Difference between revisions of "Signal Representation/Fourier Series"

From LNTwww
m (Text replacement - "Signal_Representation/Gesetzm%C3%A4%C3%9Figkeiten_der_Fouriertransformation" to "Signal_Representation/Fourier_Transform_Laws")
Line 2: Line 2:
 
{{Header
 
{{Header
 
|Untermenü=Periodische Signale
 
|Untermenü=Periodische Signale
|Vorherige Seite=Harmonische Schwingung
+
|Vorherige Seite=Harmonic Oscillation
|Nächste Seite=Fouriertransformation und -rücktransformation
+
|Nächste Seite=Fourier Transform and Its Inverse
 
}}
 
}}
  
  
==Allgemeine Beschreibung==
+
==General Description==
 
<br>
 
<br>
Jede periodische Funktion&nbsp; $x(t)$&nbsp; kann in allen Bereichen, in denen sie stetig ist oder nur endlich viele Sprungstellen aufweist, in eine trigonometrische Reihe entwickelt werden, die man als Fourierreihe bezeichnet.
+
Every periodic function&nbsp; $x(t)$&nbsp; can be fragmented into a trigonometric series, which is called Fourier series, in all areas, where it is continuous or has only finite discontinuities.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
Die&nbsp; '''Fourierreihe'''&nbsp; eines periodischen Signals&nbsp; $x(t)$&nbsp; lautet wie folgt:
+
The&nbsp; '''Fourier series''' &nbsp; of a periodic signal&nbsp; $x(t)$&nbsp; is defined as follows
 
   
 
   
 
:$$x(t) =A_0+\sum^{\infty}_{n=1}A_{\it n} \cdot\cos(n \omega_0 t)+\sum^{\infty}_{n=1} B_n \cdot \sin(n \omega_0 t).$$
 
:$$x(t) =A_0+\sum^{\infty}_{n=1}A_{\it n} \cdot\cos(n \omega_0 t)+\sum^{\infty}_{n=1} B_n \cdot \sin(n \omega_0 t).$$
  
Hierbei bezeichnen:
+
Here the symbols denote the following definitions:
*$A_0$&nbsp; den&nbsp; '''Gleichanteil'''&nbsp; von&nbsp; $x(t)$,
+
*$A_0$&nbsp; the&nbsp; '''constant component'''&nbsp; of&nbsp; $x(t)$,
*$A_n$&nbsp; die&nbsp; '''Cosinuskoeffizienten'''&nbsp; mit&nbsp; $n \ge 1$,
+
*$A_n$&nbsp; the&nbsp; '''cosine coefficients'''&nbsp; with&nbsp; $n \ge 1$,
*$B_n$&nbsp; die&nbsp; '''Sinuskoeffizienten'''&nbsp;  mit&nbsp; $n \ge 1$,
+
*$B_n$&nbsp; the&nbsp; '''sine coefficients'''&nbsp;  mit&nbsp; $n \ge 1$,
*$\omega_0 = 2\pi/T_0$&nbsp; die&nbsp; '''Grundkreisfrequenz'''&nbsp; des periodischen Signals&nbsp; $(T_0$ ist die Periodendauer$)$.}}
+
*$\omega_0 = 2\pi/T_0$&nbsp;the&nbsp; '''angular frequency'''&nbsp; of the periodic signal&nbsp; $(T_0$ is the period duration$)$.}}
  
  
Soll die Fourierreihe mit dem tatsächlichen periodischen Signal&nbsp; $x(t)$&nbsp; exakt übereinstimmen, so müssen im Allgemeinen unendlich viele Cosinus– und Sinuskoeffizienten zur Berechnung herangezogen werden.  
+
If the Fourier series is to exactly match the actual periodic signal&nbsp; $x(t)$&nbsp;, an infinite number of cosine and sine coefficients must generally be used for calculation.  
  
*Bricht man die Fourierreihe ab und verwendet jeweils nur&nbsp; $N$&nbsp; dieser Koeffizienten&nbsp; $A_n$&nbsp; und&nbsp; $B_n$, so ergibt sich bis auf einige Sonderfälle ein etwas anderer Funktionsverlauf:
+
*If the Fourier series is interrupted and only&nbsp; $N$&nbsp; of&nbsp; $A_n$&nbsp; and&nbsp; $B_n$ coefficients is used, then a slightly different plot of the function results except for some special cases:
 
   
 
   
 
:$$x_ N(t) =A_0+\sum^N_{n=1}A_ n \cdot \cos(n \omega_0 t)+\sum^N_{n=1} B_{n} \cdot \sin(n \omega_0 t).$$
 
:$$x_ N(t) =A_0+\sum^N_{n=1}A_ n \cdot \cos(n \omega_0 t)+\sum^N_{n=1} B_{n} \cdot \sin(n \omega_0 t).$$
  
*Zwischen dem periodischen Signal&nbsp; $x(t)$&nbsp; und der Fourierreihenapproximation&nbsp; $x_N(t)$&nbsp; gilt der Zusammenhang:
+
*The relation between the periodic signal&nbsp; $x(t)$&nbsp; and the Fourier series approximation&nbsp; $x_N(t)$&nbsp; holds:
 
   
 
   
 
:$$x(t)=\lim_{N\to \infty} x_{N}(t).$$
 
:$$x(t)=\lim_{N\to \infty} x_{N}(t).$$
  
*Ist&nbsp; $N \cdot f_0$&nbsp; die höchste im Signal&nbsp; $x(t)$&nbsp; vorkommende Frequenz, so gilt natürlich&nbsp; $x_N(t) = x(t)$.
+
*If &nbsp; $N \cdot f_0$&nbsp; is the highest frequency occurring in the signal&nbsp; $x(t)$&nbsp; then of course&nbsp; $x_N(t) = x(t)$.
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp;
+
$\text{Example 1:}$&nbsp;
Wir betrachten zwei periodische Rechtecksignale, jeweils mit der Periodendauer&nbsp; $T_0$&nbsp; und der Grundkreisfrequenz&nbsp; $\omega_0 = 2\pi/T_0$.  
+
We consider two periodic square wave signals, each with the period duration&nbsp; $T_0$&nbsp; and the fundamental frequency&nbsp; $\omega_0 = 2\pi/T_0$.  
[[File:P_ID525__Sig_T_2_4_S1_neu.png|right|frame|Gerades und ungerades Rechtecksignal]]
+
[[File:P_ID525__Sig_T_2_4_S1_neu.png|right|frame|Even and Odd Rectangle Pulse]]
*Für das oben skizzierte gerade Zeitsignal gilt: &nbsp; $x_{\rm g}(-t) = x_{\rm g}(t)$.  
+
*For the even time signal sketched above: &nbsp; $x_{\rm g}(-t) = x_{\rm g}(t)$.  
*Dagegen ist die unten dargestellte Funktion ungerade: &nbsp;$x_{\rm u}(-t) = -x_{\rm u}(t)$.
+
*The function shown below is odd: &nbsp;$x_{\rm u}(-t) = -x_{\rm u}(t)$.
  
  
In Formelsammlungen findet man die&nbsp; ''Fourierreihendarstellungen''&nbsp; beider Signale:
+
One finds the&nbsp; ''fourier series representations''&nbsp; of both signals in formularies:
 
   
 
   
 
:$$x_{\rm g}(t)=\frac{4}{\pi}\left [ \cos(\omega_0  t)-\frac{1}{3}\cdot \cos(3 \omega_0  t)+\frac{1}{5}\cdot\cos(5 \omega_0  t)- \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm}\right ],$$
 
:$$x_{\rm g}(t)=\frac{4}{\pi}\left [ \cos(\omega_0  t)-\frac{1}{3}\cdot \cos(3 \omega_0  t)+\frac{1}{5}\cdot\cos(5 \omega_0  t)- \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm}\right ],$$
Line 51: Line 51:
 
:$$x_{\rm u}(t)=\frac{4}{\pi}\left [ \sin(\omega_0  t)+\frac{1}{3}\cdot\sin(3 \omega_0  t)+\frac{1}{5}\cdot\sin(5 \omega_0  t)+ \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm} \right ].$$  
 
:$$x_{\rm u}(t)=\frac{4}{\pi}\left [ \sin(\omega_0  t)+\frac{1}{3}\cdot\sin(3 \omega_0  t)+\frac{1}{5}\cdot\sin(5 \omega_0  t)+ \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm} \right ].$$  
  
*Wegen der allgemeingültigen Beziehung
+
*Because of the generally valid relationship
 
   
 
   
 
:$$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}\, {-}\, \hspace{0.05cm}\text{...}\hspace{0.05cm} \, {+} \hspace{0.05cm}\text{...}\hspace{0.05cm}=\frac{\pi}{4}$$
 
:$$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}\, {-}\, \hspace{0.05cm}\text{...}\hspace{0.05cm} \, {+} \hspace{0.05cm}\text{...}\hspace{0.05cm}=\frac{\pi}{4}$$
  
ergeben sich die Amplituden (Maximalwerte) der beiden Rechtecksignale jeweils zu&nbsp; $1$.  
+
the amplitudes (maximum values) of the two rectangle pulses result to&nbsp; $1$.  
*Dies lässt sich auch anhand der Signalverläufe in der obigen Grafik verifizieren:
+
*This can also be verified using the signal curves in the above graphic:
  
 
:$$x_{\rm g}(t = 0) = x_{\rm u}(t = T_0/4)  = 1.$$}}
 
:$$x_{\rm g}(t = 0) = x_{\rm u}(t = T_0/4)  = 1.$$}}
  
  
==Berechnung der Fourierkoeffizienten==
+
==Calculation of the Fourier Coefficients==
 
<br>
 
<br>
Der Fourierkoeffizient&nbsp; $A_0$&nbsp; gibt den&nbsp; '''Gleichanteil'''&nbsp; an, der durch Mittelung über den Signalverlauf&nbsp; $x(t)$&nbsp; bestimmt werden kann. Aufgrund der Periodizität genügt die Mittelung über eine Periode:
+
The Fourier coefficient&nbsp; $A_0$&nbsp; specifies the&nbsp; '''constant component'''&nbsp; which can be determined by averaging over the signal course&nbsp; $x(t)$&nbsp;. Due to the periodicity, averaging over one period is sufficient:
 
   
 
   
 
:$$A_0=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\,{\rm d}t.$$
 
:$$A_0=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\,{\rm d}t.$$
  
Der Integrationsbereich kann aber auch von&nbsp; $t = 0$&nbsp; bis&nbsp; $t = T_0$&nbsp; (oder über eine anders festgelegte gleich lange Periode) gewählt werden.
+
The integration limits can also be selected from&nbsp; $t = 0$&nbsp; to&nbsp; $t = T_0$&nbsp; (or over a differently defined period of equal length).
  
Die Bestimmung der Fourierkoeffizienten&nbsp; $A_n$&nbsp; und&nbsp; $B_n$&nbsp; $(n \ge 1)$&nbsp; beruht auf der Eigenschaft, dass die harmonischen Cosinusfunktionen und Sinusfunktionen so genannte&nbsp; [https://de.wikipedia.org/wiki/Orthogonalit%C3%A4t Orthogonalfunktionen]&nbsp; sind. Für diese gilt:
+
The determination of the Fourier coefficients&nbsp; $A_n$&nbsp; and&nbsp; $B_n$&nbsp; $(n \ge 1)$&nbsp; is based on the property that the harmonic cosine functions and sine functions are so-called&nbsp;[https://en.wikipedia.org/wiki/Orthogonal_functions orthogonal functions]&nbsp;. For them the following applies:
 
   
 
   
:$$\int^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\cos(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad  falls \it \quad m=n,\atop \rm sonst}  \right.$$
+
:$$\int^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\cos(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad  if  \it \quad m=n,\atop \rm sonst}  \right.$$
  
:$$\int ^{+T_0/2}_{-T_0/2}\sin(n\omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad  falls \it \quad m=n,\atop \rm sonst}  \right.$$
+
:$$\int ^{+T_0/2}_{-T_0/2}\sin(n\omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad  if \it \quad m=n,\atop \rm sonst}  \right.$$
  
 
:$$\int ^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=0 \quad \rm f\ddot{u}r\quad alle \ \it m, \ n.$$
 
:$$\int ^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=0 \quad \rm f\ddot{u}r\quad alle \ \it m, \ n.$$
 
   
 
   
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;Berücksichtigt man diese Gleichungen, so ergeben sich die Cosinuskoeffizienten&nbsp; $A_n$&nbsp; und die Sinuskoeffizienten&nbsp; $B_n$&nbsp; wie folgt:
+
$\text{Conclusion:}$&nbsp;Considering these equations, the cosine coefficients&nbsp; $A_n$&nbsp; and the sine coefficients&nbsp; $B_n$&nbsp; result as follows
  
 
:$$A_{\it n}=\frac{2}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\cdot\cos(n \omega_0 t)\,{\rm d}t,$$
 
:$$A_{\it n}=\frac{2}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\cdot\cos(n \omega_0 t)\,{\rm d}t,$$
Line 85: Line 85:
 
   
 
   
  
Das Lernvideo&nbsp; [[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]]&nbsp;  verdeutlicht diese Gleichungen.
+
The german learning video&nbsp; [[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Calculating the Fourier Coefficients]]&nbsp;  illustrates these equations.
  
[[File:P_ID526__Sig_T_2_4_S2_neu.png|right|frame|Zur Berechnung der Fourierkoeffizienten]]
+
[[File:P_ID526__Sig_T_2_4_S2_neu.png|right|frame|On Calculating the Fourier Coefficients]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;  
+
$\text{Example 2:}$&nbsp;  
Wir betrachten die gezeichnete periodische Zeitfunktion
+
We consider the drawn periodic time function
  
 
:$$x(t)=0.4+0.6\cdot \cos(\omega_0  t)-0.3\cdot\sin(3 \omega_0 t).$$  
 
:$$x(t)=0.4+0.6\cdot \cos(\omega_0  t)-0.3\cdot\sin(3 \omega_0 t).$$  
  
Da das Integral der Cosinus– und der Sinusfunktion über jeweils eine Periode identisch Null ist, erhält man für den Gleichsignalkoeffizienten&nbsp; $A_0 = 0.4$.
+
Since the integral of the cosine and sine functions is identical to zero over one period in each case, one obtains for the DC signal coefficient&nbsp; $A_0 = 0.4$.
  
Die Bestimmungsgleichung für den Cosinuskoeffizienten&nbsp; $A_1$&nbsp; lautet $($Integrationsbereich von&nbsp; $t = 0$&nbsp; bis $t = T_0)$:
+
One determines the cosine coefficient&nbsp; $A_1$&nbsp; with the following equations $($Integration limits from&nbsp; $t = 0$&nbsp; to $t = T_0)$:
 
   
 
   
 
:$$ \begin{align*} A_{1}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4\cdot\cos(\omega_0  t)\,{\rm d}t  +  \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot\cos^2(\omega_0  t)\,{\rm d}t  -  \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot\sin(3  \omega_0  t)\cdot \cos(\omega_0 t)\,{\rm d}t.\end{align*} $$
 
:$$ \begin{align*} A_{1}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4\cdot\cos(\omega_0  t)\,{\rm d}t  +  \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot\cos^2(\omega_0  t)\,{\rm d}t  -  \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot\sin(3  \omega_0  t)\cdot \cos(\omega_0 t)\,{\rm d}t.\end{align*} $$
Line 113: Line 113:
  
  
==Ausnutzung von Symmetrieeigenschaften==
+
==Exploitation of Symmetries==
 
<br>
 
<br>
 
Einige Erkenntnisse über die Fourierkoeffizienten&nbsp; $A_n$&nbsp; und&nbsp; $B_n$&nbsp; lassen sich bereits aus den&nbsp; ''Symmetrieeigenschaften''&nbsp; der Zeitfunktion&nbsp; $x(t)$&nbsp; ablesen.
 
Einige Erkenntnisse über die Fourierkoeffizienten&nbsp; $A_n$&nbsp; und&nbsp; $B_n$&nbsp; lassen sich bereits aus den&nbsp; ''Symmetrieeigenschaften''&nbsp; der Zeitfunktion&nbsp; $x(t)$&nbsp; ablesen.

Revision as of 17:59, 26 October 2020


General Description


Every periodic function  $x(t)$  can be fragmented into a trigonometric series, which is called Fourier series, in all areas, where it is continuous or has only finite discontinuities.

$\text{Definition:}$  The  Fourier series   of a periodic signal  $x(t)$  is defined as follows

$$x(t) =A_0+\sum^{\infty}_{n=1}A_{\it n} \cdot\cos(n \omega_0 t)+\sum^{\infty}_{n=1} B_n \cdot \sin(n \omega_0 t).$$

Here the symbols denote the following definitions:

  • $A_0$  the  constant component  of  $x(t)$,
  • $A_n$  the  cosine coefficients  with  $n \ge 1$,
  • $B_n$  the  sine coefficients  mit  $n \ge 1$,
  • $\omega_0 = 2\pi/T_0$ the  angular frequency  of the periodic signal  $(T_0$ is the period duration$)$.


If the Fourier series is to exactly match the actual periodic signal  $x(t)$ , an infinite number of cosine and sine coefficients must generally be used for calculation.

  • If the Fourier series is interrupted and only  $N$  of  $A_n$  and  $B_n$ coefficients is used, then a slightly different plot of the function results except for some special cases:
$$x_ N(t) =A_0+\sum^N_{n=1}A_ n \cdot \cos(n \omega_0 t)+\sum^N_{n=1} B_{n} \cdot \sin(n \omega_0 t).$$
  • The relation between the periodic signal  $x(t)$  and the Fourier series approximation  $x_N(t)$  holds:
$$x(t)=\lim_{N\to \infty} x_{N}(t).$$
  • If   $N \cdot f_0$  is the highest frequency occurring in the signal  $x(t)$  then of course  $x_N(t) = x(t)$.


$\text{Example 1:}$  We consider two periodic square wave signals, each with the period duration  $T_0$  and the fundamental frequency  $\omega_0 = 2\pi/T_0$.

Even and Odd Rectangle Pulse
  • For the even time signal sketched above:   $x_{\rm g}(-t) = x_{\rm g}(t)$.
  • The function shown below is odd:  $x_{\rm u}(-t) = -x_{\rm u}(t)$.


One finds the  fourier series representations  of both signals in formularies:

$$x_{\rm g}(t)=\frac{4}{\pi}\left [ \cos(\omega_0 t)-\frac{1}{3}\cdot \cos(3 \omega_0 t)+\frac{1}{5}\cdot\cos(5 \omega_0 t)- \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm}\right ],$$
$$x_{\rm u}(t)=\frac{4}{\pi}\left [ \sin(\omega_0 t)+\frac{1}{3}\cdot\sin(3 \omega_0 t)+\frac{1}{5}\cdot\sin(5 \omega_0 t)+ \hspace{0.05cm}\text{...}\hspace{0.05cm} + \hspace{0.05cm}\text{...}\hspace{0.05cm} \right ].$$
  • Because of the generally valid relationship
$$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}\, {-}\, \hspace{0.05cm}\text{...}\hspace{0.05cm} \, {+} \hspace{0.05cm}\text{...}\hspace{0.05cm}=\frac{\pi}{4}$$

the amplitudes (maximum values) of the two rectangle pulses result to  $1$.

  • This can also be verified using the signal curves in the above graphic:
$$x_{\rm g}(t = 0) = x_{\rm u}(t = T_0/4) = 1.$$


Calculation of the Fourier Coefficients


The Fourier coefficient  $A_0$  specifies the  constant component  which can be determined by averaging over the signal course  $x(t)$ . Due to the periodicity, averaging over one period is sufficient:

$$A_0=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\,{\rm d}t.$$

The integration limits can also be selected from  $t = 0$  to  $t = T_0$  (or over a differently defined period of equal length).

The determination of the Fourier coefficients  $A_n$  and  $B_n$  $(n \ge 1)$  is based on the property that the harmonic cosine functions and sine functions are so-called orthogonal functions . For them the following applies:

$$\int^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\cos(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad if \it \quad m=n,\atop \rm sonst} \right.$$
$$\int ^{+T_0/2}_{-T_0/2}\sin(n\omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=\left \{{T_0/2\atop 0}{\rm\quad if \it \quad m=n,\atop \rm sonst} \right.$$
$$\int ^{+T_0/2}_{-T_0/2}\cos(n \omega_0 t)\cdot\sin(m \omega_0 t)\,{\rm d}t=0 \quad \rm f\ddot{u}r\quad alle \ \it m, \ n.$$

$\text{Conclusion:}$ Considering these equations, the cosine coefficients  $A_n$  and the sine coefficients  $B_n$  result as follows

$$A_{\it n}=\frac{2}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\cdot\cos(n \omega_0 t)\,{\rm d}t,$$
$$B_{\it n}=\frac{2}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t)\cdot\sin(n \omega_0 t)\,{\rm d}t.$$


The german learning video  Calculating the Fourier Coefficients  illustrates these equations.

On Calculating the Fourier Coefficients

$\text{Example 2:}$  We consider the drawn periodic time function

$$x(t)=0.4+0.6\cdot \cos(\omega_0 t)-0.3\cdot\sin(3 \omega_0 t).$$

Since the integral of the cosine and sine functions is identical to zero over one period in each case, one obtains for the DC signal coefficient  $A_0 = 0.4$.

One determines the cosine coefficient  $A_1$  with the following equations $($Integration limits from  $t = 0$  to $t = T_0)$:

$$ \begin{align*} A_{1}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4\cdot\cos(\omega_0 t)\,{\rm d}t + \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot\cos^2(\omega_0 t)\,{\rm d}t - \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot\sin(3 \omega_0 t)\cdot \cos(\omega_0 t)\,{\rm d}t.\end{align*} $$

Das letzte Integral ist aufgrund der Orthogonalität gleich Null; das erste ist ebenfalls Null (Integral über eine Periode).

  • Nur der mittlere Term liefert hier einen Beitrag zu  $A_1$, nämlich  $2 · 0.6 · 0.5 = 0.6. $
  • Bei allen weiteren  ($n \ge 2$)  Cosinuskoeffizienten liefern alle drei Integrale den Wert Null, und es gilt somit stets  $A_{n \hspace{0.05cm}\neq \hspace{0.05cm}1}=0$.


Die Bestimmungsgleichungen für die Sinuskoeffizienten  $B_n$  lauten entsprechend:

$$ \begin{align*} B_{\it n}=\frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.4 \cdot \sin(n \ \omega_0 t)\,{\rm d}t + \frac{2}{T_0} \cdot \int^{T_0}_{0}\hspace{-0.3cm}0.6\cdot \cos(\omega_0 t) \sin(n \omega_0 t)\,{\rm d}t - \frac{2}{T_0}\cdot \int^{T_0}_{0}\hspace{-0.3cm}0.3\cdot \sin(3 \omega_0 t) \sin(n \omega_0 t )\,{\rm d}t. \end{align*} $$
  • Für  $n \hspace{0.05cm}\neq \hspace{0.05cm}3$  sind alle drei Integralwerte gleich Null und damit gilt auch  $B_{n \hspace{0.05cm}\neq \hspace{0.05cm}3} = 0.$
  • Dagegen liefert für  $n=3$  das letzte Integral einen Beitrag, und man erhält für den Sinuskoeffizienten  $B_3 = -0.3.$


Exploitation of Symmetries


Einige Erkenntnisse über die Fourierkoeffizienten  $A_n$  und  $B_n$  lassen sich bereits aus den  Symmetrieeigenschaften  der Zeitfunktion  $x(t)$  ablesen.

  • Ist das Zeitsignal  $x(t)$  eine gerade Funktion   ⇒   achsensymmetrisch um die Ordinate  $(t = 0)$, so verschwinden alle Sinuskoeffizienten  $B_n$, da die Sinusfunktion selbst eine ungerade Funktion ist   ⇒   $\sin(-\alpha) = -\sin(\alpha)$:
$$B_n = 0 \hspace{0.4cm}(n = 1, \ 2, \ 3, \text{...}).$$
  • Eine ungerade Funktion  $x(t)$  ist punktsymmetrisch um den Koordinatenursprung  $(t= 0; \ x =0)$. Deshalb verschwinden hier alle Cosinuskoeffizienten  $(A_n = 0)$, da die Cosinusfunktion selbst gerade ist. In diesem Fall ist auch der Gleichanteil  $A_0$  stets Null.
$$A_n = 0 \hspace{0.4cm}(n = 0, \ 1, \ 2, \ 3, \text{...}).$$
  • Liegt eine Funktion ohne Gleichanteil vor  $(A_0 = 0)$  und ist diese innerhalb einer Periode ungerade   ⇒   es gilt  $x(t) = -x(t - T_0/2)$, so sind in der Fourierreihendarstellung nur ungerade Vielfache der Grundfrequenz vorhanden. Für die Koeffizienten mit geradzahligem Index gilt dagegen stets:
$$A_n = B_n = 0 \hspace{0.4cm}(n = 2, \ 4, \ 6, \text{...}).$$
  • Sind alle Koeffizienten  $A_n$  und  $B_n$  mit geradzahligem Index  $(n = 2, \ 4, \ 6, \text{...})$  gleich Null und der Koeffizient  $A_0 \neq 0$, so bezieht sich die im letzten Punkt genannte Symmetrieeigenschaft auf den Gleichsignalanteil, und es gilt:
$$x(t) = 2 \cdot A_0 - x (t - T_0/2).$$

Anmerkung:   Es können auch mehrere der enannten Symmetrieeigenschaften gleichzeitig erfüllt sein.

Die Symmetrieeigenschaften der Fourierkoeffizienten werden im ersten Teil des Lernvideos  Eigenschaften und Genauigkeit der Fourierreihe  zusammenfassend dargestellt.

Symmetrieeigenschaften der Fourierkoeffizienten

$\text{Beispiel 3:}$  Die oben genannten Eigenschaften werden nun an drei Signalverläufen verdeutlicht.

  • $x_1(t)$  ist eine mittelwertbehaftete Funktion   ⇒   $A_0 \ne 0$ und zudem gerade, die dementsprechend ausschließlich durch Cosinuskoeffizienten  $A_n$  bestimmt ist  $(B_n = 0)$.


  • Dagegen sind bei der ungeraden Funktion  $x_2(t)$  alle  $A_n, \ ( n \ge 0)$  identisch Null.


  • Auch die ungerade Funktion  $x_3(t)$  beinhaltet nur Sinuskoeffizienten, aber wegen  $x_3(t) = -x_3(t - T_0/2)$  ausschließlich für ungeradzahlige Werte von  $n$.


Komplexe Fourierreihe


Wie auf der Seite  Darstellung mit Cosinus- und Sinusanteil  für den Fall einer harmonischen Schwingung bereits gezeigt wurde, kann man jedes beliebige periodische Signal

$$x(t) =A_0+\sum^{\infty}_{n=1}A_{\it n} \cdot\cos(n \omega_0 t)+\sum^{\infty}_{n=1} B_n \cdot \sin(n \omega_0 t)$$

auch mit Hilfe der Betrags- und Phasenkoeffizienten darstellen:

$$x(t) =C_0+\sum^{\infty}_{n=1}C_{\it n} \cdot\cos(n \omega_0 t-\varphi_n).$$

Diese modifizierten Fourierkoeffizienten weisen folgende Eigenschaften auf:

  • Der  Gleichsignalkoeffizient  $C_0$  ist identisch mit  $A_0$.
  • Die  Betragskoeffizienten  lauten mit  $n\ge 1$:   $C_n = \sqrt{A_n^2 + B_n^2}$.
  • Für die  Phasenkoeffizienten  gilt:   $\varphi_n = \arctan \hspace{0.05cm}(B_n/A_n$).


Mit der „Eulerschen Beziehung”  $\cos(x) + {\rm j} \cdot \sin(x) = {\rm e}^{{\rm j} \hspace{0.05cm}x}$  erhält man eine zweite Darstellungsvariante der Fourierreihenentwicklung, die von der komplexen Exponentialfunktion ausgeht.

$\text{Definition:}$  Die  komplexe Fourierreihe  eines periodischen Signals  x(t)  lautet wie folgt:

$$x(t)=\sum^{+\infty}_{ n=- \infty}D_n\cdot {\rm e}^{ {\rm j} \hspace{0.05cm} n \hspace{0.05cm}\omega_0\hspace{0.05cm} t}.$$

Hier bezeichnen  $D_n$  die  komplexen Fourierkoeffizienten, die

  • aus den Cosinuskoeffizienten  $A_n$  und den Sinuskoeffizienten  $B_n$, oder auch
  • aus den Betragskoeffizienten  $C_n$  sowie den Phasenkoeffizienten  $\varphi_n$


wie folgt berechnet werden können $($gültig für  $n \neq 0)$:

$$D_n = 1/2\cdot (A_n - {\rm j}\cdot B_n) =1/2\cdot C_n\cdot {\rm e}^{- {\rm j} \hspace{0.05cm} \varphi_n }$$


Die komplexen Fourierkoeffizienten kann man nach folgender Gleichung auch direkt berechnen:

$$D_n=\frac{1}{T_0}\cdot \int^{+T_0/2}_{-T_0/2}x(t) \cdot{\rm e}^{-\rm j \hspace{0.05cm}\it n \hspace{0.1cm}\omega_{\rm 0} \hspace{0.05cm}t}\, {\rm d}t.$$

Solange das Integrationsintervall  $T_0$  erhalten bleibt, kann man es ebenso wie bei den Koeffizienten  $A_n$  und  $B_n$  beliebig verschieben, zum Beispiel von  $t = 0$  bis  $t = T_0$.

$\text{Fazit:}$  Der Koeffizient  $D_0 = A_0$  ist stets reell. Für die komplexen Koeffizienten mit negativem Laufindex  $(n < 0)$  gilt:

$$D_{- n}=D_n^{\hspace{0.05cm}\star} =1/2 \cdot (A_n+ {\rm j}\cdot B_n).$$


Spektrum eines periodischen Signals


Ausgehend von der gerade hergeleiteten komplexen Fourierreihe

$$x(t)=\sum^{+\infty}_{n=-\infty}D_{\it n}\cdot \rm e^{j \it n \omega_{\rm 0} t}$$

und dem  Verschiebungssatz  (für den Frequenzbereich) erhält man für das Spektrum eines periodischen Signals  $x(t)$:

$$X(f)=\sum^{+\infty}_{n=-\infty}D_n\cdot\delta(f-n\cdot f_0).$$

Dies bedeutet:

  • Das Spektrum eines mit  $T_0$  periodischen Signals ist ein  Linienspektrum  bei ganzzahligen Vielfachen der Grundfrequenz  $f_0 = 1/T_0$.
  • Der  Gleichanteil  liefert eine Diracfunktion bei  $f=0$  mit dem Impulsgewicht  $A_0$.
  • Daneben gibt es  Diracfunktionen  $\delta(f \pm n \cdot f_0)$  bei Vielfachen von  $f_0$, wobei  $\delta(f - n \cdot f_0)$  eine Diracfunktion bei  $f= n \cdot f_0$  (also im positiven Frequenzbereich) und  $\delta(f + n \cdot f_0)$  eine solche bei der Frequenz  $f= -n \cdot f_0$  (im negativen Frequenzbereich) kennzeichnet.
  • Die  Impulsgewichte  sind im allgemeinen komplex.


Diese Aussagen werden nun anhand zweier Beispiele verdeutlicht.

$\text{Beispiel 4:}$  Wir betrachten – wie im  $\text{Beispiel 1}$  zu Beginn dieses Abschnitts - zwei periodische Rechtecksignale, jeweils mit Periodendauer  $T_0$  und Grundfrequenz  $f_0=1/T_0$. Das obere Signal

$$x_{\rm g}(t)={4}/{\pi} \cdot \big[\cos(\omega_0 t) - {1}/{3} \cdot \cos(3\omega_0 t)+{1}/{5}\cdot \cos(5\omega_0 t) - \, \text{...} \, + \, \text{...} \big]$$

ist eine gerade, aus verschiedenen Cosinusanteilen zusammengesetzte Funktion. Die zugehörige Spektralfunktion  $X_{\rm g}(f)$  ist damit rein reell.

Begründung:  Wie auf der Seite  Spektraldarstellung eines Cosinussignals  bereits beschrieben wurde, liefert die Grundwelle zwei Diracfunktionen bei  $\pm f_0$, jeweils gewichtet mit  $2/\pi$.

  • Dieses Gewicht entspricht den (im Allgemeinen komplexen) Fourierkoeffizienten  $D_1 = D_{ - 1}^\ast$, die nur im Sonderfall einer geraden Funktion reell sind.
  • Weitere Diracfunktionen gibt es bei  $\pm 3f_0$ (negativ),  $\pm 5f_0$ (positiv),  $\pm 7f_0$ (negativ) usw.
  • Alle Phasenwerte  $\varphi_n$  sind aufgrund der alternierenden Vorzeichen entweder Null oder  $\pi$.


Spektrum eines periodischen Rechtecksignals

Die unten dargestellte Funktion  $x_{\rm u}(t)$  ist ungerade:

$$x_{\rm u}(t)={4}/{\pi} \cdot \big[\sin(\omega_0 t)+{1}/{3} \cdot \sin(3\omega_0 t)+{1}/{5} \cdot \sin(5\omega_0 t)+ \, \text{...}\big].$$

Begründung:  Wie im  $\text{Beispiel 4}$  auf der Seite  Allgemeine Spektraldarstellung  bereits beschrieben wurde, liefert hier die Grundwelle zwei Diracfunktionen bei  $+f_0$  $($gewichtet mit  $-\text{j}\cdot 2/\pi)$  bzw. bei  $-f_0$  $($gewichtet mit  $+\text{j}\cdot 2/\pi)$.

  • Auch alle weiteren Diracfunktionen bei  $\pm 3f_0$,  $\pm 5f_0$, usw. sind rein imaginär und liegen in gleicher Richtung wie die Diracs bei  $\pm f_0$.
  • Die beiden Betragsspektren sind gleich:   $\vert X_{\rm u}(f)\vert = \vert X_{\rm g}(f) \vert$.



Das Gibbsche Phänomen


Nicht jedes Signal eignet sich für die Fourierreihendarstellung. Hier einige Einschränkungen:

  • Eine wichtige Voraussetzung für die Konvergenz der Fourierreihe ist, dass das Signal nur endlich viele Unstetigkeitsstellen je Periode besitzen darf.
  • An denjenigen Stellen  $t=t_i$, an denen  $x(t)$  Sprünge aufweist, konvergiert die Reihe gegen den aus dem jeweiligen links– und rechtsseitigen Grenzwert gebildeten arithmetischen Mittelwert.
  • In der Umgebung solcher Sprungstellen kommt es in der Reihendarstellung meist zu hochfrequenten Oszillationen. Dieser Fehler ist von prinzipieller Art, das heißt, er ließe sich auch nicht vermeiden, wenn man unendlich viele Summanden berücksichtigen würde. Man spricht vom  Gibbschen Phänomen, benannt nach dem Physiker  Josiah Willard Gibbs.
  • Durch eine Erhöhung von  $N$  wird zwar der fehlerhafte Bereich kleiner, nicht jedoch die maximale Abweichung zwischen  $x(t)$  und der Fourierreihendarstellung  $x_N(t)$. Der maximale Fehler beträgt ca.  $9\%$  der Sprungamplitude – und zwar unabhängig von  $N$.


Das Gibbsche Phänomen und weitere interessante Aspekte zu vergleichbaren Effekten werden im Lernvideo  Eigenschaften der Fourierreihendarstellung  behandelt.


$\text{Beispiel 5:}$  In der linken Grafik sehen Sie gepunktet einen Ausschnitt eines periodischen  $\pm 1$–Rechtecksignals und die dazugehörige Fourierreihendarstellung mit  $N = 1$  (blau),  $N = 3$  (rot) und  $N = 5$  (grün) Summanden.

  • Die Grundwelle hat hier den Amplitudenwert  $4/\pi \approx 1.27$.
  • Auch mit  $N = 5$  (das bedeutet wegen  $A_2 = A_4 = 0$  drei „relevante” Summanden) unterscheidet sich die Fourierreihe vom anzunähernden Rechtecksignal noch deutlich, vor allem im Bereich der Flanke.


Zum Gibbschen Phänomen

Aus der rechten Grafik ist zu erkennen, dass die Flanke und der innere Bereich mit  $N = 100$  relativ gut nachgebildet werden, es aber an der Sprungstelle aufgrund des Gibbschen Phänomens noch immer zu Überschwingern um  $9\%$  kommt.

  • Da hier die Sprungamplituden jeweils gleich  $2$  sind, ergeben sich die Maximalwerte näherungsweise zu  $1.18$.
  • Mit  $N = 1000$  wären die Überschwinger genau so groß, aber auf einen engeren Raum begrenzt und bei zeitdiskreter Darstellung eventuell nicht mehr zu erkennen.


Aufgaben zum Kapitel


Aufgabe 2.4: Gleichgerichteter Cosinus

Aufgabe 2.4Z: Dreiecksignal

Aufgabe 2.5: Einweggleichrichtung

Aufgabe 2.5Z: Rechtecksignale

Aufgabe 2.6: Komplexe Fourierreihe

Aufgabe 2.6Z:   Betrag und Phase