace{0.05cm}' }\hspace{0.05cm}, $$
*Wellenwiderstand:
+
*Wave impedance:
 
:$$Z_{\rm W}(f) = \sqrt{ {L\hspace{0.05cm}'}/{ C\hspace{0.05cm}'} }\hspace{0.05cm}.$$}}
 
:$$Z_{\rm W}(f) = \sqrt{ {L\hspace{0.05cm}'}/{ C\hspace{0.05cm}'} }\hspace{0.05cm}.$$}}
  
  
Sind &nbsp;$L\hspace{0.05cm}'$&nbsp; und &nbsp;$C\hspace{0.08cm}'$&nbsp; im betrachteten Frequenzbereich konstant, so ist der (reelle) Wellenwiderstand &nbsp;$Z_{\rm W}(f)=Z_{\rm W}$&nbsp; ebenfalls frequenzunabhängig und das Phasenmaß &nbsp;$β(f)$&nbsp; proportional zur Frequenz.  
+
If &nbsp;$L\hspace{0.05cm}'$&nbsp; and &nbsp;$C\hspace{0.08cm}'$&nbsp; are constant in the considered frequency range, the (real) wave impedance &nbsp;$Z_{\rm W}(f)=Z_{\rm W}$&nbsp; is also frequency independent and the phase function per unit length &nbsp;$β(f)$&nbsp; is proportional to the frequency.
*Das bedeutet, dass eine verlustlose Leitung stets verzerrungsfrei ist.  
+
*This means that a lossless line is always free of distortion.  
*Das Ausgangssignal weist gegenüber dem Eingangssignal lediglich eine Laufzeit auf.  
+
*The output signal has only one transit time compared to the input signal.  
*Üblich sind Wellenwiderstände von &nbsp;$Z_{\rm W} = 50 \ \rm Ω$, &nbsp;$Z_{\rm W} = 75 \ \rm Ω$ und &nbsp;$Z_{\rm W} = 150 \ \rm Ω$.  
+
*Common wave impedances are &nbsp;$Z_{\rm W} = 50 \ \rm Ω$, &nbsp;$Z_{\rm W} = 75 \ \rm Ω$ and &nbsp;$Z_{\rm W} = 150 \ \rm Ω$.  
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Man spricht von einer&nbsp; '''verlustarmen Leitung''', wenn die Leitung etwas länger ist, aber noch nicht als lang bezeichnet werden kann. }}  
+
One speaks of a&nbsp; '''low-loss line''' when the line is somewhat longer, but cannot yet be called long. }}  
  
  
Die angegebene Formel für das Dämpfungsmaß &nbsp;$\alpha(f)$&nbsp; soll nun für den nicht ganz der Wirklichkeit entsprechenden Fall konstanter Leitungsbeläge ausgewertet werden.  
+
The given formula for the attenuation function per unit length &nbsp;$\alpha(f)$&nbsp; is now to be evaluated for the case of constant primary line parameters, which does not quite correspond to reality.  
*Oberhalb einer&nbsp; '''charakteristischen Frequenz''' &nbsp;$f_∗$, die von &nbsp;$R\hspace{0.05cm}', \ L\hspace{0.05cm}', \ G\hspace{0.08cm}'$&nbsp; und &nbsp;$C\hspace{0.08cm}'$ abhängt, kann &nbsp;$R\hspace{0.05cm}'$&nbsp; als sehr klein gegenüber &nbsp;$ωL\hspace{0.05cm}'$&nbsp; und $G\hspace{0.05cm}'$&nbsp; als sehr klein gegenüber &nbsp;$ωC\hspace{0.08cm}'$&nbsp; angenommen werden. Damit ergibt sich die Näherungsformel, die häufig als&nbsp; '''schwache Dämpfung'''&nbsp; bezeichnet wird:  
+
*Above a&nbsp; '''characteristic frequency''' &nbsp;$f_∗$ that depends on &nbsp;$R\hspace{0.05cm}', \ L\hspace{0.05cm}', \ G\hspace{0.08cm}'$&nbsp; and &nbsp;$C\hspace{0.08cm}'$, &nbsp;$R\hspace{0.05cm}'$&nbsp; can be assumed to be very small compared to &nbsp;$ωL\hspace{0.05cm}'$&nbsp; and $G\hspace{0.05cm}'$&nbsp; can be assumed to be very small compared to &nbsp;$ωC\hspace{0.08cm}'$&nbsp;. This gives the approximate formula often referred to as&nbsp; '''weak attenuation'''&nbsp;:
 
:$$\alpha_{_{ {\rm I} } }(f)  = {1}/{2} \cdot \left [R\hspace{0.05cm}' \cdot \sqrt{{C\hspace{0.05cm}'}/{ L\hspace{0.05cm}'} } + G\hspace{0.08cm}' \cdot \sqrt{{L\hspace{0.05cm}'}/{ C\hspace{0.08cm}'} }\right ] \hspace{0.05cm}.$$
 
:$$\alpha_{_{ {\rm I} } }(f)  = {1}/{2} \cdot \left [R\hspace{0.05cm}' \cdot \sqrt{{C\hspace{0.05cm}'}/{ L\hspace{0.05cm}'} } + G\hspace{0.08cm}' \cdot \sqrt{{L\hspace{0.05cm}'}/{ C\hspace{0.08cm}'} }\right ] \hspace{0.05cm}.$$
  
*Für kleine Frequenzen &nbsp;$(f < f_∗)$&nbsp; ist dagegen &nbsp;$R\hspace{0.05cm}'$&nbsp; sehr viel größer als &nbsp;$ωL\hspace{0.05cm}'$&nbsp; und &nbsp;$G\hspace{0.08cm}'$&nbsp; sehr viel größer als &nbsp;$ ωC\hspace{0.08cm}'$&nbsp; zu berücksichtigen und man erhält eine zweite obere Schranke, die man in der Literatur oft als&nbsp; '''starke Dämpfung'''&nbsp; bezeichnet:
+
*For small frequencies &nbsp;$(f < f_∗)$&nbsp; on the other hand, &nbsp;$R\hspace{0.05cm}'$&nbsp; is much larger than &nbsp;$ωL\hspace{0.05cm}'$&nbsp; and &nbsp;$G\hspace{0.08cm}'$&nbsp; much larger than &nbsp;$ ωC\hspace{0.08cm}'$&nbsp; and a second upper bound is obtained, often referred to in literature as&nbsp; '''strong attenuation'''&nbsp;:
[[File:P_ID1795__LZI_T_4_1_S3_kleiner_neu.png |frame| Dämpfungsmaß &nbsp;$α(f)$&nbsp; und Schranken | rechts]]
+
[[File:P_ID1795__LZI_T_4_1_S3_kleiner_neu.png |frame| Dämpfungsmaß &nbsp;$α(f)$&nbsp; und Schranken | right]]
 
:$$\alpha_{_{ {\rm II} } }(f)  =  \sqrt{ 1/2 \cdot \omega  \cdot {R\hspace{0.05cm}' \cdot C\hspace{0.08cm}'} }\hspace{0.1cm} \bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}\hspace{0.05cm}.$$
 
:$$\alpha_{_{ {\rm II} } }(f)  =  \sqrt{ 1/2 \cdot \omega  \cdot {R\hspace{0.05cm}' \cdot C\hspace{0.08cm}'} }\hspace{0.1cm} \bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}\hspace{0.05cm}.$$
  
Die Grafik zeigt das Dämpfungsmaß &nbsp;$α(f)$&nbsp; bei konstanten Leitungsbelägen nach der exakten&nbsp; (aber komplizierteren)&nbsp; Formel und die beiden Schranken &nbsp;$α_{\rm I}(f)$&nbsp; und &nbsp;$α_{\rm II}(f)$.
+
The diagram shows the attenuation function per unit length &nbsp;$α(f)$&nbsp; at constant primary line parameters according to the exact&nbsp; (but more complicated)&nbsp; formula and the two bounds &nbsp;$α_{\rm I}(f)$&nbsp; and &nbsp;$α_{\rm II}(f)$.
  
Man erkennt aus dieser Darstellung:  
+
One recognizes from this representation:  
*Sowohl &nbsp;$α_{\rm I}(f)$&nbsp; als auch &nbsp;$α_{\rm II}(f)$&nbsp; sind obere Schranken für &nbsp;$α(f)$.  
+
*Both &nbsp;$α_{\rm I}(f)$&nbsp; and &nbsp;$α_{\rm II}(f)$&nbsp; are upper bounds for &nbsp;$α(f)$.  
*Die charakteristische Frequenz &nbsp;$f_∗$&nbsp; ist der Schnittpunkt von &nbsp;$α_{\rm I}(f)$&nbsp; und &nbsp;$α_{\rm II}(f)$.  
+
*The characteristic frequency &nbsp;$f_∗$&nbsp; is the intersection of &nbsp;$α_{\rm I}(f)$&nbsp; and &nbsp;$α_{\rm II}(f)$.  
*Für &nbsp;$f \gg f_∗$&nbsp; gilt &nbsp;$α(f) ≈ α_{\rm I}(f)$,&nbsp; für &nbsp;$f \ll f_∗$&nbsp; dagegen &nbsp;$α(f) ≈ α_{\rm II}(f)$.
+
*For &nbsp;$f \gg f_∗$&nbsp; holds &nbsp;$α(f) ≈ α_{\rm I}(f)$,&nbsp; whereas for &nbsp;$f \ll f_∗$&nbsp; &nbsp;$α(f) ≈ α_{\rm II}(f)$.
 
<br clear=all>
 
<br clear=all>
==Einfluss von Reflexionen – Betriebsdämpfung==
+
==Influence of reflections - operating attenuation==
 
<br>
 
<br>
Die Wahl des Abschlusswiderstandes &nbsp;$Z_2(f) = Z_{\rm W}(f)$&nbsp; verhindert die Entstehung einer reflektierten Welle am Leitungsende.&nbsp; Eine exakte Anpassung dieser Widerstände ist aber in der Praxis meist nur in einem sehr eingeschränkten Frequenzbereich möglich, zum Beispiel
+
The choice of the terminating resistor &nbsp;$Z_2(f) = Z_{\rm W}(f)$&nbsp; prevents the generation of a reflected wave at the end of the line.&nbsp; In practice, however, an exact matching of these resistors is usually possible only in a very limited frequency range, for example
*wegen der komplizierten Frequenzabhängigkeit des Wellenwiderstandes,  
+
*due to the complicated frequency dependence of the wave impedance,  
*bei Kabeln unterschiedlicher Bauform entlang einer Verbindung,  
+
*with cables of different designs along a connection,  
*bei Berücksichtigung fertigungsbedingter Toleranzen.  
+
*when taking into account manufacturing tolerances.  
  
  
Daher werden in realen Systemen der Innenwiderstand &nbsp;$R_1$&nbsp; der Quelle und der Abschlusswiderstand &nbsp;$R_2$&nbsp; meist  reell und konstant gewählt.&nbsp; Zum Beispiel wurde bei&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|ISDN]]&nbsp; (Integrated Services Digital Network)&nbsp; $R_1 = R_2 = 150 \ \rm Ω$&nbsp; festgelegt.
+
Therefore, in real systems, the internal resistance &nbsp;$R_1$&nbsp; of the source and the terminating resistance &nbsp;$R_2$&nbsp; are usually chosen to be real and constant.&nbsp; For example, in&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_ISDN|ISDN]]&nbsp; (Integrated Services Digital Network)&nbsp; $R_1 = R_2 = 150 \ \rm Ω$&nbsp; has been set.
  
[[File:P_ID1796__LZI_T_4_1_S4_neu.png |center|frame| Leitung der Länge&nbsp; $l$&nbsp; mit Ohmschen Abschlüssen]]
+
[[File:P_ID1796__LZI_T_4_1_S4_neu.png |center|frame|Line of length&nbsp; $l$&nbsp; with ohmic terminations]]
  
Diese schaltungstechnische Vereinfachung hat folgende Auswirkungen:  
+
This circuit simplification has the following effects:
*Der Eingangswiderstand&nbsp; $Z_{\rm E}(f)$&nbsp; der Leitung aus Sicht der Quelle hängt vom Übertragungsmaß &nbsp;$γ(f)$, der Leitungslänge &nbsp;$l$, dem Wellenwiderstand &nbsp;$Z_{\rm W}(f)$&nbsp; sowie dem Abschlusswiderstand &nbsp;$R_2$&nbsp; ab:
+
*The input impedance&nbsp; $Z_{\rm E}(f)$&nbsp; of the line as seen from the source depends on the complex propagation function per unit length &nbsp;$γ(f)$, the line length &nbsp;$l$, the wave impedance &nbsp;$Z_{\rm W}(f)$&nbsp; and the terminating resistance &nbsp;$R_2$&nbsp;:
 
:$$Z_{\rm E}(f)  =  Z_{\rm W}(f)\cdot \frac {R_2 + Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}
 
:$$Z_{\rm E}(f)  =  Z_{\rm W}(f)\cdot \frac {R_2 + Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}
 
  {Z_{\rm W}(f)+ R_2 \cdot {\rm tanh}(\gamma(f) \cdot l)} \hspace{0.05cm}, \hspace{0.5cm}
 
  {Z_{\rm W}(f)+ R_2 \cdot {\rm tanh}(\gamma(f) \cdot l)} \hspace{0.05cm}, \hspace{0.5cm}
{\rm mit}\hspace{0.5cm}{\rm tanh}(x)  =  \frac {{\rm sinh}(x)}{{\rm cosh}(x)} = \frac {{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}}\hspace{0.05cm}, \hspace{0.3cm}x \in {\cal C} \hspace{0.05cm}.$$
+
{\rm with}\hspace{0.5cm}{\rm tanh}(x)  =  \frac {{\rm sinh}(x)}{{\rm cosh}(x)} = \frac {{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}}\hspace{0.05cm}, \hspace{0.3cm}x \in {\cal C} \hspace{0.05cm}.$$
*Durch diese schaltungsbedingte Vereinfachung &nbsp; &rArr; &nbsp; $Z_{\rm 2}(f) = R_2$&nbsp; kommt es zu Reflexionen am Leitungsende. Diese reduzieren die am Empfänger verfügbare Leistung und erhöhen so die Leitungsdämpfung.  
+
*This circuit-related simplification &nbsp; &rArr; &nbsp; $Z_{\rm 2}(f) = R_2$&nbsp; results in reflections at the end of the line. These reduce the power available at the receiver and thus increase the line attenuation.  
*Zur Bewertung eines solchen fehlangepassten Systems wurde die&nbsp; '''Betriebsdämpfung'''&nbsp; ("Dämpfung im Betrieb") wie folgt definiert:
+
*For the evaluation of such a mismatched system, the&nbsp; '''operating attenuation'''&nbsp; ("attenuation in operation") has been defined as follows:
 
:$${ a}_{\rm B}(f) \hspace{0.15cm}{\rm in} \hspace{0.15cm}{\rm Neper}\hspace{0.15cm}{\rm (Np)} = {\rm ln}\hspace{0.1cm}\frac {|U_0(f)|}{2 \cdot |U_2(f)|} \cdot \sqrt{{R_2}/{R_1}}  
 
:$${ a}_{\rm B}(f) \hspace{0.15cm}{\rm in} \hspace{0.15cm}{\rm Neper}\hspace{0.15cm}{\rm (Np)} = {\rm ln}\hspace{0.1cm}\frac {|U_0(f)|}{2 \cdot |U_2(f)|} \cdot \sqrt{{R_2}/{R_1}}  
 
=  \alpha (f ) \cdot l + {\rm ln}\hspace{0.1cm}|q_1(f)| + {\rm ln}\hspace{0.1cm}|q_2(f)| +  {\rm ln}\hspace{0.1cm}|1 - r_1(f) \cdot r_2(f) \cdot {\rm e}^{-\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l}| \hspace{0.05cm}.$$
 
=  \alpha (f ) \cdot l + {\rm ln}\hspace{0.1cm}|q_1(f)| + {\rm ln}\hspace{0.1cm}|q_2(f)| +  {\rm ln}\hspace{0.1cm}|1 - r_1(f) \cdot r_2(f) \cdot {\rm e}^{-\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l}| \hspace{0.05cm}.$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;  
+
$\text{Example 2:}$&nbsp;  
Diese Gleichung soll nun anhand des obigen (für ISDN gültigen) Blockschaltbildes diskutiert werden.&nbsp; Wir betrachten dabei den allgemeinen Fall eines fehlangepassten Systems  &nbsp; &rArr; &nbsp; $R_2 ≠ Z_{\rm W}(f)$:
+
This equation will now be discussed using the above block diagram (valid for ISDN).&nbsp; We consider the general case of a mismatched system &nbsp; &rArr; &nbsp; $R_2 ≠ Z_{\rm W}(f)$:
*Die oben definierte Betriebsdämpfung setzt die tatsächliche vom Sender zum Empfänger übertragene Wirkleistung in Bezug zum bestmöglichen Fall (vernachlässigbare Leitungslänge, vollständige Anpassung).
+
*The operating attenuation defined above relates the actual active power transmitted from the sender to the receiver to the best possible case (negligible line length, full matching).
*Bei Widerstandsanpassung ist die Betriebsdämpfung gleich der&nbsp; '''Wellendämpfung'''.&nbsp; In diesem anzustrebenden Fall ist nur der erste Term obiger Gleichung wirksam:
+
*For resistance matching, the operating attenuation is equal to the&nbsp; '''wave attenuation'''.&nbsp; In this case, only the first term of the above equation is effective:
 
:$$a_{\rm B}(f) =  \alpha (f ) \cdot l \hspace{0.05cm}.$$
 
:$$a_{\rm B}(f) =  \alpha (f ) \cdot l \hspace{0.05cm}.$$
*Der zweite und der dritte Term berücksichtigen die Leistungsverluste durch Reflexion an den Übergängen Sender &nbsp; &rarr; &nbsp; Leitung und Leitung&nbsp; &rarr; &nbsp;Empfänger. <br>Für diese beiden&nbsp; '''Stoßdämpfungen'''&nbsp; gilt:
+
*The second and third terms take into account the power losses due to reflection at the transitions transmitter&nbsp; &rarr; &nbsp; line and line&nbsp; &rarr; &nbsp;receiver. <br>For these two&nbsp; '''reflection losses''&nbsp; holds:
 
:$$q_1(f)= \frac {R_1 + Z_{\rm W}(f)}{2 \cdot \sqrt{R_1 \cdot Z_{\rm W}(f)} } \hspace{0.05cm}, \hspace{0.3cm}q_2(f)= \frac {R_2 + Z_{\rm W}(f)}{2 \cdot \sqrt{R_2 \cdot Z_{\rm W}(f)} } \hspace{0.05cm}.$$
 
:$$q_1(f)= \frac {R_1 + Z_{\rm W}(f)}{2 \cdot \sqrt{R_1 \cdot Z_{\rm W}(f)} } \hspace{0.05cm}, \hspace{0.3cm}q_2(f)= \frac {R_2 + Z_{\rm W}(f)}{2 \cdot \sqrt{R_2 \cdot Z_{\rm W}(f)} } \hspace{0.05cm}.$$
*Die&nbsp; '''Wechselwirkungsdämpfung'''&nbsp; (vierter Term) beschreibt die Auswirkung einer mehrfach reflektierten Welle, die sich – je nach Leitungslänge – dem Nutzsignal am Empfänger konstruktiv oder destruktiv überlagert.&nbsp; Für diese Reflexionsfaktoren gilt:
+
*The&nbsp; '''interaction attenuation'''&nbsp; (fourth term) describes the effect of a multiple reflected wave, which - depending on the line length - is constructively or destructively superimposed on the useful signal at the receiver.&nbsp; The following applies to these reflection factors:
 
:$$r_1(f)= \frac {R_1 - Z_{\rm W}(f)}{R_1 + Z_{\rm W}(f)} \hspace{0.05cm}, \hspace{0.3cm}r_2(f)= \frac {R_2 - Z_{\rm W}(f)}{R_2 + Z_{\rm W}(f)} \hspace{0.05cm}.$$
 
:$$r_1(f)= \frac {R_1 - Z_{\rm W}(f)}{R_1 + Z_{\rm W}(f)} \hspace{0.05cm}, \hspace{0.3cm}r_2(f)= \frac {R_2 - Z_{\rm W}(f)}{R_2 + Z_{\rm W}(f)} \hspace{0.05cm}.$$
  
Die verschiedenen Anteile der Betriebsdämpfung&nbsp; $a_{\rm B}(f)$&nbsp; werden in der&nbsp; [[Aufgaben:4.3_Betriebsdämpfung|Aufgabe 4.3]]&nbsp;  für ein praxisrelevantes Beispiel berechnet.}}  
+
The various components of the operating attenuation&nbsp; $a_{\rm B}(f)$&nbsp; are calculated in&nbsp; [[Aufgaben:Exercise_4.3:_Operational_Attenuation|Exercise 4.3]]&nbsp;  for a practical example.}}  
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Bitte beachten Sie:}$&nbsp; In den nun folgenden Kapiteln für "Koaxialkabel" und "Kupfer-Doppelader" wird nur noch die Wellendämpfung&nbsp; $α(f) · l$&nbsp; weiter betrachtet und damit die Auswirkungen einer Fehleranpassung vernachlässigt.}}
+
$\text{Please note:}$&nbsp; In the now following chapters for "Coaxial Cables" and "Balanced Copper Pairs" only the wave attenuation&nbsp; $α(f) - l$&nbsp; is further considered and thus the effects of error matching are neglected.}}
  
 
==Exercises for the chapter==
 
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:4.1_Dämpfungsmaß|Exercise 4.1: Dämpfungsmaß]]
+
[[Aufgaben:Exercise_4.1:_Attenuation_Function |Exercise 4.1: Attenuation Function]]
  
[[Aufgaben:4.1Z_Übertragungsmaß|Exercise 4.1Z: Übertragungsmaß]]
+
[[Aufgaben:Exercise_4.1Z:_Transmission_Behavior_of_Short_Cables |Exercise 4.1Z: Transmission Behavior of Short Cables]]
  
[[Aufgaben:Aufgabe_4.2:_Fehlangepasste_Leitung| Exercise 4.2: Fehlangepasste Leitung]]
+
[[Aufgaben:Aufgabe_4.2:_Fehlangepasste_Leitung| Exercise 4.2: Mismatched Line]]
  
[[Aufgaben:4.3_Betriebsdämpfung|Exercise 4.3: Betriebsdämpfung]]
+
[[Aufgaben:Exercise_4.3:_Operational_Attenuation|Exercise 4.3: Operational Attenuation]]
  
  

Revision as of 17:03, 4 November 2021


# OVERVIEW OF THE FOURTH MAIN CHAPTER #


A special case of causal and time-invariant systems are electrical cables. Here, due to the Hilbert transformation, a complex-valued frequency response  $H(f)$  and strongly unbalanced impulse responses  $h(t)$  must always be assumed.

The fourth chapter presents a summary of conducted transmission channels, specifically

  • important results and descriptive quantities of Line Transmission Theory, in particular primary line parameters, complex propagation function per unit length, attenuation function per unit length, phase function per unit length, wave impedance, and the operating attenuation to take account of mismatches and reflections,
  • the frequency responses and impulse responses of coaxial cables, in which, due to good shielding, all other noise is negligible compared to thermal noise (Gaussian distributed and white), and
  • the description of symmetrical copper cables, which are the main transmission medium in the access network of telecommunication systems. Since many pairs run in parallel in a cable, crosstalk occurs due to capacitive and inductive couplings.


Equivalent circuit diagram of a short transmission line section


To derive the line equations, first a very short line section of length  ${\rm d}x$  is considered, so that the values for voltage and current at the beginning of the line  $(U$  resp.   $I$  at  $x)$  and end of the line  $(U + {\rm d}U$  and  $I + {\rm d}I$  at  $x + {\rm d}x)$  differ only slightly. The diagram shows the underlying model.

$\text{Or in other words:}$ 

Let the line length  ${\rm d}x$  be very small compared to the wavelength  $\lambda$  of the electromagnetic wave propagating along the line, which results because

  • there is a magnetic field connected to the current,
  • the voltage between the conductors causes an electric field.


Equivalent circuit diagram of a short line section

All infinitesimal "components" in the equivalent circuit sketched on the right are location-independent for homogeneous lines:

  • The inductance of the considered line section is  $L\hspace{0.05cm}' - {\rm d}x$, where  $L'$  is called  serial inductance per unit length .
  • Similarly, the  parallel capacitance per unit length  $C\hspace{0.05cm}'$  is an infinitesimally small quantity which, similar to  $L'$ , depends only slightly on frequency.
  • The  parallel conductance per unit length  $G\hspace{0.05cm}'$  takes into account the losses of the dielectric between the wires. It increases approximately proportionally with frequency.
  • By far the largest (negative) influence on signal transmission is the  serial resistance per unit length  $R\hspace{0.05cm}'$, which increases almost proportionally with the root of the frequency for high frequencies due to the so-called  Skin effect .


From the mesh and node equations of the line section,  $ω = 2πf$  results in the two difference equations

$$ U = I \cdot (R\hspace{0.05cm}' + {\rm j} \cdot \omega L\hspace{0.05cm}') \cdot {\rm d}x + (U + {\rm d}U)\hspace{0.05cm},$$
$$ I = (U + {\rm d}U) \cdot (G\hspace{0.05cm}' + {\rm j} \cdot \omega C\hspace{0.05cm}') \cdot {\rm d}x + (I + {\rm d}I)\hspace{0.05cm}. $$

For very short line sections  $($infinitesimally small  ${\rm d}x)$  and neglecting the small second order quantities  $($for example  ${\rm d}U - {\rm d}x)$ , one can now form two differential quotients whose joint consideration leads to a second order linear differential equation:

$$\frac{ {\rm d}U}{ {\rm d}x} = - (R\hspace{0.05cm}' + {\rm j} \cdot \omega L\hspace{0.05cm}') \cdot I,\hspace{0.5cm} \frac{ {\rm d}I}{ {\rm d}x} = - (G\hspace{0.05cm}' + {\rm j} \cdot \omega C\hspace{0.05cm}') \cdot U\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{{\rm d}^2U}{{\rm d}x^2} = (R\hspace{0.05cm}' + {\rm j} \cdot \omega L\hspace{0.05cm}') \cdot (G\hspace{0.05cm}' + {\rm j} \cdot \omega C\hspace{0.05cm}') \cdot U\hspace{0.05cm}.$$

The solution of this differential equation is:

$$U(x) = U_{\rightarrow}(x=0) \cdot {\rm e}^{-\hspace{0.02cm}\gamma \hspace{0.03cm} \cdot \hspace{0.05cm}x} + U_{\leftarrow}(x=0) \cdot {\rm e}^{\gamma \hspace{0.03cm} \cdot \hspace{0.05cm}x} \hspace{0.05cm}.$$

The voltage curve depends not only on the location  $x$  but also on the frequency  $f$  which is not explicitly noted in the equation given here.

Formula-wise, this frequency dependence is captured by the  complex propagation function per unit length

$$\gamma(f) = \sqrt{(R\hspace{0.05cm}' + {\rm j} \cdot 2\pi f \cdot L\hspace{0.05cm}') \cdot (G\hspace{0.05cm}' + {\rm j} \cdot 2\pi f \cdot C\hspace{0.05cm}')} = \alpha (f) + {\rm j} \cdot \beta (f)\hspace{0.05cm}.$$

The last two equations together describe the voltage curve along the line, which results from the superposition of a wave running in the positive  $x$ direction  $U_→(x)$  and the wave  $U_←(x)$  in the opposite direction.

  • The real part  $α(f)$  of the complex propagation function per unit length  $γ(f)$  attenuates the propagating wave and is therefore called  attenuation function per unit length  This always even function   ⇒   $α(-f) = α(f)$  results from the above  $γ(f)$ equation as follows:
$$\alpha(f) = \sqrt{{1}/{2}\cdot \left (R\hspace{0.05cm}' \cdot G\hspace{0.05cm}' - \omega^2 \cdot L\hspace{0.05cm}' \cdot C\hspace{0.05cm}'\right)+ {1}/{2} \cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.05cm}'\hspace{0.05cm}^2)}} \bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
  • The odd imaginary part   ⇒   $β(- f) = - β(f)$  is called  phase function per unit length  and describes the phase rotation of the wave along the line:
$$\beta(f) = \sqrt{ {1}/{2}\cdot \left (-R\hspace{0.05cm}' \cdot G\hspace{0.05cm}' + \omega^2 \cdot L\hspace{0.05cm}' \cdot C\hspace{0.05cm}'\right)+ {1}/{2} \cdot \sqrt{(R\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot L\hspace{0.05cm}'\hspace{0.05cm}^2) \cdot (G\hspace{0.05cm}'\hspace{0.05cm}^2 + \omega^2 \cdot C\hspace{0.05cm}'\hspace{0.05cm}^2)}} \bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$

Wave impedance and reflections


We consider a homogeneous line of length  $l$ with a harmonic oscillation  $U_0(f)$  of frequency $f$ applied to its input.

  • The transmitter has the internal resistance  $Z_1$, the receiver has the input impedance  $Z_2$ (this is also the terminating resistor of the line).
  • We assume for simplicity that  $Z_1$  and  $Z_2$  are real resistors.


Line of length  $l$  with wiring

The current and voltage of the outgoing and return waves are linked via the wave impedance  $Z_{\rm W}(f)$ :

$$I_{\rightarrow}(x, f) = \frac{U_{\rightarrow}(x, f)}{Z_{\rm W}(f)}\hspace{0.05cm}, $$
$$ I_{\leftarrow}(x, f) = \frac{U_{\leftarrow}(x, f)}{Z_{\rm W}(f)}\hspace{0.05cm}.$$

The following applies to the wave impedance:

$$Z_{\rm W}(f) = \sqrt{\frac {R\hspace{0.05cm}' + {\rm j} \cdot \omega L\hspace{0.05cm}'}{G\hspace{0.05cm}' + {\rm j} \cdot \omega C\hspace{0.05cm}'}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm}\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}.$$
  • The wave traveling in the positive  $x$ direction is generated by the AC voltage source at the beginning of the line  $($so at  $x = 0)$ .
  • The backward wave is only generated by the reflection of the forward wave at the end of the line  $(x = l)$:
$$U_{\leftarrow}(x = l) = {U_{\rightarrow}(x = l)}\cdot \frac{Z_2 -Z_{\rm W}(f)}{Z_2 + Z_{\rm W}(f)}\hspace{0.05cm}.$$
  • At this point, the terminating resistor  $Z_2$  forces a fixed relationship between the voltage and the current:
$$U_2(f) = Z_2 · I_2(f).$$

$\text{Conclusion:}$  It can be seen from the above equation that there is no returning wave only for  $Z_2 = Z_{\rm W}(f)$ .

  • Such resistance matching is always sought in communications engineering.
  • This matching is not possible over a larger frequency range at fixed termination  $Z_2$  due to the frequency dependence  $Z_{\rm W}(f)$ .


In the following, these equations are explained with an example.

Model to describe the wave reflection

$\text{Example 1:}$  We consider the case shown on the right:

  • The terminating resistor  $Z_2$  of the line  (at the same time the input impedance of the following receiver)  differs from the wave impedance  $Z_{\rm W}(f)$ .
  • We disregard the mismatch at the beginning of the line.


The diagram below from [Han17][1] is intended to make clear how the resulting wave  $U(x)$  - shown as a solid curve -  differs from the outgoing wave  $U_→(x)$ .

Incoming, returning and resulting wave


To clarify:

  • Marked in red is the outgoing wave  $U_→(x)$, which, starting from the transmitter   ⇒   $U_→(x = 0)$ , attenuates along the line.  $U_→(x = l)$  denotes the wave at the end of the line.
  • Due to the mismatch   ⇒   reflection results in the returning wave  $U_←(x)$  from the end of the line to the transmitter, marked in green in the diagram.  For this the following applies at the end of the line  $(x = l)$:
$$U_{\leftarrow}(x = l) = {U_{\rightarrow}(x = l)}\cdot \frac{Z_2 -Z_{\rm W}(f)}{Z_2 + Z_{\rm W}(f)}\hspace{0.05cm}.$$
  • The resulting (blue) wave  $U(x)$  results from the in-phase addition of these two parts which are not visible by themselves.
  • As  $x$  increases,  $U(x)$  becomes smaller, as does  $U_→(x)$  due to line attenuation. Also the returning wave  $U_←(x)$  is attenuated with increasing length  (from right to left) 

Lossless and low-loss lines


$\text{Definition:}$  For very short coaxial lines, such as those used for connections of high-frequency measuring instruments in the laboratory, from  $R\hspace{0.05cm}' \approx 0$ and $G\hspace{0.05cm}' \approx 0$  can be assumed. One then speaks of a  lossless line.  For such a one, the above equations simplify:

  • Attenuation function per unit length   ⇒   Attenuation function  $a(f)$  per length  $l$:
$$\alpha(f) = a(f)/l = 0\hspace{0.05cm}.$$
  • Phase function per unit length   ⇒   Phasen function  $b(f)$  per length  $l$:
$$\beta(f) = b(f)/l = 2\pi \cdot f \cdot \sqrt{L\hspace{0.05cm}' \cdot C\hspace{0.05cm}' }\hspace{0.05cm}, $$
  • Wave impedance:
$$Z_{\rm W}(f) = \sqrt{ {L\hspace{0.05cm}'}/{ C\hspace{0.05cm}'} }\hspace{0.05cm}.$$


If  $L\hspace{0.05cm}'$  and  $C\hspace{0.08cm}'$  are constant in the considered frequency range, the (real) wave impedance  $Z_{\rm W}(f)=Z_{\rm W}$  is also frequency independent and the phase function per unit length  $β(f)$  is proportional to the frequency.

  • This means that a lossless line is always free of distortion.
  • The output signal has only one transit time compared to the input signal.
  • Common wave impedances are  $Z_{\rm W} = 50 \ \rm Ω$,  $Z_{\rm W} = 75 \ \rm Ω$ and  $Z_{\rm W} = 150 \ \rm Ω$.


$\text{Definition:}$  One speaks of a  low-loss line when the line is somewhat longer, but cannot yet be called long.


The given formula for the attenuation function per unit length  $\alpha(f)$  is now to be evaluated for the case of constant primary line parameters, which does not quite correspond to reality.

  • Above a  characteristic frequency  $f_∗$ that depends on  $R\hspace{0.05cm}', \ L\hspace{0.05cm}', \ G\hspace{0.08cm}'$  and  $C\hspace{0.08cm}'$,  $R\hspace{0.05cm}'$  can be assumed to be very small compared to  $ωL\hspace{0.05cm}'$  and $G\hspace{0.05cm}'$  can be assumed to be very small compared to  $ωC\hspace{0.08cm}'$ . This gives the approximate formula often referred to as  weak attenuation :
$$\alpha_{_{ {\rm I} } }(f) = {1}/{2} \cdot \left [R\hspace{0.05cm}' \cdot \sqrt{{C\hspace{0.05cm}'}/{ L\hspace{0.05cm}'} } + G\hspace{0.08cm}' \cdot \sqrt{{L\hspace{0.05cm}'}/{ C\hspace{0.08cm}'} }\right ] \hspace{0.05cm}.$$
  • For small frequencies  $(f < f_∗)$  on the other hand,  $R\hspace{0.05cm}'$  is much larger than  $ωL\hspace{0.05cm}'$  and  $G\hspace{0.08cm}'$  much larger than  $ ωC\hspace{0.08cm}'$  and a second upper bound is obtained, often referred to in literature as  strong attenuation :
Dämpfungsmaß  $α(f)$  und Schranken
$$\alpha_{_{ {\rm II} } }(f) = \sqrt{ 1/2 \cdot \omega \cdot {R\hspace{0.05cm}' \cdot C\hspace{0.08cm}'} }\hspace{0.1cm} \bigg |_{\omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}\hspace{0.05cm}.$$

The diagram shows the attenuation function per unit length  $α(f)$  at constant primary line parameters according to the exact  (but more complicated)  formula and the two bounds  $α_{\rm I}(f)$  and  $α_{\rm II}(f)$.

One recognizes from this representation:

  • Both  $α_{\rm I}(f)$  and  $α_{\rm II}(f)$  are upper bounds for  $α(f)$.
  • The characteristic frequency  $f_∗$  is the intersection of  $α_{\rm I}(f)$  and  $α_{\rm II}(f)$.
  • For  $f \gg f_∗$  holds  $α(f) ≈ α_{\rm I}(f)$,  whereas for  $f \ll f_∗$   $α(f) ≈ α_{\rm II}(f)$.


Influence of reflections - operating attenuation


The choice of the terminating resistor  $Z_2(f) = Z_{\rm W}(f)$  prevents the generation of a reflected wave at the end of the line.  In practice, however, an exact matching of these resistors is usually possible only in a very limited frequency range, for example

  • due to the complicated frequency dependence of the wave impedance,
  • with cables of different designs along a connection,
  • when taking into account manufacturing tolerances.


Therefore, in real systems, the internal resistance  $R_1$  of the source and the terminating resistance  $R_2$  are usually chosen to be real and constant.  For example, in  ISDN  (Integrated Services Digital Network)  $R_1 = R_2 = 150 \ \rm Ω$  has been set.

Line of length  $l$  with ohmic terminations

This circuit simplification has the following effects:

  • The input impedance  $Z_{\rm E}(f)$  of the line as seen from the source depends on the complex propagation function per unit length  $γ(f)$, the line length  $l$, the wave impedance  $Z_{\rm W}(f)$  and the terminating resistance  $R_2$ :
$$Z_{\rm E}(f) = Z_{\rm W}(f)\cdot \frac {R_2 + Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)} {Z_{\rm W}(f)+ R_2 \cdot {\rm tanh}(\gamma(f) \cdot l)} \hspace{0.05cm}, \hspace{0.5cm} {\rm with}\hspace{0.5cm}{\rm tanh}(x) = \frac {{\rm sinh}(x)}{{\rm cosh}(x)} = \frac {{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}}\hspace{0.05cm}, \hspace{0.3cm}x \in {\cal C} \hspace{0.05cm}.$$
  • This circuit-related simplification   ⇒   $Z_{\rm 2}(f) = R_2$  results in reflections at the end of the line. These reduce the power available at the receiver and thus increase the line attenuation.
  • For the evaluation of such a mismatched system, the  operating attenuation  ("attenuation in operation") has been defined as follows:
$${ a}_{\rm B}(f) \hspace{0.15cm}{\rm in} \hspace{0.15cm}{\rm Neper}\hspace{0.15cm}{\rm (Np)} = {\rm ln}\hspace{0.1cm}\frac {|U_0(f)|}{2 \cdot |U_2(f)|} \cdot \sqrt{{R_2}/{R_1}} = \alpha (f ) \cdot l + {\rm ln}\hspace{0.1cm}|q_1(f)| + {\rm ln}\hspace{0.1cm}|q_2(f)| + {\rm ln}\hspace{0.1cm}|1 - r_1(f) \cdot r_2(f) \cdot {\rm e}^{-\gamma(f) \hspace{0.05cm} \cdot \hspace{0.05cm}l}| \hspace{0.05cm}.$$

$\text{Example 2:}$  This equation will now be discussed using the above block diagram (valid for ISDN).  We consider the general case of a mismatched system   ⇒   $R_2 ≠ Z_{\rm W}(f)$:

  • The operating attenuation defined above relates the actual active power transmitted from the sender to the receiver to the best possible case (negligible line length, full matching).
  • For resistance matching, the operating attenuation is equal to the  wave attenuation.  In this case, only the first term of the above equation is effective:
$$a_{\rm B}(f) = \alpha (f ) \cdot l \hspace{0.05cm}.$$
  • The second and third terms take into account the power losses due to reflection at the transitions transmitter  →   line and line  →  receiver.
    For these two  'reflection losses  holds:
$$q_1(f)= \frac {R_1 + Z_{\rm W}(f)}{2 \cdot \sqrt{R_1 \cdot Z_{\rm W}(f)} } \hspace{0.05cm}, \hspace{0.3cm}q_2(f)= \frac {R_2 + Z_{\rm W}(f)}{2 \cdot \sqrt{R_2 \cdot Z_{\rm W}(f)} } \hspace{0.05cm}.$$
  • The  interaction attenuation  (fourth term) describes the effect of a multiple reflected wave, which - depending on the line length - is constructively or destructively superimposed on the useful signal at the receiver.  The following applies to these reflection factors:
$$r_1(f)= \frac {R_1 - Z_{\rm W}(f)}{R_1 + Z_{\rm W}(f)} \hspace{0.05cm}, \hspace{0.3cm}r_2(f)= \frac {R_2 - Z_{\rm W}(f)}{R_2 + Z_{\rm W}(f)} \hspace{0.05cm}.$$

The various components of the operating attenuation  $a_{\rm B}(f)$  are calculated in  Exercise 4.3  for a practical example.


$\text{Please note:}$  In the now following chapters for "Coaxial Cables" and "Balanced Copper Pairs" only the wave attenuation  $α(f) - l$  is further considered and thus the effects of error matching are neglected.

Exercises for the chapter


Exercise 4.1: Attenuation Function

Exercise 4.1Z: Transmission Behavior of Short Cables

Exercise 4.2: Mismatched Line

Exercise 4.3: Operational Attenuation


List of sources

  1. Hanik, N.: Leitungsgebundene Übertragungstechnik. Vorlesungsmanuskript. Lehrstuhl für Nachrichtentechnik, TU München, 2017.