Difference between revisions of "Signal Representation/General Description"

From LNTwww
Line 32: Line 32:
 
Periodic signals are of great importance for communications engineering:  
 
Periodic signals are of great importance for communications engineering:  
 
*They belong to the class of [[Signal_Representation/Signal_classification#Deterministische_und_stochastische_Signale|deterministic signals]], whose time function can be specified in analytical form.  
 
*They belong to the class of [[Signal_Representation/Signal_classification#Deterministische_und_stochastische_Signale|deterministic signals]], whose time function can be specified in analytical form.  
*Ihr Signalverlauf ist damit für alle Zeiten  $t$  bekannt und für die Zukunft eindeutig vorhersagbar.
+
*Their signal path is thus known for all times  $t$  and can be clearly predicted for the future.
*Sie sind daher niemals informationstragende Signale.
+
*They are therefore never information-carrying signals.
  
  
Trotzdem werden periodische Signale oft auch in der Nachrichtentechnik benötigt, zum Beispiel
+
Nevertheless, periodic signals are often also required in communications engineering, for example
*für die Modulation und Demodulation bei Trägerfrequenzsystemen,
+
*for modulation and demodulation in carrier frequency systems,
*für die Synchronisation und Taktregenerierung bei Digitalsystemen,
+
*for synchronization and clock regeneration in digital systems,
*als Test– und Prüfsignale bei der Systemrealisierung.
+
*as test– and test signals during system implementation.
  
  
[[File:P_ID161__Sig_T_2_1_S1.png|right|frame|Oszilloskopbild von Cosinus- und Dreiecksignal]]
+
[[File:P_ID161__Sig_T_2_1_S1.png|right|frame|Oscilloscope image of cosine and triangle pulse]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$ 
+
$\text{Example 1:}$ 
Auf dem Oszilloskopbild sehen Sie zwei typische Vertreter periodischer Signale:  
+
The oscilloscope image shows two typical representatives of periodic signals:  
*oben ein Cosinussignal,
+
*above a cosine pulse,
*unten ein Dreiecksignal.
+
*below a triangle pulse.
  
  
Wie aus den eingeblendeten Einstellungen ersichtlich ist, beträgt bei beiden Signalen die Periodendauer eine Millisekunde und die Amplitude ein Volt.}}
+
As can be seen from the displayed settings, the period duration of both signals is one millisecond and the amplitude one volt.}}
  
  
==Definition und Parameter==
+
==Definition and Parameters==
 
<br>
 
<br>
Bevor wir uns den Signalparametern eines periodischen Signals zuwenden, soll der Begriff  &bdquo;Periodizität&rdquo; eindeutig definiert werden:
+
Before we turn to the signal parameters of a periodic signal, the term &bdquo;periodicity&rdquo; shall be clearly defined:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
Ein&nbsp; '''periodisches Signal'''&nbsp; $x(t)$&nbsp; liegt dann vor, wenn für alle beliebigen Werte von&nbsp; $t$&nbsp; und alle ganzzahligen Werte von&nbsp; $i$&nbsp; mit einem geeigneten&nbsp; $T_{0}$&nbsp; gilt:  
+
A&nbsp; '''periodic signal'''&nbsp; $x(t)$&nbsp; ; is present if for all arbitrary values of&nbsp; $t$&nbsp; and all integer values of&nbsp; $i$&nbsp; with an appropriate&nbsp; $T_{0}$&nbsp; applies:  
 +
 
  
 
:$$x(t+i\cdot T_{0}) = x(t).$$}}
 
:$$x(t+i\cdot T_{0}) = x(t).$$}}
  
  
Daraus ergeben sich die folgenden Kenngrößen:
+
This results in the following parameters:
*Die&nbsp; '''Periodendauer'''&nbsp; $T_{0}$&nbsp; gibt den kleinstmöglichen Wert an, der obige Gleichung erfüllt.
+
*The&nbsp; '''Period duration''' &nbsp; $T_{0}$&nbsp; indicates the smallest possible value, which satisfies the above equation.
*Die&nbsp; '''Grundfrequenz'''&nbsp; $f_{0} = 1/T_{0}$&nbsp; beschreibt die Anzahl der Perioden pro Zeiteinheit (meist je Sekunde).  
+
*The&nbsp; ''Fundamental frequency'''&nbsp; $f_{0} = 1/T_{0}$&nbsp; describes the number of periods per time unit (mostly per second).  
*Die Einheit „1/s” wird auch mit „Hz” bezeichnet, benannt nach dem deutschen Physiker&nbsp; [https://de.wikipedia.org/wiki/Heinrich_Hertz Heinrich Hertz].
+
*The unit "1/s" is also called "Hz", named after the German physicist &nbsp; [https://en.wikipedia.org/wiki/Heinrich_Hertz Heinrich Hertz].
*Die&nbsp; '''Grundkreisfrequenz'''&nbsp; $\omega_{0}$&nbsp; stellt die Winkeldrehung pro Sekunde dar, die meistens im Bogenmaß angegeben wird.  
+
*The&nbsp; ''fundamental angular frequency'''&nbsp; $\omega_{0}$&nbsp; represents the angular rotation per second, usually given in radians.  
*Im Gegensatz zur Grundfrequenz ist hier nicht die Einheit „Hz”, sondern „1/s” üblich. Es gilt folgende Gleichung:
+
*In contrast to the basic frequency, the unit "Hz" is not common here, but "1/s". The following equation applies:
 
:$$\omega_{0}=2\pi f_{0} = {2\pi}/{T_{0}}.$$
 
:$$\omega_{0}=2\pi f_{0} = {2\pi}/{T_{0}}.$$
  
  
[[File:P_ID211__Sig_T_2_1_S2_neu.png|right|frame|Zur Definition von Periodendauer, Grundfrequenz und Kreisfrequenz]]
+
[[File:P_ID211__Sig_T_2_1_S2_neu.png|right|frame|For definition of period duration, fundamental frequency and angular frequency]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp;
+
$\text{Example 2:}$&nbsp;
Dargestellt ist hier ein periodisches Zeitsignal:
+
Here, a periodic time signal is shown:
*Die Periodendauer  beträgt&nbsp; $T_{0} = 2.5 \ \rm ms$.
+
*The period duration is&nbsp; $T_{0} = 2.5 \ \rm ms$.
*Daraus berechnet sich die Grundfrequenz&nbsp; $f_0 =  400  \ \rm  Hz$.  
+
*From this the fundamental frequency &nbsp; $f_0 =  400  \ \rm  Hz$ is calculated.  
*Die Grundkreisfrequenz ergibt sich zu&nbsp; $\omega_{0}=2513 \ \rm  1/s.$}}
+
*The fundamental  circular frequency results to nbsp;$\omega_{0}=2513 \ \rm  1/s.$}}
 
   
 
   
  
  
  
==Resultierende Periodendauer==
+
==Resulting Period Duration==
 
<br>
 
<br>
Besteht ein Signal&nbsp; $x(t)$&nbsp; aus der Summe zweier periodischer Signale&nbsp; $x_{1}(t)$&nbsp; und&nbsp; $x_{2}(t)$&nbsp; mit den Periodendauern&nbsp; $T_{1}$&nbsp; bzw.&nbsp; $T_{2}$, so ist die resultierende Periodendauer des Summensignals das kleinste gemeinsame Vielfache von&nbsp; $T_{1}$&nbsp; und&nbsp; $T_{2}$.
+
If a signal&nbsp; $x(t)$&nbsp; consists of the sum of two periodic signals&nbsp; $x_{1}(t)$&nbsp; and&nbsp; $x_{2}(t)$&nbsp; with the period durations&nbsp; $T_{1}$&nbsp; or &nbsp; $T_{2}$, the resulting period duration of the sum signal is the smallest common multiple of&nbsp; $T_{1}$&nbsp; and&nbsp; $T_{2}$.
*Diese Aussage gilt unabhängig von den Amplituden– und Phasenverhältnissen.
+
*This statement applies independently of the amplitude and phase relations.
*Besitzen&nbsp; $T_{1}$&nbsp; und&nbsp; $T_{2}$&nbsp; dagegen kein rationales gemeinsames Vielfaches&nbsp; $($Beispiel:&nbsp; $T_{2} = \pi \cdot T_{1})$, so ist das Summensignal&nbsp; $x(t)$&nbsp; im Gegensatz zu seinen beiden Komponenten&nbsp; $x_{1}(t)$&nbsp; und&nbsp; $x_{2}(t)$&nbsp; nicht periodisch.
+
*On the other hand, if &nbsp; $T_{1}$&nbsp; and&nbsp; $T_{2}$&nbsp; don't  have a  rational common multiple&nbsp; $($Example: &nbsp; $T_{2} = \pi \cdot T_{1})$, then the sum signal&nbsp; $x(t)$&nbsp; in contrast to its two components&nbsp; $x_{1}(t)$&nbsp; and&nbsp; $x_{2}(t)$&nbsp; is not periodic.
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp;
+
$\text{Example 3:}$&nbsp;
Addiert werden ein cosinusförmiges Signal&nbsp; $x_{1}(t)$&nbsp; mit der Periodendauer&nbsp; $T_{1} = 2\; {\rm ms}$&nbsp; (blauer Signalverlauf)&nbsp; und ein Sinussignal&nbsp; $x_{2}(t)$&nbsp; mit der Periodendauer&nbsp; $T_{2} = 5\; {\rm ms}$&nbsp; und doppelt so großer Amplitude (grüner Verlauf).
+
Here, a cosine-shaped signal&nbsp; $x_{1}(t)$&nbsp; with the period duration&nbsp; $T_{1} = 2\; {\rm ms}$&nbsp; (blue signal course)&nbsp;is added with  a sinusoidal signal&nbsp; $x_{2}(t)$&nbsp; with the period duration&nbsp; $T_{2} = 5\; {\rm ms}$&nbsp; and twice the amplitude (green curve).
  
[[File:P_ID247__Sig_T_2_1_S3_neu.png|frame|Resultierende Periodendauer der Summe aus Cosinus&ndash; und Sinussignal]]
+
[[File:P_ID247__Sig_T_2_1_S3_neu.png|frame|Resulting period duration of the sum of cosine&ndash; and sine signal]]
  
*Das (rote) Summensignal&nbsp; $x(t) = x_{1}(t) + x_{2}(t)$&nbsp; weist dann die resultierende Periodendauer&nbsp; $T_{0} = 10\; {\rm ms}$&nbsp; auf &nbsp; &rArr; &nbsp; Grundfrequenz&nbsp; $f_{0} = 100\; {\rm Hz}$.  
+
*The (red) sum signal&nbsp; $x(t) = x_{1}(t) + x_{2}(t)$&nbsp; then shows the resulting period duration&nbsp; $T_{0} = 10\; {\rm ms}$&nbsp; shows &nbsp; &rArr; &nbsp; fundamental frequency&nbsp; $f_{0} = 100\; {\rm Hz}$.  
*Die Frequenz&nbsp; $f_{0}$&nbsp; selbst ist in&nbsp; $x(t)$&nbsp; nicht enthalten, lediglich ganzzahlige Vielfache davon, nämlich&nbsp; $f_{1} = 500\; {\rm Hz}$&nbsp; und&nbsp; $f_{2} = 200\; {\rm Hz}$. }}
+
*The frequency&nbsp; $f_{0}$&nbsp; itself is not contained in&nbsp; $x(t)$&nbsp; only integer multiples of it, namely&nbsp; $f_{1} = 500\; {\rm Hz}$&nbsp; and&nbsp; $f_{2} = 200\; {\rm Hz}$. }}
  
  
Mit dem interaktiven Applet&nbsp; [[Applets:Periodendauer_periodischer_Signale|Periodendauer periodischer Signale]]&nbsp; lässt sich die resultierende Periodendauer zweier harmonischer Schwingungen ermitteln.
+
With the interactive applet&nbsp; [[Applets:Periodendauer_periodischer_Signale|Periodendauer periodischer Signale]]&nbsp; the resulting period of two harmonic oscillations can be determined.
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the Chapter==
 
<br>
 
<br>
 
[[Aufgaben: 2.1 Gleichrichtung|Aufgabe 2.1: Gleichrichtung]]
 
[[Aufgaben: 2.1 Gleichrichtung|Aufgabe 2.1: Gleichrichtung]]

Revision as of 10:57, 27 September 2020

# OVERVIEW OF THE SECOND MAIN CHAPTER #


In this chapter  periodic signals  are considered and described mathematically in the time and frequency domain.

This chapter contains in detail:

  • Some basic terms like  period duration, fundamental frequency  and  circular frequency,
  • the properties of a  equal signal  as a boundary case of a periodic signal,
  • the definition and interpretation of the  Dirac function,
  • the spectral representation of a  equal signal  or a  equal signal component,
  • the time– and frequency representation of   harmonic oscillations, and finally
  • the application of  Fourier series  for spectral analysis of periodic signals.


Further information on the topic as well as tasks, simulations and programming exercises can be found in

  • Chapter 6: Linear and Time Invariant Systems  (Program lzi)


of the lab „Simulation Methods in Communication Engineering”. This former LNT course at the TU Munich is based on

  • the educational software package  LNTsim    ⇒   Link points to the ZIP version of the program, and
  • this   lab instruction    ⇒   Link refers to the PDF version of ;  chapter 6:  page 99-118.


Features and Applications


Periodic signals are of great importance for communications engineering:

  • They belong to the class of deterministic signals, whose time function can be specified in analytical form.
  • Their signal path is thus known for all times  $t$  and can be clearly predicted for the future.
  • They are therefore never information-carrying signals.


Nevertheless, periodic signals are often also required in communications engineering, for example

  • for modulation and demodulation in carrier frequency systems,
  • for synchronization and clock regeneration in digital systems,
  • as test– and test signals during system implementation.


Oscilloscope image of cosine and triangle pulse

$\text{Example 1:}$  The oscilloscope image shows two typical representatives of periodic signals:

  • above a cosine pulse,
  • below a triangle pulse.


As can be seen from the displayed settings, the period duration of both signals is one millisecond and the amplitude one volt.


Definition and Parameters


Before we turn to the signal parameters of a periodic signal, the term „periodicity” shall be clearly defined:

$\text{Definition:}$  A  periodic signal  $x(t)$  ; is present if for all arbitrary values of  $t$  and all integer values of  $i$  with an appropriate  $T_{0}$  applies:


$$x(t+i\cdot T_{0}) = x(t).$$


This results in the following parameters:

  • The  Period duration   $T_{0}$  indicates the smallest possible value, which satisfies the above equation.
  • The  ‘Fundamental frequency'  $f_{0} = 1/T_{0}$  describes the number of periods per time unit (mostly per second).
  • The unit "1/s" is also called "Hz", named after the German physicist   Heinrich Hertz.
  • The  ‘fundamental angular frequency'  $\omega_{0}$  represents the angular rotation per second, usually given in radians.
  • In contrast to the basic frequency, the unit "Hz" is not common here, but "1/s". The following equation applies:
$$\omega_{0}=2\pi f_{0} = {2\pi}/{T_{0}}.$$


For definition of period duration, fundamental frequency and angular frequency

$\text{Example 2:}$  Here, a periodic time signal is shown:

  • The period duration is  $T_{0} = 2.5 \ \rm ms$.
  • From this the fundamental frequency   $f_0 = 400 \ \rm Hz$ is calculated.
  • The fundamental circular frequency results to nbsp;$\omega_{0}=2513 \ \rm 1/s.$



Resulting Period Duration


If a signal  $x(t)$  consists of the sum of two periodic signals  $x_{1}(t)$  and  $x_{2}(t)$  with the period durations  $T_{1}$  or   $T_{2}$, the resulting period duration of the sum signal is the smallest common multiple of  $T_{1}$  and  $T_{2}$.

  • This statement applies independently of the amplitude and phase relations.
  • On the other hand, if   $T_{1}$  and  $T_{2}$  don't have a rational common multiple  $($Example:   $T_{2} = \pi \cdot T_{1})$, then the sum signal  $x(t)$  in contrast to its two components  $x_{1}(t)$  and  $x_{2}(t)$  is not periodic.


$\text{Example 3:}$  Here, a cosine-shaped signal  $x_{1}(t)$  with the period duration  $T_{1} = 2\; {\rm ms}$  (blue signal course) is added with a sinusoidal signal  $x_{2}(t)$  with the period duration  $T_{2} = 5\; {\rm ms}$  and twice the amplitude (green curve).

Resulting period duration of the sum of cosine– and sine signal
  • The (red) sum signal  $x(t) = x_{1}(t) + x_{2}(t)$  then shows the resulting period duration  $T_{0} = 10\; {\rm ms}$  shows   ⇒   fundamental frequency  $f_{0} = 100\; {\rm Hz}$.
  • The frequency  $f_{0}$  itself is not contained in  $x(t)$  only integer multiples of it, namely  $f_{1} = 500\; {\rm Hz}$  and  $f_{2} = 200\; {\rm Hz}$.


With the interactive applet  Periodendauer periodischer Signale  the resulting period of two harmonic oscillations can be determined.


Exercises for the Chapter


Aufgabe 2.1: Gleichrichtung

Aufgabe 2.1Z: Summensignal