Difference between revisions of "Mobile Communications/Probability Density of Rayleigh Fading"

From LNTwww
 
(62 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
 
{{Header
 
{{Header
|Untermenü=Zeitvariante Übertragungskanäle
+
|Untermenü=Time-Variant Transmission Channels
|Vorherige Seite=Distanzabhängige Dämpfung und Abschattung
+
|Vorherige Seite=Distance Dependent Attenuation and Shading
|Nächste Seite=Statistische Bindungen innerhalb des Rayleigh–Prozesses
+
|Nächste Seite=Statistical Bonds Within the Rayleigh Process
 
}}
 
}}
  
== Allgemeine Beschreibung des Mobilfunkkanals ==
+
== A very general description of the mobile communication channel ==
 
<br>
 
<br>
Im Folgenden wird zur Vereinfachung der Schreibweise auf den Zusatz &bdquo;TP&rdquo; verzichtet. Somit liegt das reelle Signal <i>s</i>(<i>t</i>) = 1 am Eingang des Mobilfunkkanals an und das Ausgangssignal <i>r</i>(<i>t</i>) ist komplexwertig. Zusätzliche Rauschprozesse werden ausgeschlossen.<br>
+
To simplify the notation, the addition "TP" (Tiefpass &nbsp; &rArr; &nbsp; low-pass)&nbsp; is omitted in the following.&nbsp; Thus the real signal&nbsp; $s(t) = 1$&nbsp; is present at the input of the mobile radio channel and the output signal&nbsp; $r(t)$&nbsp; is complex-valued.&nbsp; Additional noise processes are excluded.<br>
  
Das Funksignal <i>s</i>(<i>t</i>) kann den Empfänger über eine Vielzahl von Pfaden erreichen, wobei die einzelnen Signalanteile in unterschiedlicher Weise gedämpft und verschieden lang verzögert werden. Allgemein kann man für das Tiefpass&ndash;Empfangssignal ohne Berücksichtigung von thermischem Rauschen schreiben:
+
The radio signal&nbsp; $s(t)$&nbsp; can reach the receiver via a large number of paths, whereby the individual signal components are attenuated in different ways and delayed for different lengths.&nbsp; In general, it is possible to express the received signal&nbsp; (in the equivalent low-pass range)&nbsp; without taking thermal noise into account as it follows:
  
:<math>r(t)=  \sum_{k=1}^{K}  \alpha_{k}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{k}(t)} \cdot s(t - \tau_{k})
+
::<math>r(t)=  \sum_{k=1}^{K}  \alpha_{k}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{k}(t)} \cdot s(t - \tau_{k})
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Hierbei sind folgende Bezeichnungen verwendet:
+
The following designations are used here:
*Der zeitabhängige Dämpfungsfaktor auf dem <i>k</i>&ndash;ten Pfad ist <i>&alpha;<sub>k</sub></i>(<i>t</i>).<br>
+
*The time dependent attenuation factor on the&nbsp; $k$&ndash;th path is&nbsp; $\alpha_k(t)$.<br>
  
*Der zeitabhängige Phasenverlauf auf dem <i>k</i>&ndash;ten Pfad ist <i>&#981;<sub>k</sub></i>(<i>t</i>).<br>
+
*The time dependent phase progression on the&nbsp; $k$&ndash;th path is&nbsp; $\phi_k(t)$.<br>
  
*Die Laufzeit auf dem <i>k</i>&ndash;ten Pfad ist <i>&tau;<sub>k</sub></i>.<br><br>
+
*The time dependent runtime on the&nbsp; $k$&ndash;th path is&nbsp; $\tau_k(t)$.<br><br>
  
Die Anzahl <i>K</i> der sich (zumindest geringfügig) unterscheidenden Pfade ist meist sehr groß und für eine direkte Modellierung ungeeignet. Das Modell lässt sich aber entscheidend vereinfachen, wenn man jeweils Pfade mit näherungsweise gleichen Verzögerungen zusammenfasst. Man unterscheidet somit nur noch <i>M</i> Hauptpfade, die durch großräumige Wegeunterschiede und damit merkliche Laufzeitunterschiede gekennzeichnet sind:
+
The number&nbsp; $K$&nbsp; of (at least slightly) different paths is usually very large and unsuitable for direct modeling.  
  
:<math>r(t)=  \sum_{m=1}^{M} \hspace{0.1cm} \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.01cm}n}(t) \cdot
+
*The model can be simplified considerably by combining paths with approximately equal delays.
 +
*So you only distinguish between&nbsp; $M$&nbsp; main paths, which are characterized by large differences in distance and thus noticeable differences in delay:
 +
 
 +
::<math>r(t)=  \sum_{m=1}^{M} \hspace{0.1cm} \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm}
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm}
  \phi_{m,\hspace{0.02cm}n}(t)}
+
  \phi_{m,\hspace{0.04cm}n}(t)}
  \cdot s(t - \tau_{m,\hspace{0.02cm}n})
+
  \cdot s(t - \tau_{m,\hspace{0.04cm}n})
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Die beiden bisher angegebenen Gleichungen sind identisch. Eine Vereinfachung ergibt sich, wenn man für jeden Hauptpfad <i>m</i> die <i>N<sub>m</sub></i> Laufzeiten, die sich durch Reflexionen an Feinstrukturen sowie eventuell durch Beugungs&ndash; und Brechungserscheinungen geringfügig unterscheiden, durch eine mittlere Laufzeit ersetzt:
+
The two equations given so far are identical.&nbsp; A simplification results only if one replaces for each main path&nbsp; $m \in \{1, \hspace{0.04cm}\text{...}\hspace{0.04cm}, M\}$&nbsp; the&nbsp; $N_m$&nbsp; delays, which differ slightly due to reflections at fine structures as well as possibly due to diffraction and refraction phenomena, by a mean delay:
  
:<math>\tau_{m} =  \frac{1}{N_m} \cdot  \sum_{n=1}^{N_m} \tau_{m,\hspace{0.02cm}n}
+
::<math>\tau_{m} =  \frac{1}{N_m} \cdot  \sum_{n=1}^{N_m} \tau_{m,\hspace{0.04cm}n}
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Damit erhält man das folgende wichtige Zwischenergebnis:
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; This gives the following intermediate result for mobile radio: &nbsp; The&nbsp; &raquo;'''received signal in the equivalent low-pass range'''&laquo; &nbsp; can be represented as
  
:<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm mit}
+
::<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm with}
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.01cm}n}(t) \cdot
+
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot  \hspace{0.02cm}
+
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot  \hspace{0.05cm}
  \phi_{m,\hspace{0.02cm}n}(t)}
+
  \phi_{m,\hspace{0.04cm}n}(t)}
  \hspace{0.05cm}.</math>
+
  \hspace{0.05cm}.</math>}}
  
== Modellierung von nichtfrequenzselektivem Fading (1) ==
+
== Frequency-selective fading vs. non-frequency-selective fading==
 
<br>
 
<br>
Ausgehend von der soeben hergeleiteten Gleichung
+
Based on the equation just derived
  
:<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm mit}
+
::<math>r(t)=  \sum_{m=1}^{M} z_m(t) \cdot  s(t - \tau_{m}) \hspace{0.5cm} {\rm with}
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.01cm}n}(t) \cdot
+
  \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m}  \alpha_{m,\hspace{0.04cm}n}(t) \cdot
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot  \hspace{0.02cm}
+
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot  \hspace{0.05cm}
  \phi_{m,\hspace{0.02cm}n}(t)}
+
  \phi_{m,\hspace{0.04cm}n}(t)}
 
  \hspace{0.05cm}</math>
 
  \hspace{0.05cm}</math>
  
können zwei wichtige Sonderfälle abgeleitet werden:
+
two important special cases can be derived:
*Gibt es mehr als einen Hauptpfad (<i>M</i> &#8805; 2), so spricht man von <i>Mehrwegeausbreitung</i>. Wie im Kapitel 2 noch gezeigt werden wird, kommt es dann &ndash; je nach Frequenz &ndash; zu konstruktiven oder destruktiven Überlagerungen bis hin zu völliger Auslöschung. Für manche Frequenzen erweist sich die Mehrwegeausbreitung als günstig, für andere als extrem ungünstig. Man bezeichnet diesen Effekt auch als frequenzselektives Fading.<br>
+
*If there is more than one main path&nbsp; $(M \ge 2)$, one speaks of&nbsp; <b>multipath propagation</b>. &nbsp; As will be shown in the second main chapter &nbsp; &rArr; &nbsp; [[Mobile_Communications/General_description_of_time_variant_systems|"Frequency-selective transmission channels"]]&nbsp; then&nbsp; &ndash;&nbsp; depending on the frequency&nbsp; &ndash;&nbsp; constructive or destructive overlaps up to complete extinction occur.  
 +
*For some frequencies, multipath propagation proves to be favourable, for others, very unfavourable.&nbsp; This effect is called&nbsp; &raquo;'''frequency selective fading'''&laquo;.<br>
  
*Bei nur einem Hauptpfad (<i>M</i> = 1, auf den Index &bdquo;1&rdquo; verzichten wir in diesem Fall) vereinfacht sich die obige Gleichung wie folgt:
+
 
 +
With only one main path&nbsp; $(M = 1)$&nbsp; the above equation is simplified as follows&nbsp; $($in this case the index "$m = 1$" will be omitted$)$:
  
 
::<math>r(t)=  z(t) \cdot  s(t - \tau)  
 
::<math>r(t)=  z(t) \cdot  s(t - \tau)  
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
:Die Verzögerung <i>&tau;</i> bewirkt hier eine für alle Frequenzen konstante Laufzeit, die nicht weiter betrachtet wird. Es gibt nun keine Überlagerungen von Signalanteilen mit merklichen Laufzeitunterschieden und damit auch keine Frequenzabhängigkeit des Gesamtsignals. Man spricht deshalb von nichtfrequenzselektivem Fading oder <i>Flat&ndash;Fading</i>. Für dieses gilt:
+
The delay&nbsp; $\tau$&nbsp; causes here a constant transmission time for all frequencies, which does not need to be considered further.  
  
::<math>r(t)=  z(t) \cdot  s(t) \hspace{0.5cm} {\rm mit}
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; For&nbsp; $M=1$&nbsp; there is no superposition of signal components with noticeable differences in propagation time, thus also no frequency dependence of the total signal:&nbsp;
 +
 
 +
::<math>r(t)=  z(t) \cdot  s(t) \hspace{0.5cm} {\rm with}
 
  \hspace{0.5cm} z(t) = \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
 
  \hspace{0.5cm} z(t) = \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot  \hspace{0.02cm}
 
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot  \hspace{0.02cm}
 
  \phi_{n}(t)}
 
  \phi_{n}(t)}
 
  \hspace{0.05cm}. </math>
 
  \hspace{0.05cm}. </math>
 +
One speaks in this case of&nbsp; &raquo;'''non-frequency selective fading'''&laquo; &nbsp; or&nbsp; &raquo;'''Flat Fading'''&laquo;&nbsp; or&nbsp; &raquo;'''Rayleigh Fading'''&laquo;. }}
  
Die Grafik zeigt das Modell zur Erzeugung von nichtfrequenzselektivem Fading. Man spricht auch von Rayleigh&ndash;Fading.<br>
+
== Modeling of non-frequency-selective fading==
 +
<br>
 +
The figure shows the model for generating non-frequency selective fading &nbsp; &rArr; &nbsp; Rayleigh fading.<br>
  
[[File:P ID2108 Mob T 1 2 S2 v2.png|Rayleigh–Fading–Kanalmodell|class=fit]]<br>
+
*The received signal&nbsp; $r(t)$&nbsp; is obtained by multiplying the transmitted signal&nbsp; $s(t)$&nbsp; by the time function&nbsp; $z(t)$.
 +
*It should be remembered again that all signals or time functions&nbsp; $s(t)$,&nbsp; $z(t)$&nbsp; and&nbsp; $r(t)$&nbsp; refer to the equivalent low-pass range.
  
Die Bildbeschreibung folgt auf der nächsten Seite.<br>
 
  
== Modellierung von nichtfrequenzselektivem Fading (2) ==
+
[[File:EN_Mob_T_1_2_S2.png|center|frame|Rayleigh fading channel model|class=fit]]
<br>
+
We now look at the multiplicative error&nbsp; $z(t)\ne 1$&nbsp; according to this Rayleigh model more precisely.&nbsp; For the complex coefficient applies according to the last section:
Wir betrachten die multiplikative Verfälschung <i>z</i>(<i>t</i>) entsprechend dem Rayleigh&ndash;Modell genauer. Für den komplexen Koeffizienten gilt entsprechend der letzten Seite:
 
  
:<math>z(t) = \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
+
::<math>z(t) = \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot  \hspace{0.02cm}
+
  {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.04cm}\cdot  \hspace{0.04cm}
 
  \phi_{n}(t) }=  
 
  \phi_{n}(t) }=  
 
\sum_{n=1}^{N}  \alpha_{n}(t) \cdot
 
\sum_{n=1}^{N}  \alpha_{n}(t) \cdot
  \cos(
+
  \cos\hspace{-0.1cm}\big [
  \phi_{n}( t)) + {\rm j}\cdot \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
+
  \phi_{n}( t) \big ] + {\rm j}\cdot \sum_{n=1}^{N}  \alpha_{n}(t) \cdot
  \sin(
+
  \sin\hspace{-0.1cm}\big [ 
  \phi_{n}( t))
+
  \phi_{n}( t)\big ]
 
  \hspace{0.05cm}. </math>
 
  \hspace{0.05cm}. </math>
  
Das Empfangssignal <i>r</i>(<i>t</i>) ergibt sich, wenn man das Sendesignal  <i>s</i>(<i>t</i>) mit der Zeitfunktion <i>z</i>(<i>t</i>) multipliziert. Es sei nochmals daran erinnert, dass sich alle Signale bzw. Zeitfunktionen <i>s</i>(<i>t</i>), <i>z</i>(<i>t</i>) und <i>r</i>(<i>t</i>) auf den äquivalenten Tiefpassbereich beziehen.<br>
+
It should be noted about this equation and the above graph:
 +
*The time dependent attenuation&nbsp; $\alpha_{n}(t)$&nbsp; and the time dependent phase&nbsp; $\phi_{n}(t)$&nbsp; depend on the environmental conditions.
 +
* $\phi_{n}(t)$&nbsp; captures the slightly different delays on the&nbsp; $N$&nbsp; paths and the&nbsp; [[Mobile_Communications/Statistical_Properties_within_the_Rayleigh_Process#Doppler_frequency_and_its_distribution|$\text{Doppler effect}$]]&nbsp; due to the movement.
 +
 
 +
*The time function&nbsp; $z(t)$&nbsp; is a complex quantity whose real and imaginary part denoted in the following as&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp;.
 +
*A deterministic description of the random variable&nbsp; $z(t) = x(t) + {\rm j}\cdot y(t)$&nbsp; is not possible;&nbsp; the functions&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$ must be modeled by stochastic processes.
  
[[File:P ID2109 Mob T 1 2 S2 v3.png|Rayleigh–Fading–Kanalmodell|class=fit]]<br>
+
*If the number&nbsp; $N$&nbsp; of the&nbsp; (slightly)&nbsp; different delays is sufficiently large, then according to the&nbsp; [https://en.wikipedia.org/wiki/Central_limit_theorem $\text{Central Limit Theorem}$]&nbsp; for this&nbsp; [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen|$\text{Gaussian Random Variable}$]].
  
Zu obiger Gleichung und der Grafik ist anzumerken:
+
*The two components&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; are each mean-free and have the same variance&nbsp; $\sigma^2$:
*<i>&alpha;<sub>n</sub></i>(<i>t</i>) und <i>&#981;<sub>n</sub></i>(<i>t</i>) hängen von den Umgebungsbedingungen ab. <i>&#981;<sub>n</sub></i>(<i>t</i>) erfasst die  verschiedenen Laufzeiten auf den <i>N</i> Pfaden und den [http://en.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Ph.C3.A4nomenologische_Beschreibung_des_Dopplereffektes_.281.29 Dopplereffekt] aufgrund der Bewegung.
 
  
*Die Zeitfunktion <i>z</i>(<i>t</i>) ist eine komplexe Größe, deren Real&ndash; und Imaginärteil wir im Folgenden wieder mit <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) bezeichnen.
+
::<math>{\rm E}[x(t)] = {\rm E}\big[y(t)\big] = 0\hspace{0.05cm}, \hspace{0.8cm}{\rm E}\big[x^2(t)\big] = {\rm E}\big[y^2(t)\big] = \sigma^2
 +
\hspace{0.05cm}.</math>
  
*Eine deterministische Beschreibung der Zufallsgröße <i>z</i>(<i>t</i>) = <i>x</i>(<i>t</i>) + j &middot; <i>y</i>(<i>t</i>) ist nicht möglich, vielmehr müssen diese Funktionen durch stochastische Prozesse modelliert werden.
+
*We observe the orthogonality of the real part and the imaginary part&nbsp; (both cosine and sine of the same argument).&nbsp; Thus the two components are also uncorrelated.&nbsp; Only in the case of Gaussian random variables does the statistical independence of&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$ follow from this.
  
*Ist die Anzahl <i>N</i> der (leicht) unterschiedlichen Laufzeiten hinreichend groß, so ergeben sich nach dem zentralen Grenzwertsatz Gaußsche Zufallsgrößen <i>x</i>(<i>t</i>) und  <i>y</i>(<i>t</i>).
+
*Because of the Doppler effect, however, there are statistical dependencies within the real part&nbsp; $x(t)$&nbsp; and within the imaginary part&nbsp; $y(t)$.&nbsp; These two quantities are created in the above model by two&nbsp; [[Theory_of_Stochastic_Signals/Digital_Filters|$\text{Digital Filters}$]].
  
*<i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) sind jeweils mittelwertfrei und besitzen die gleiche Varianz <i>&sigma;</i><sup>2</sup>:
+
== Exemplary signal curves with Rayleigh fading==
 +
<br>
 +
The following graphs show signal curves of&nbsp; $\text{100 ms}$&nbsp; duration and the corresponding density functions.&nbsp; These are screen shots of the Windows program&nbsp; "Mobile Radio Channel"&nbsp; from the (former) practical course&nbsp; "Simulation of Digital Transmission Systems"&nbsp; at the TU Munich.
  
::<math>{\rm E}[x(t)] = {\rm E}[y(t)] = 0\hspace{0.05cm}, \hspace{0.2cm}{\rm E}[x^2(t)] = {\rm E}[y^2(t)] = \sigma^2
+
{{GraueBox|TEXT=
\hspace{0.05cm}.</math>
+
$\text{Example 1:}$&nbsp; In the following, exemplary signal curves for Rayleigh fading and the corresponding probability density functions are shown.&nbsp; These time curve representations can be interpreted as follows:
  
*Zu berücksichtigen ist die Orthogonität von Realteil und Imaginärteil (jeweils Cosinus und Sinus des gleichen Arguments); damit sind sie auch unkorreliert. Nur bei Gaußschen Zufallsgrößen folgt daraus weiter die statistische Unabhängigkeit von <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>).
+
[[File:P ID2110 Mob T 1 2 S3 v1.png|right|frame|Real part, imaginary part and phase response with Rayleigh fading|class=fit]]
  
*Aufgrund des Dopplereffekts gibt es allerdings statistische Bindungen innerhalb des Realteils <i>x</i>(<i>t</i>) und innerhalb des Imaginärteils  <i>y</i>(<i>t</i>). Diese werden im Modell durch zwei [http://en.lntwww.de/Stochastische_Signaltheorie/Digitale_Filter Digitale Filter] erzeugt.
+
*The real part is Gaussian distributed&nbsp; (see upper right graph), as shown in the signal&nbsp; $x(t)$.&nbsp; &nbsp; Red is the Gaussian PDF $f_x(x)$ and blue is the histogram obtained by simulation over&nbsp; $10\hspace{0.05cm}000$&nbsp; samples.
  
== Beispielhafte Signalverläufe bei Rayleigh–Fading (1) ==
+
*The parameter used was a&nbsp; [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#Doppler frequency and its distribution|$\text{maximum Doppler frequency}$]]&nbsp; of&nbsp; $f_{\rm D, \ max} = 100 \ \rm Hz$.&nbsp; Therefore there are statistical bindings within the functions&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$.&nbsp; More details about the Doppler effect can be found in the next chapter.
<br>
 
Die Grafiken auf dieser und der nächsten Seite zeigen jeweils durch Simulation gewonnene Signalverläufe von 100 ms Dauer und die dazugehörigen Dichtefunktionen. Es handelt sich um Bildschirmabzüge des Windows&ndash;Programms &bdquo;Mobilfunkkanal&rdquo; aus dem Praktikum [Söd01]<ref>Söder, G.: ''Simulation digitaler Übertragungssysteme.'' Anleitung zum gleichnamigen Praktikum. Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2001.</ref>.<br>
 
  
[[File:P ID2110 Mob T 1 2 S3 v1.png|Realteil, Imaginärteil und Phasenverlauf bei Rayleigh-Fading|class=fit]]<br>
+
*The PDF&nbsp; $f_y(y)$&nbsp; of the imaginary part is identical to&nbsp; $f_x(x)$.&nbsp; The variance is&nbsp; $\sigma_x^2 =\sigma_y^2 = 0. 5 \ (=\sigma^2)$.&nbsp; Between&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; there are no statistical bindings;&nbsp; the signals are orthogonal.
  
Die Darstellungen lassen sich wie folgt interpretieren:
+
*The phase&nbsp; $\phi(t)$&nbsp; is equally distributed between&nbsp; $\pm\pi$.&nbsp; As can be guessed from the jumping points in the phase function,&nbsp; $\phi(t)$&nbsp; can also assume larger values.&nbsp; During the creation of the histogram, however, the ranges&nbsp; $(2k+1)\cdot \pi$&nbsp; were projected  to the value range of&nbsp; $-\pi$ ... $+\pi$&nbsp; &nbsp;$(k$&nbsp; integer$)$.
*Der Realteil ist gaußverteilt (siehe rechte obere Grafik), wie auch aus dem Zeitsignalverlauf  <i>x</i>(<i>t</i>) hervorgeht. Rot eingezeichnet ist die Gaußsche WDF <i>f<sub>x</sub></i>(<i>x</i>) und blau das durch Simulation über 10.000 Abtastwerte gewonnene Histogramm.
 
  
*Im Programm eingestellt war für diese Darstellung eine [http://en.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Dopplerfrequenz_und_deren_Verteilung_.281.29 maximale Dopplerfrequenz] von 100 Hz. Deshalb gibt es statistische Bindungen innerhalb der Signale <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>). Näheres hierzu finden Sie im [http://en.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Einige_allgemeine_Bemerkungen_zu_AKF_und_LDS Kapitel 1.3.]
+
*The equally distributed phase can be understood by means of the (not shown) 2D&ndash;PDF.&nbsp; This is rotationally symmetrical and accordingly there is no preferred direction:
  
*Die WDF <i>f<sub>y</sub></i>(<i>y</i>) des Imaginärteils ist identisch mit <i>f<sub>x</sub></i>(<i>x</i>). Die Varianz beträgt jeweils <i>&sigma;</i><sup>2</sup> = 0.5. Zwischen <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) bestehen keine statistischen Bindungen; die Signale sind orthogonal.
+
::<math>f_{x,\hspace{0.02cm}y}(x, y) = \frac{1}{2\pi \cdot \sigma^2} \cdot
 +
{\rm e}^{  -(x^2 + y^2)/(2\sigma^2)} .</math>}}
  
*Die Phase <i>&#981;</i>(<i>t</i>) ist gleichverteilt zwischen &plusmn;&pi;. Wie aus den Sprungstellen im Phasenverlauf zu erkennen, kann <i>&#981;</i>(<i>t</i>) durchaus größere Werte annehmen. Alle Bereiche (2<i>k</i>&plusmn;1)&pi; wurden aber bei  der Histogrammerstellung auf den Wertebereich &ndash;&pi; ... +&pi; projiziert (<i>k</i> ganzzahlig).
 
  
*Die gleichverteilte Phase wird anhand der (hier nicht dargestellten) 2D&ndash;WDF verständlich. Diese ist rotationssymmetrisch und dementsprechend gibt es auch keine Vorzugsrichtung:
+
[[File:P ID2111 Mob T 1 2 S3b v1.png|right|frame|Real part, imaginary part, absolute value and square of absolute value for Rayleigh fading|class=fit]]
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2}$&nbsp; in continuation to&nbsp; $\text{Example 1}$:
 +
 +
This graphic shows on the
 +
*left:&nbsp; the real part&nbsp; $x(t)$&nbsp; and the imaginary part&nbsp; $y(t)$&nbsp; of&nbsp; $z(t)$&nbsp;; 
 +
*right:&nbsp; the PDF $f_x(x)$;&nbsp;  the PDF $f_y(y)$ has exactly the same form.  
  
::<math>f_{x,\hspace{0.02cm}y}(x, y) = \frac{1}{2\pi \cdot \sigma^2} \cdot
 
{\rm exp} \left [ - \frac{x^2 + y^2}{2\sigma^2} \right ] .</math>
 
  
== Beispielhafte Signalverläufe bei Rayleigh–Fading (2) ==
+
Underneath it are the gradient and PDF
<br>
+
* of the magnitude&nbsp; $a(t) =\vert z(t)\vert$&nbsp; and  
Die Grafik zeigt oben nochmals Real&ndash; und Imaginärteil von <i>z</i>(<i>t</i>) = <i>x</i>(<i>t</i>) + j &middot; <i>y</i>(<i>t</i>). Darunter gezeichnet sind Verlauf und WDF von Betrag <i>a</i>(<i>t</i>) = |<i>z</i>(<i>t</i>)| und Betragsquadrat <i>p</i>(<i>t</i>) = <i>a</i><sup>2</sup>(<i>t</i>) = |<i>z</i>(<i>t</i>)|<sup>2</sup>.<br>
+
*of the square&nbsp; $p(t) =a^2(t) =\vert z(t)\vert^2$.<br>
  
[[File:P ID2111 Mob T 1 2 S3b v1.png|Realteil, Imaginärteil, Betrag und Betragsquadrat bei Rayleigh-Fading|class=fit]]<br>
 
  
Aus diesen Darstellungen geht hervor:
+
From these descriptions it is clear:
*Der Betrag besitzt eine [http://en.lntwww.de/Stochastische_Signaltheorie/Weitere_Verteilungen#Rayleighverteilung Rayleigh&ndash;WDF] &nbsp;&#8658;&nbsp; Name &bdquo;<i>Rayleigh&ndash;Fading</i>&rdquo;:
+
*The magnitude&nbsp; $a(t) =\vert z(t)\vert$&nbsp; has a&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rayleigh_PDF|$\text{Rayleigh PDF}$]] &nbsp;&#8658;&nbsp; hence the name "Rayleigh fading":
  
 
::<math>f_a(a) =
 
::<math>f_a(a) =
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm exp} [ -a^2/(2\sigma^2)] \\
+
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^{-a^2/(2\sigma^2)} \\
0  \end{array} \right.\quad
+
0  \end{array} \right.\hspace{0.15cm}
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} a \ge 0
+
\begin{array}{*{1}c} {\rm for}\hspace{0.1cm} a\hspace{-0.05cm} \ge \hspace{-0.05cm}0,
\\  {\rm f\ddot{u}r}\hspace{0.15cm} a < 0 \\ \end{array}
+
\\  {\rm for}\hspace{0.1cm} a \hspace{-0.05cm}<\hspace{-0.05cm} 0. \\ \end{array}
\hspace{0.05cm}.</math>
+
</math>
  
*Für die Momente erster bzw. zweiter Ordnung und die Varianz des Betrags <i>a</i>(<i>t</i>) = |<i>z</i>(<i>t</i>)| gilt:
+
*For the moments of first and second order and the variance of the absolute value function&nbsp; $a(t)$&nbsp; applies:
  
::<math>{\rm E}[a] = \sigma \cdot \sqrt {{\pi}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm E}[a^2] = 2 \cdot \sigma^2
+
::<math>{\rm E}\big [a \big] = \sigma \cdot \sqrt {{\pi}/{2}}\hspace{0.05cm},\hspace{0.5cm}{\rm E}\big[a^2 \big] = 2 \cdot \sigma^2</math>
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Var}[a] = \sigma_a^2 = \sigma^2 \cdot \left ( 2 - {\pi}/{2}\right )
+
::<math> \Rightarrow \hspace{0.3cm} {\rm Var}\big[a \big] = \sigma_a^2 = \sigma^2 \cdot \left ( 2 - {\pi}/{2}\right )
 
  \hspace{0.05cm}.  </math>
 
  \hspace{0.05cm}.  </math>
  
*Die WDF des Betragsquadrats <i>p</i>(<i>t</i>) ergibt sich durch [http://en.lntwww.de/Stochastische_Signaltheorie/Exponentialverteilte_Zufallsgr%C3%B6%C3%9Fen#Transformation_von_Zufallsgr.C3.B6.C3.9Fen nichtlineare Transformation] der WDF <i>f<sub>a</sub></i>(<i>a</i>) und führt zu einer Exponentialverteilung:
+
*The PDF of the absolute value square&nbsp; $p(t)$&nbsp; is given by&nbsp; [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|$\text{nonlinear transformation}$]]&nbsp; the PDF $f_a(a)$ &nbsp; &rArr; &nbsp; $f_p(p)$&nbsp; is exponentially distributed:
 +
 
 +
::<math>f_p(p) \hspace{-0.05cm}=\hspace{-0.05cm}
 +
\left\{ \begin{array}{c} (2\sigma^2)^{-1} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm e}^{-p^2\hspace{-0.05cm}/(2\sigma^2)} \\
 +
0  \end{array} \right.\hspace{0.05cm}
 +
\begin{array}{*{1}c} {\rm for}\hspace{0.15cm} p \hspace{-0.05cm}\ge \hspace{-0.05cm}0,
 +
\\  {\rm for}\hspace{0.15cm} p\hspace{-0.05cm} < \hspace{-0.05cm}0. \\ \end{array}
 +
</math>}}
  
::<math>f_p(p) =
 
\left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm exp} [ -p/(2\sigma^2)] \\
 
0  \end{array} \right.\quad
 
\begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} p \ge 0
 
\\  {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\ \end{array}
 
\hspace{0.05cm}.</math>
 
  
Weitere Informationen zum <i>Rayleigh&ndash;Fading</i> finden Sie in Aufgabe A1.3 und Aufgabe Z1.3.<br>
+
Further information about the&nbsp; Rayleigh fading&nbsp; can be found in the&nbsp;
 +
[[Aufgaben:Exercise 1.3: Rayleigh Fading|"Exercise 1.3"]]&nbsp; and the&nbsp; [[Aufgaben:Exercise 1.3Z: Rayleigh Fading Revisited|"Exercise 1.3Z"]].<br>
  
==Aufgaben==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:1.3 Rayleigh–Fading|A1.3 Rayleigh–Fading]]
+
[[Aufgaben:Exercise 1.3: Rayleigh Fading]]
  
[[Zusatzaufgaben:1.3 Nochmals Rayleigh–Fading?]]
+
[[Aufgaben:Exercise 1.3Z: Rayleigh Fading Revisited]]
  
==Quellenverzeichnis==
 
  
<references/>
 
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:40, 1 February 2023

A very general description of the mobile communication channel


To simplify the notation, the addition "TP" (Tiefpass   ⇒   low-pass)  is omitted in the following.  Thus the real signal  $s(t) = 1$  is present at the input of the mobile radio channel and the output signal  $r(t)$  is complex-valued.  Additional noise processes are excluded.

The radio signal  $s(t)$  can reach the receiver via a large number of paths, whereby the individual signal components are attenuated in different ways and delayed for different lengths.  In general, it is possible to express the received signal  (in the equivalent low-pass range)  without taking thermal noise into account as it follows:

\[r(t)= \sum_{k=1}^{K} \alpha_{k}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{k}(t)} \cdot s(t - \tau_{k}) \hspace{0.05cm}.\]

The following designations are used here:

  • The time dependent attenuation factor on the  $k$–th path is  $\alpha_k(t)$.
  • The time dependent phase progression on the  $k$–th path is  $\phi_k(t)$.
  • The time dependent runtime on the  $k$–th path is  $\tau_k(t)$.

The number  $K$  of (at least slightly) different paths is usually very large and unsuitable for direct modeling.

  • The model can be simplified considerably by combining paths with approximately equal delays.
  • So you only distinguish between  $M$  main paths, which are characterized by large differences in distance and thus noticeable differences in delay:
\[r(t)= \sum_{m=1}^{M} \hspace{0.1cm} \sum_{n=1}^{N_m} \alpha_{m,\hspace{0.04cm}n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{m,\hspace{0.04cm}n}(t)} \cdot s(t - \tau_{m,\hspace{0.04cm}n}) \hspace{0.05cm}.\]

The two equations given so far are identical.  A simplification results only if one replaces for each main path  $m \in \{1, \hspace{0.04cm}\text{...}\hspace{0.04cm}, M\}$  the  $N_m$  delays, which differ slightly due to reflections at fine structures as well as possibly due to diffraction and refraction phenomena, by a mean delay:

\[\tau_{m} = \frac{1}{N_m} \cdot \sum_{n=1}^{N_m} \tau_{m,\hspace{0.04cm}n} \hspace{0.05cm}.\]

$\text{Conclusion:}$  This gives the following intermediate result for mobile radio:   The  »received signal in the equivalent low-pass range«   can be represented as

\[r(t)= \sum_{m=1}^{M} z_m(t) \cdot s(t - \tau_{m}) \hspace{0.5cm} {\rm with} \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m} \alpha_{m,\hspace{0.04cm}n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi_{m,\hspace{0.04cm}n}(t)} \hspace{0.05cm}.\]

Frequency-selective fading vs. non-frequency-selective fading


Based on the equation just derived

\[r(t)= \sum_{m=1}^{M} z_m(t) \cdot s(t - \tau_{m}) \hspace{0.5cm} {\rm with} \hspace{0.5cm} z_m(t) = \sum_{n=1}^{N_m} \alpha_{m,\hspace{0.04cm}n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi_{m,\hspace{0.04cm}n}(t)} \hspace{0.05cm}\]

two important special cases can be derived:

  • If there is more than one main path  $(M \ge 2)$, one speaks of  multipath propagation.   As will be shown in the second main chapter   ⇒   "Frequency-selective transmission channels"  then  –  depending on the frequency  –  constructive or destructive overlaps up to complete extinction occur.
  • For some frequencies, multipath propagation proves to be favourable, for others, very unfavourable.  This effect is called  »frequency selective fading«.


With only one main path  $(M = 1)$  the above equation is simplified as follows  $($in this case the index "$m = 1$" will be omitted$)$:

\[r(t)= z(t) \cdot s(t - \tau) \hspace{0.05cm}.\]

The delay  $\tau$  causes here a constant transmission time for all frequencies, which does not need to be considered further.

$\text{Conclusion:}$  For  $M=1$  there is no superposition of signal components with noticeable differences in propagation time, thus also no frequency dependence of the total signal: 

\[r(t)= z(t) \cdot s(t) \hspace{0.5cm} {\rm with} \hspace{0.5cm} z(t) = \sum_{n=1}^{N} \alpha_{n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.02cm}\cdot \hspace{0.02cm} \phi_{n}(t)} \hspace{0.05cm}. \]

One speaks in this case of  »non-frequency selective fading«   or  »Flat Fading«  or  »Rayleigh Fading«.

Modeling of non-frequency-selective fading


The figure shows the model for generating non-frequency selective fading   ⇒   Rayleigh fading.

  • The received signal  $r(t)$  is obtained by multiplying the transmitted signal  $s(t)$  by the time function  $z(t)$.
  • It should be remembered again that all signals or time functions  $s(t)$,  $z(t)$  and  $r(t)$  refer to the equivalent low-pass range.


Rayleigh fading channel model

We now look at the multiplicative error  $z(t)\ne 1$  according to this Rayleigh model more precisely.  For the complex coefficient applies according to the last section:

\[z(t) = \sum_{n=1}^{N} \alpha_{n}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.04cm}\cdot \hspace{0.04cm} \phi_{n}(t) }= \sum_{n=1}^{N} \alpha_{n}(t) \cdot \cos\hspace{-0.1cm}\big [ \phi_{n}( t) \big ] + {\rm j}\cdot \sum_{n=1}^{N} \alpha_{n}(t) \cdot \sin\hspace{-0.1cm}\big [ \phi_{n}( t)\big ] \hspace{0.05cm}. \]

It should be noted about this equation and the above graph:

  • The time dependent attenuation  $\alpha_{n}(t)$  and the time dependent phase  $\phi_{n}(t)$  depend on the environmental conditions.
  • $\phi_{n}(t)$  captures the slightly different delays on the  $N$  paths and the  $\text{Doppler effect}$  due to the movement.
  • The time function  $z(t)$  is a complex quantity whose real and imaginary part denoted in the following as  $x(t)$  and  $y(t)$ .
  • A deterministic description of the random variable  $z(t) = x(t) + {\rm j}\cdot y(t)$  is not possible;  the functions  $x(t)$  and  $y(t)$ must be modeled by stochastic processes.
  • The two components  $x(t)$  and  $y(t)$  are each mean-free and have the same variance  $\sigma^2$:
\[{\rm E}[x(t)] = {\rm E}\big[y(t)\big] = 0\hspace{0.05cm}, \hspace{0.8cm}{\rm E}\big[x^2(t)\big] = {\rm E}\big[y^2(t)\big] = \sigma^2 \hspace{0.05cm}.\]
  • We observe the orthogonality of the real part and the imaginary part  (both cosine and sine of the same argument).  Thus the two components are also uncorrelated.  Only in the case of Gaussian random variables does the statistical independence of  $x(t)$  and  $y(t)$ follow from this.
  • Because of the Doppler effect, however, there are statistical dependencies within the real part  $x(t)$  and within the imaginary part  $y(t)$.  These two quantities are created in the above model by two  $\text{Digital Filters}$.

Exemplary signal curves with Rayleigh fading


The following graphs show signal curves of  $\text{100 ms}$  duration and the corresponding density functions.  These are screen shots of the Windows program  "Mobile Radio Channel"  from the (former) practical course  "Simulation of Digital Transmission Systems"  at the TU Munich.

$\text{Example 1:}$  In the following, exemplary signal curves for Rayleigh fading and the corresponding probability density functions are shown.  These time curve representations can be interpreted as follows:

Real part, imaginary part and phase response with Rayleigh fading
  • The real part is Gaussian distributed  (see upper right graph), as shown in the signal  $x(t)$.    Red is the Gaussian PDF $f_x(x)$ and blue is the histogram obtained by simulation over  $10\hspace{0.05cm}000$  samples.
  • The parameter used was a  $\text{maximum Doppler frequency}$  of  $f_{\rm D, \ max} = 100 \ \rm Hz$.  Therefore there are statistical bindings within the functions  $x(t)$  and  $y(t)$.  More details about the Doppler effect can be found in the next chapter.
  • The PDF  $f_y(y)$  of the imaginary part is identical to  $f_x(x)$.  The variance is  $\sigma_x^2 =\sigma_y^2 = 0. 5 \ (=\sigma^2)$.  Between  $x(t)$  and  $y(t)$  there are no statistical bindings;  the signals are orthogonal.
  • The phase  $\phi(t)$  is equally distributed between  $\pm\pi$.  As can be guessed from the jumping points in the phase function,  $\phi(t)$  can also assume larger values.  During the creation of the histogram, however, the ranges  $(2k+1)\cdot \pi$  were projected to the value range of  $-\pi$ ... $+\pi$   $(k$  integer$)$.
  • The equally distributed phase can be understood by means of the (not shown) 2D–PDF.  This is rotationally symmetrical and accordingly there is no preferred direction:
\[f_{x,\hspace{0.02cm}y}(x, y) = \frac{1}{2\pi \cdot \sigma^2} \cdot {\rm e}^{ -(x^2 + y^2)/(2\sigma^2)} .\]


Real part, imaginary part, absolute value and square of absolute value for Rayleigh fading

$\text{Example 2}$  in continuation to  $\text{Example 1}$:

This graphic shows on the

  • left:  the real part  $x(t)$  and the imaginary part  $y(t)$  of  $z(t)$ ;
  • right:  the PDF $f_x(x)$;  the PDF $f_y(y)$ has exactly the same form.


Underneath it are the gradient and PDF

  • of the magnitude  $a(t) =\vert z(t)\vert$  and
  • of the square  $p(t) =a^2(t) =\vert z(t)\vert^2$.


From these descriptions it is clear:

  • The magnitude  $a(t) =\vert z(t)\vert$  has a  $\text{Rayleigh PDF}$  ⇒  hence the name "Rayleigh fading":
\[f_a(a) = \left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^{-a^2/(2\sigma^2)} \\ 0 \end{array} \right.\hspace{0.15cm} \begin{array}{*{1}c} {\rm for}\hspace{0.1cm} a\hspace{-0.05cm} \ge \hspace{-0.05cm}0, \\ {\rm for}\hspace{0.1cm} a \hspace{-0.05cm}<\hspace{-0.05cm} 0. \\ \end{array} \]
  • For the moments of first and second order and the variance of the absolute value function  $a(t)$  applies:
\[{\rm E}\big [a \big] = \sigma \cdot \sqrt {{\pi}/{2}}\hspace{0.05cm},\hspace{0.5cm}{\rm E}\big[a^2 \big] = 2 \cdot \sigma^2\]
\[ \Rightarrow \hspace{0.3cm} {\rm Var}\big[a \big] = \sigma_a^2 = \sigma^2 \cdot \left ( 2 - {\pi}/{2}\right ) \hspace{0.05cm}. \]
  • The PDF of the absolute value square  $p(t)$  is given by  $\text{nonlinear transformation}$  the PDF $f_a(a)$   ⇒   $f_p(p)$  is exponentially distributed:
\[f_p(p) \hspace{-0.05cm}=\hspace{-0.05cm} \left\{ \begin{array}{c} (2\sigma^2)^{-1} \hspace{-0.05cm}\cdot \hspace{-0.05cm} {\rm e}^{-p^2\hspace{-0.05cm}/(2\sigma^2)} \\ 0 \end{array} \right.\hspace{0.05cm} \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} p \hspace{-0.05cm}\ge \hspace{-0.05cm}0, \\ {\rm for}\hspace{0.15cm} p\hspace{-0.05cm} < \hspace{-0.05cm}0. \\ \end{array} \]


Further information about the  Rayleigh fading  can be found in the  "Exercise 1.3"  and the  "Exercise 1.3Z".

Exercises for the chapter


Exercise 1.3: Rayleigh Fading

Exercise 1.3Z: Rayleigh Fading Revisited