Envelope Demodulation

From LNTwww

Functionality under ideal conditions


Wie first assume the following conditions:

  • Let the source signal  $q(t)$  be free of a DC component and limited in magnitude to  $q_{\rm max}$ .
  • The transmission is based on the modulation method „DSB–AM with carrier”. 
  • For simplicity of representation, the carrier phase is set to  $\mathbf{ϕ_{\rm T} } = 0$  without restricting generality:
$$s(t) = \left(q(t) + A_{\rm T}\right) \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}.$$
  • Let the modulation depth be $m ≤ 1$.  Therefore, from the definition $m = q_{\rm max}/A_{\rm T}$  it also follows that  $q(t) + A_{\rm T} ≥ 0$.
  • Let the channel be ideal, that is, there is no distortion, no attenuation, no delay, and no (noise) interference.
  • Thus, when  $H_{\rm K}(f) = 1$  and  $n(t) \equiv 0$  we get
$$r(t) = s(t) = a(t) \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}$$
for the received signal.
  • In this equation,  $a(t)$  describes the   envelope of  $r(t)$.  The phase function is  $\mathbf{ϕ}(t) = 0$.


$\text{Definition:}$   An   envelope demodulator  detects the envelope  $a(t)$  of its input signal  $r(t)$  and outputs it as a sink signal after eliminating the DC component  $A_{\rm T}$ :

$$v(t) = a(t) - A_{\rm T}\hspace{0.05cm}.$$

The removal of the DC component  $A_{\rm T}$  can be realized, for example, by a high-pass filter that allows all frequencies to pass unimpeded except for $f = 0$ .}


  • If all the above conditions are met, then $v(t) = q(t)$ holds.
  • This means that an ideal message communication system can certainly be realized with an (ideal) envelope demodulator.


Signal waveforms illustrating envelope demodulation

$\text{Example 1:}$   In the graph, the received signal  $r(t) = s(t)$  is shown below, and is based on "DSB–AM with carrier” $($modulation depth  $m = 0.5)$.

  • The envelope  $a(t)$  to be evaluated by the envelope demodulator is equal to the sum of the source signal  $q(t)$  and the DC component  $A_{\rm T}$ added at the transmitter.
  •  $v(t) = q(t)$ holds for the demodulator output signal after removing the DC component  $A_{\rm T}$  with a high-pass filter, assuming that the source signal  $q(t)$  did not include a DC component.   Such a component would (wrongly) also be removed by the high-pass filter.


Realizing an envelope demodulator

rechts

The adjacent graph shows:

  • above, a simple possible realization of the envelope demodulator above,
  • below, the signals  $r(t)$  and  $w(t)$  to illustrate the principle.


Betrachten Sie zunächst den mit  $T = T_{\rm opt}$  bezeichneten mittleren Signalausschnitt.

Der erste Schaltungsteil – bestehend aus einer Diode und der Parallelschaltung eines Widerstandes  $R$  und einer Kapazität  $C$  – erfüllt folgende Aufgaben:

  • Ist das (hell)grau gezeichnete Signal  $r(t)$  größer als die Spannung  $w(t)$  an  $R$  und  $C$, so leitet die Diode, es gilt  $w(t) = r(t)$  und die Kapazität $C$ wird aufgeladen.  In diesen Bereichen ist das Signal  $w(t)$  grün gezeichnet.
  • Gilt  $r(t) < w(t)$  wie zu den violett markierten Zeiten, so sperrt die Diode und die Kapazität entlädt sich über den Widerstand  $R$.  Das Signal  $w(t)$  fällt exponentiell mit der Zeitkonstanten  $T = R · C$  ab.
  • Ab den mit Kreisen markierten Zeitpunkten gilt wieder  $r(t) > w(t)$  und die Kapazität wird wieder aufgeladen.  Man erkennt aus der Skizze, dass  $w(t)$  "in etwa" mit der Hüllkurve  $a(t)$  übereinstimmt.


$\text{Design-Kriterien:}$  

  • Die Abweichungen zwischen der Hüllkurven–Näherung  $w(t)$  und dessen Sollfunktion  $a(t)$  sind um so geringer, je größer die Trägerfrequenz  $f_{\rm T}$  im Vergleich zur Bandbreite  $B_{\rm NF}$  des niederfrequenten Nachrichtensignals ist.  Als Richtwert wird oft  $f_{\rm T} ≥ 100 · B_{\rm NF}$  angegeben.
  • Gleichzeitig sollte die Zeitkonstante  $T$  des RC–Parallelschwingkreises stets sehr viel größer als  $1/f_{\rm T}$  und sehr viel kleiner als  $1/B_{\rm NF}$  sein.  Ein guter Kompromiss ist das geometrische Mittel zwischen beiden Grenzen:
$$1/f_{\rm T}\hspace{0.1cm} \ll \hspace{0.1cm} T \hspace{0.1cm} \ll \hspace{0.1cm} 1/B_{\rm NF} \hspace{0.05cm}, \hspace{2cm} T_{\rm opt} = {1}/{\sqrt{f_{\rm T} \cdot B_{\rm NF} } } \hspace{0.05cm}.$$
  • Ist die Zeitkonstante  $T$  zu klein wie im linken Bereich obiger Skizze, so entlädt der Kondensator stets zu schnell und die Abweichung  $w(t) \ – \ a(t)$  ist unnötig groß.
  • Auch ein zu großer Wert  $T > T_{\rm opt}$  führt zu einer Verschlechterung, wie im rechten Signalausschnitt dargestellt.  In diesem Fall kann  $w(t)$  der Hüllkurve  $a(t)$  nicht mehr folgen.


$\text{Beispiel 2:}$   Bei einer NF–Bandbreite von  $5 \ \rm kHz$  sollte die Trägerfrequenz mindestens  $500 \ \rm kHz$  gewählt werden.

  • Die Zeitkonstante  $T$  muss sehr viel größer als  $1/f_{\rm T} = 2 \ \rm µ s$  und gleichzeitig sehr viel kleiner als  $1/B_{\rm NF} = 200 \ \rm µ s $ sein.
  • Der optimale Wert entsprechend der Kompromissformel ist dann:
$$T_{\rm opt} = 1/\sqrt{ 5 \cdot 10^5 \ {\rm Hz} \cdot 5 \cdot 10^3 \ {\rm Hz} } = 20 \ \rm µ s \hspace{0.05cm}.$$


Beschreibung des Hüllkurvendemodulators im Frequenzbereich

Die rechte Grafik soll die Wirkungsweise des Hüllkurvendemodulators im Frequenzbereich verdeutlichen.  Das Spektrum  $W(f)$  des Signals  $w(t)$  an der RC–Parallelschaltung unterscheidet sich vom Spektrum  $Q(f)$  des Quellensignals wie folgt:

  • Aufgrund des beim Sender zugesetzten Trägersignals  $z(t)$  beinhaltet die Spektralfunktion  $W(f)$  eine Diraclinie bei  $f = 0$  mit dem Gewicht  $A_{\rm T}$  (Trägeramplitude).
  • $W(f)$  weist zudem auch Spektralanteile im Bereich um die Trägerfrequenz  $f_{\rm T}$  auf, die sich mit dem gezackten Zeitverlauf  $w(t)$  erklären lassen  (siehe erste Grafik zu diesem Abschnitt).
  • Auch im NF–Bereich unterscheidet sich  $W(f)$  gegenüber  $Q(f)$  geringfügig.  Der Fehler wird dabei um so geringer sein, je größer die Trägerfrequenz im Vergleich zur NF-Bandbreite ist.


Die zwei erstgenannten Signalverfälschungen werden durch den Hochpass und den Tiefpass eliminiert, die zusammen einen Bandpass ergeben.  Es bleibt aber auch eine geringfügige Abweichung zwischen dem Sinkensignal  $v(t)$  und dem Quellensignal  $q(t)$  im interessanten Bereich  $0 < f < B_{\rm NF}$  erhalten, wie aus dem Vergleich des rot eingezeichneten Ausgangsspektrums  $V(f)$  und des blau hinterlegten Eingangsspektrums  $Q(f)$  hervorgeht.

Warum die Hüllkurvendemodulation bei  $m > 1$  versagt


Hüllkurvendemodulation mit  $m < 1$  (oben) und  $m > 1$  (unten)

Die Grafik zeigt die ZSB–AM–Signale für  $m = 0.5$  und  $m = 2$. 

Aus dieser Darstellung erkennt man folgende Unterschiede:

  • Bei einem Modulationsgrad  $m ≤ 1$  gilt für die Hüllkurve des Bandpass–Signals:
$$a(t) = q(t) + A_{\rm T}\hspace{0.05cm}.$$
Hier ist mit dem Hüllkurvendemodulator eine ideale Demodulation möglich   ⇒ $v(t) = q(t)$, wenn man das unvermeidbare Rauschen außer Betracht lässt.
  • Dagegen gilt bei  $m > 1$  folgender Zusammenhang:
$$a(t) = <div style="clear:both;"> </div> </div> = 0.102,\hspace{0.3cm}K_3 = {|A_{\rm 3}|}/{A_{\rm 1}} = 0.082,\hspace{0.3cm}K_4 = {|A_{\rm 4}|}/{A_{\rm 1}} = 0.058,\hspace{0.1cm}\text{...}$$
$$\Rightarrow \hspace{0.3cm}K = \sqrt{K_2^2 + K_3^2 + K_4^2 +\text{...} } \approx 15 \%.$$

Im Kapitel  Qualitätskriterien  wurde gezeigt, dass damit auch das SNR  $ρ_v = 1/K^2 ≈ 44$  festliegt.  $ρ_v$  $($nicht aber  $K)$  kann zudem auch dann als Qualitätskriterium herangezogen werden, wenn  $q(t)$  mehr als eine Frequenz beinhaltet   ⇒   Herleitung im Buch  Lineare zeitinvariante Systeme.

Berücksichtigung von Kanalverzerrungen


Für die folgenden Betrachtungen setzen wir das Modulationsverfahren „ZSB–AM mit Träger” sowie ein cosinusförmiges Quellensignal  $q(t)$  voraus. Die Amplituden von Nachrichten– und Trägersignal seien  $A_{\rm N} = 4 \ \rm V$  und  $A_{\rm T} = 5 \ \rm V $   ⇒   Modulationsgrad  $m = 0.8$. Damit ist (ideale) Hüllkurvendemodulation prinzipiell anwendbar.

Spektren und Signale zur Verdeutlichung der Hüllkurvendemodulation

Die Grafik zeigt von oben nach unten

  • die Spektren  $S_{\rm TP}(f)$  und  $R_{\rm TP}(f)$  des äquivalenten Tiefpass–Signals, die als reell angenommen werden,
  • die äquivalenten Tiefpass–Signale  $s_{\rm TP}(t)$  und  $r_{\rm TP}(t)$  in der komplexen Ebene, und schließlich
  • die physikalischen Signale  $s(t)$  und  $r(t)$.



Die linke Bildhälfte zeigt die Senderseite und gibt gleichzeitig die Verhältnisse am Empfänger bei idealem Kanal an.

  • Wegen des Modulationsgrades  $m ≤ 1$  erkennt man in der Hüllkurve  $a(t)$  das Quellensignal  $q(t)$.   Demzufolge ist Hüllkurvendemodulation bei gewissen Voraussetzungen ohne Verzerrungen anwendbar, wie im  $\text{Beispiel 4}$  gezeigt wird.


  • Die rechte Hälfte berücksichtigt unsymmetrische Verzerrungen durch den Kanal.  Der Träger wird hier mit  $α_{\rm T} = 0.8$  gedämpft, das obere Seitenband sogar mit  $α_{\rm O} = 0.5$.  Nun verläuft die Hüllkurve  $a(t) ≠ q(t) + A_{\rm T}$  nicht mehr cosinusförmig   ⇒   Hüllkurvendemodulation führt hier zu nichtlinearen Verzerrungen wie im  $\text{Beispiel 5}$  gezeigt.


Hüllkurvendemodulation bei idealem Kanal

$\text{Beispiel 4:}$   Es gelte weiterhin  $A_{\rm N} = 4 \ \rm V$  und  $A_{\rm T} = 5 \rm V$   ⇒   Modulationsgrad  $m = 0.8$.

Die Grafik verdeutlicht den Einsatz eines idealen Hüllkurvendemodulators bei idealem Kanal, wobei folgende Identitäten berücksichtigt sind:

$$R_{\rm TP}(f) \hspace{-0.05cm}=\hspace{-0.05cm} S_{\rm TP}(f) \hspace{0.02cm}, \hspace{0.15cm} r_{\rm TP}(t) \hspace{-0.05cm}=\hspace{-0.05cm} s_{\rm TP}(t) \hspace{0.02cm}, \hspace{0.15cm} r(t) \hspace{-0.05cm}=\hspace{-0.05cm} s(t) \hspace{0.02cm}.$$

Man erkennt aus diesen Darstellungen:

  • Der den Träger beschreibende rote Zeiger der Länge  $A_{\rm T}$  liegt fest.
  • Das obere Seitenband (blau) dreht in mathematisch positiver Richtung, das untere Seitenband (grün) entgegengesetzt.
  • Da der blaue und der grüne Zeiger beide mit der gleichen Winkelgeschwindigkeit  $ω_{\rm N}$  drehen, aber in entgegengesetzte Richtungen, ist die vektorielle Summe aller Zeiger stets reell.
  • Ist der Modulationsgrad  $m ≤ 1$, so gilt für alle Zeiten  $r_{\rm TP}(t) ≥ 0$  und  $ϕ(t) = 0$. Das bedeutet, dass die Nulldurchgänge des Empfangssignals  $r(t)$  genau mit denen des Trägersignals  $z(t)$  übereinstimmen.
  • Die Hüllkurve  $a(t)$  des physikalischen Signals  $r(t)$  ist gleich der resultierenden Zeigerlänge, also gleich dem Betrag von  $r_{\rm TP}(t)$. Wegen  $m< 1$  gilt  $a(t) = q(t) + A_{\rm T}$.
  • Bei den gegebenen Amplitudenwerten liegt die Ortskurve  $r_{\rm TP}(t)$  auf der reellen Achse zwischen den Endpunkten  $A_{\rm T} \ – \ A_{\rm N} = 1\ \rm V$  und  $A_{\rm T} + A_{\rm N} = 9 \ \rm V$.
  • Die Ortskurve auf der reellen Achse in der rechten Halbebene ist ein Indiz dafür, dass das Nachrichtensignal durch einen Hüllkurvendemodulator verzerrungsfrei extrahiert werden kann.


Hüllkurvendemodulation bei verzerrendem Kanal

$\text{Beispiel 5:}$   Betrachten wir nun die gleichen Grafiken für den verzerrenden Kanal mit

  • $α_{\rm U} = 1$   ⇒   das untere Seitenband (USB) wird nicht verändert,
  • $α_{\rm T} = 0.8$   ⇒   der Träger wird etwas gedämpft,
  • $α_{\rm U} = 0.5$  ⇒   das obere Seitenband (OSB) wird mehr gedämpft.


Diese Grafiken lassen sich wie folgt interpretieren:

  • Aufgrund der unterschiedlichen Längen von grünem Zeiger (USB) und blauem Zeiger (OSB) wird die Ortskurve zu einer Ellipse, deren Mittelpunkt durch den (roten) Träger festliegt.
  • Der Winkel zwischen dem komplexwertigen  $r_{\rm TP}(t)$  und dem Koordinatenursprung ist nun nicht mehr durchgängig  $ϕ(t) = 0$, sondern schwankt zwischen  $±ϕ_{\rm max}.$
  • Die maximale Phase ist gleich dem Winkel der Tangente an die Ellipse. Im physikalischen Signal führt  $ϕ(t) ≠ 0$  zu Verschiebungen der Nulldurchgänge von  $r(t)$  gegenüber seinen Solllagen – vorgegeben durch das Trägersignal  $z(t)$.
  • Der Betrag  $a(t) = \vert r_{\rm TP}(t) \vert$ – also die Hüllkurve von  $r(t)$ – ist nun nicht mehr cosinusförmig und das Signal nach dem Hüllkurvendemodulator beinhaltet außer der Frequenz  $f_{\rm N}$  auch Oberwellen:
$$v(t) = A_{\rm 1} \cdot \cos(\omega_{\rm N}\cdot t ) +A_{\rm 2} \cdot \cos(2\omega_{\rm N}\cdot t )+A_{\rm 3} \cdot \cos(3\omega_{\rm N} \cdot t )+ \text{...}$$
  • Diese führen zu nichtlinearen Verzerrungen und werden durch den Klirrfaktor  $K$  erfasst.
    Mit  $A_{\rm N} = 4 \ \rm V$,  $A_{\rm T} = 5 \ \rm V$,  $α_{\rm U} = 1$  und  $α_{\rm T} = 0.8$  ergeben sich in Abhängigkeit von  $α_{\rm O}$  folgende Zahlkenwerte:
$α_{\rm O} = 1.00$:     $K = 0$   ⇒   lediglich der Träger wird gedämpft,
$α_{\rm O} = 0.75$:     $K ≈ 0.4\%$,
$α_{\rm O} = 0.50$:     $K ≈ 1.5\%$  ⇒   dieser Wert ist der Grafik zugrunde gelegt,
$α_{\rm O} = 0.25$:     $K ≈ 4\%$,
$α_{\rm O} = 0.00$:     $K ≈ 10\%$   ⇒   vollständige Unterdrückung des OSB.
  • Die Grafik gilt für  $α_{\rm O} = 0.5$.  Dann kommt es (allerdings ist beides mit dem bloßen Auge nur schwer zu erkennen)
  • zu Verschiebungen der Nulldurchgänge im Signal  $r(t)$  um maximal  $25^\circ\hspace{-0.05cm}/360^\circ ≈ 7\%$ der Trägerperiode $T_0$, und
  • zur Abweichung von der idealen Cosinusform   ⇒   $K ≈ 1.5\%$ .


Symmetrische Kanalverzerrungen – Dämpfungsverzerrungen


Ein wesentliches Ergebnis des letzten Abschnitts war, dass es bei unsymmetrischen linearen Verzerrungen auf dem Kanal zu nichtlinearen Verzerrungen bezüglich des Nachrichtensignals kommt.  Wird dagegen das untere Seitenband in gleicher Weise gedämpft wie das obere Seitenband, so ist die Ortskurve wieder eine horizontale Gerade und es entstehen keine nichtlinearen Verzerrungen.  Vielmehr sind dann die Verzerrungen bezüglich  $q(t)$  und  $v(t)$ – ebenso wie die Verzerrungen bezüglich  $s(t)$  und  $r(t)$ – linear und können durch ein geeignet dimensioniertes Filter entzerrt werden.


Wir gehen hier von folgenden Voraussetzungen aus:

  • Quellensignal  $q(t)$  – bestehend aus zwei Cosinusanteilen bei den Frequenzen  $f_1$  und  $f_2$  mit den Amplituden  $A_1$  und  $A_2$;
  • ZSB–AM mit Träger   ⇒   das Sendesignal  $s(t)$  setzt sich aus insgesamt fünf Cosinusschwingungen bei den Frequenzen  $f_{\rm T},  f_{\rm T} ± f_1$  und  $f_{\rm T} ± f_2$  zusammen;
Spektren im äquivalenten Tiefpass-Bereich
  • Kanal mit Dämpfungsverzerrungen, symmetrisch um die Trägerfrequenz:
$$H_{\rm K} (f = f_{\rm T})= \alpha_0, \hspace{0.3cm} H_{\rm K} (f = \pm f_{\rm 1})= \alpha_1, \hspace{0.3cm}H_{\rm K} (f = \pm f_{\rm 2})= \alpha_2;$$
  • Idealer Hüllkurvendemodulator gemäß der Beschreibung in diesem Abschnitt.


Die Grafik zeigt die Spektralfunktionen der äquivalenten Tiefpass–Signale von Sende– und Empfangssignal.  Anhand dieses Bildes sind folgende Aussagen möglich:

  • Das äquivalente Tiefpass–Signal  $r_{\rm TP}(t)$  ist reell.  Die Ortskurve – also die Spitze des Zeigerverbundes in der komplexen Ebene – liegt auch hier wieder auf der reellen Achse.
  • Ist  $α_0 · A_{\rm T}$  größer als  $α_1 · A_1 + α_2 · A_2,$ so ist der „Modulationsgrad des Empfangssignals” kleiner als  $1$  und es kommt nicht zu nichtlinearen Verzerrungen.
  • Das Sinkensignal nach idealer Hüllkurvendemodulation und Eliminierung des Gleichanteils  $α_0 · A_{\rm T}$  durch den nachgeschalteten Hochpass lautet:
$$v(t) = \alpha_1 \cdot A_{\rm 1} \cdot \cos(2 \pi f_{\rm 1} t ) + \alpha_2 \cdot A_{\rm 2} \cdot \cos(2 \pi f_{\rm 2} t ) \hspace{0.05cm}.$$
  • Das bedeutet:   Es kommt zu linearen Verzerrungen (Dämpfungsverzerrungen), falls  $α_2 ≠ α_1$  ist.  Wäre die Symmetrie bezüglich  $f_{\rm T}$  nicht gegeben, so würden nichtlineare Verzerrungen entstehen.


Wir verweisen auf das Lernvideo  Lineare und nichtlineare Verzerrungen.

Einfluss von Rauschstörungen


Sinkenstörabstand bei "ZSB-AM mit/ohne Träger" und Hüllkurvendemodulation

Ausgehend von der Systemkonfiguration

  • ZSB–Amplitudenmodulation mit Modulationsgrad  $m ≤ 1$  sowie
  • bestmöglich angepasste Hüllkurvendemodulation


wird nun der Einfluss von additivem Rauschen abgeschätzt.  Verzerrungen jeglicher Art – beispielsweise bedingt durch einen ungeeigneten Kanal oder die nichtperfekte Realisierung von Modulator und Demodulator – werden ausgeschlossen.


Die Grafik zeigt den Sinkenstörabstand  $10 · \lg \, ρ_v$  bei unterschiedlichem Modulationsgrad  $m$  in Abhängigkeit der logarithmierten Leistungskenngröße

$$10 \cdot {\rm lg }\hspace{0.1cm} \xi = 10 \cdot {\rm lg }\hspace{0.1cm} \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}} \hspace{0.05cm}.$$

Das Ergebnis des Hüllkurvendemodulators ist mit durchgezogenen Linien markiert, während die gestrichelten Geraden den Synchrondemodulator kennzeichnen.

Wie bereits in Kapitel  Untersuchungen im Hinblick auf Signalverzerrungen  hergeleitet wurde, ergeben sich für den Synchrondemodulator in dieser doppelt–logarithmischen Darstellung

  • die Winkelhalbierende  (für  $m → ∞$, ZSB–AM ohne Träger), bzw.
  • hierzu parallel verschobene Gerade mit vertikalem Abstand  $10 · \lg \, (1 + 2/m^2$).


Bei Anwendung von Hüllkurvendemodulation sind folgende Unterschiede festzustellen:

  • Ein Hüllkurvendemodulator ist für  $m > 1$  nicht sinnvoll, da dadurch starke nichtlineare Verzerrungen entstehen würden.
  • Die durchgehend gezeichneten Kurven für den Hüllkurvendemodulator  $\rm (HKD)$  liegen stets unterhalb der für den Synchrondemodulator  $\rm (SD)$  gültigen gestrichelten Geraden, wenn man vom gleichen Modulationsgrad  $m$  ausgeht.
  • Ab einem gewissen Wert der Leistungskenngröße  $ξ$  sind die  $\rm HKD$–Kurven von den  $\rm SD$–Geraden innerhalb der Zeichengenauigkeit nicht mehr zu unterscheiden.


Mehr Informationen zu dieser Thematik finden Sie beispielsweise in  [Kam 04][1].


Argumente für und gegen den Hüllkurvendemodulator


Der wichtigste Grund für die Verwendung des Hüllkurvendemodulators ist  (besser gesagt:  war), dass damit die oft aufwändige Frequenz– und Phasensynchronisation vermieden wurde, so dass dieser preisgünstig realisiert werden konnte.  Der Hüllkurvendemodulator ist somit ein Beispiel eines inkohärenten Demodulators.

Für den  Synchrondemodulator  und gegen den Hüllkurvendemodulator können dagegen mehrere Gründe angeführt werden:

  • Bei Hüllkurvendemodulation muss eine Übermodulation  $(m > 1)$  unter allen Umständen vermieden werden.  Dies erreicht man beispielsweise durch die Amplitudenbegrenzung des Quellensignals, was aber ebenfalls nichtlineare Verzerrungen zur Folge hat.
  • Bei sonst gleichen Randbedingungen ist ein Modulationsgrad  $m < 1$  nur durch die Erhöhung der Sendeleistung um mindestens den Faktor  $3$  zu erreichen.  Dies ist auch wegen der berechtigten Diskussionen zum Thema „Elektro-Smog” in großen Teilen unserer Gesellschaft problematisch.
  • Lineare Kanalverzerrungen können bei einem Hüllkurvendemodulator zu irreversiblen nichtlinearen Verzerrungen führen, während die bei Synchrondemodulation entstehenden linearen Verzerrungen möglicherweise durch besondere Maßnahmen beim Empfänger kompensiert werden können.

Aufgaben zum Kapitel


Aufgabe 2.7: Ist der Modulationsgrad zu groß?

Aufgabe 2.7Z: ZSB-AM und Hüllkurvendemodulator

Aufgabe 2.8: Unsymmetrischer Kanal

Aufgabe 2.9: Symmetrische Verzerrungen


Quellenverzeichnis

  1. Kammeyer, K.D.: Nachrichtenübertragung. Stuttgart: B.G. Teubner, 4. Auflage, 2004.