Difference between revisions of "Theory of Stochastic Signals/Cross-Correlation Function and Cross Power-Spectral Density"

From LNTwww
 
(11 intermediate revisions by 3 users not shown)
Line 7: Line 7:
 
==Definition of the cross-correlation function==
 
==Definition of the cross-correlation function==
 
<br>
 
<br>
In many engineering applications, one is interested in a quantitative measure to describe the statistical relatedness between different processes or between their pattern signals.  
+
In many engineering applications,&nbsp; one is interested in a quantitative measure to describe the statistical relatedness between different processes or between their pattern signals.&nbsp; One such measure is the&nbsp; "cross-correlation function",&nbsp; which is given here under the assumptions of&nbsp; "stationarity"'&nbsp; and&nbsp; "ergodicity".  
 
 
One such measure is the&nbsp; ''cross-correlation function''&nbsp; (CCF), which is given here under the assumptions of&nbsp; ''stationarity''&nbsp; and&nbsp; ''ergodicity''&nbsp; .  
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; For the&nbsp; '''cross-correlation function'''&nbsp; of two stationary and ergodic processes with the pattern functions&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; holds:  
+
$\text{Definition:}$&nbsp; For the&nbsp; &raquo;'''cross-correlation function'''&laquo;&nbsp; $\rm (CCF)$ of two stationary and ergodic processes with the pattern functions&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; holds:  
 
:$$\varphi_{xy}(\tau)={\rm E} \big[{x(t)\cdot y(t+\tau)}\big]=\lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/{\rm 2} }_{-T_{\rm M}/{\rm 2} }x(t)\cdot y(t+\tau)\,\rm d \it t.$$
 
:$$\varphi_{xy}(\tau)={\rm E} \big[{x(t)\cdot y(t+\tau)}\big]=\lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/{\rm 2} }_{-T_{\rm M}/{\rm 2} }x(t)\cdot y(t+\tau)\,\rm d \it t.$$
  
*The first defining equation characterizes the&nbsp; ''expected value formation''&nbsp; (''ensemble averaging''),  
+
*The first defining equation characterizes the&nbsp; expected value formation&nbsp; ("ensemble averaging"),  
*while the second equation describes the&nbsp; ''time averaging''&nbsp; over a (as large as possible) measurement period&nbsp; $T_{\rm M}$&nbsp; }}.
+
*while the second equation describes the&nbsp; "time averaging"&nbsp; over an&nbsp; (as large as possible)&nbsp; measurement period&nbsp; $T_{\rm M}$.}}  
  
  
A comparison with the&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Auto-correlation_function_for_stationary_and_ergodic_processes|ACF definition]]&nbsp; shows many similarities. &nbsp; Setting&nbsp; $y(t) = x(t)$, we get&nbsp; $φ_{xy}(τ) = φ_{xx}(τ)$, i.e., the auto-correlation function, for which, however, in our tutorial we mostly use the simplified notation&nbsp; $φ_x(τ)$&nbsp; .  
+
A comparison with the&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Auto-correlation_function_for_stationary_and_ergodic_processes|$\text{ACF definition}$]]&nbsp; shows many similarities. &nbsp;  
 +
*Setting&nbsp; $y(t) = x(t)$,&nbsp; we get&nbsp; $φ_{xy}(τ) = φ_{xx}(τ)$, i.e., the auto-correlation function,  
 +
*for which,&nbsp; however,&nbsp; in our tutorial we mostly use the simplified notation&nbsp; $φ_x(τ)$.  
 +
 
  
[[File:P_ID434__Sto_T_4_6_S1neu.png |right|frame|Cross-correlation function of a binary signal]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 1:}$&nbsp;
+
$\text{Example 1:}$&nbsp;
We consider a random signal&nbsp; $x(t)$&nbsp; with triangular ACF&nbsp; $φ_x(τ)$ &nbsp; ⇒ &nbsp; blue curve.&nbsp; This ACF shape results, for example.  
+
We consider a random signal&nbsp; $x(t)$&nbsp; with triangular auto-correlation function&nbsp; $φ_x(τ)$ &nbsp; ⇒ &nbsp; blue curve.&nbsp; This ACF shape results e.g. for
*for a binary signal with equal probability bipolar amplitude coefficients&nbsp; $(+1$&nbsp; resp.&nbsp; $-1)$&nbsp; and
+
[[File:P_ID434__Sto_T_4_6_S1neu.png |right|frame|Cross-correlation function of a binary signal]] 
*for rectangular fundamental momentum.  
+
 +
*a binary signal with equally probable bipolar amplitude coefficients&nbsp; $(\pm1)$&nbsp;  
 +
*and a rectangular basic pulse&nbsp; $g(t)$.  
  
  
We consider a second signal&nbsp; $y(t) = \alpha \cdot x (t - t_{\rm 0}),$ which differs from&nbsp; $x(t)$&nbsp; only by an attenuation factor&nbsp; $(α =0.5)$&nbsp; and a transit time&nbsp; $(t_0 = 3 \ \rm ms)$&nbsp; ;
+
We consider a second signal&nbsp; $y(t) = \alpha \cdot x (t - t_{\rm 0})$,&nbsp; which differs from&nbsp; $x(t)$&nbsp; only by an attenuation factor&nbsp; $(α =0.5)$&nbsp; and a delay time&nbsp; $(t_0 = 3 \ \rm ms)$.
  
This attenuated and shifted signal has the ACF drawn in red.
+
This attenuated and shifted signal has the auto-correlation function drawn in red:
 
:$$\varphi_{y}(\tau) = \alpha^2 \cdot \varphi_{x}(\tau) .$$
 
:$$\varphi_{y}(\tau) = \alpha^2 \cdot \varphi_{x}(\tau) .$$
The shift around&nbsp; $t_0$&nbsp; is not seen in the ACF in contrast to the cross correlation function (CCF) (shown in green) for which the following relation holds:  
+
The shift around&nbsp; $t_0$&nbsp; is not seen in this auto-correlation function in contrast to the&nbsp; (green)&nbsp;  cross-correlation function&nbsp; $\rm (CCF)$&nbsp; for which the following relation holds:  
 
:$$\varphi_{xy}(\tau) = \alpha \cdot \varphi_{x}(\tau- t_{\rm 0}) .$$}}
 
:$$\varphi_{xy}(\tau) = \alpha \cdot \varphi_{x}(\tau- t_{\rm 0}) .$$}}
  
 
==Properties of the cross-correlation function==
 
==Properties of the cross-correlation function==
 
<br>
 
<br>
In the following, essential properties of the cross-correlation function are compiled and important differences to the ACF are elaborated.
+
In the following,&nbsp; essential properties of the cross-correlation function&nbsp; $\rm (CCF)$&nbsp; are composed.&nbsp; Important differences to the auto-correlation function&nbsp; $\rm (ACF)$&nbsp; are:
*The formation of the cross correlation function is&nbsp; ''not commutative''.&nbsp; Rather, there are always two distinct functions, viz.  
+
*The formation of the cross-correlation function is&nbsp; &raquo;not commutative&laquo;.&nbsp; Rather,&nbsp; there are always two distinct functions,&nbsp; viz.  
 
:$$\varphi_{xy}(\tau)={\rm E} \big[{x(t)\cdot y(t+\tau)}\big]=\lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M}}\cdot\int^{T_{\rm M}/{\rm 2}}_{-T_{\rm M}/{\rm 2}}x(t)\cdot y(t+\tau)\,\, \rm d \it t,$$
 
:$$\varphi_{xy}(\tau)={\rm E} \big[{x(t)\cdot y(t+\tau)}\big]=\lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M}}\cdot\int^{T_{\rm M}/{\rm 2}}_{-T_{\rm M}/{\rm 2}}x(t)\cdot y(t+\tau)\,\, \rm d \it t,$$
 
:$$\varphi_{yx}(\tau)={\rm E} \big[{y(t)\cdot x(t+\tau)}\big]=\lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M}}\cdot\int^{T_{\rm M}/{\rm 2}}_{-T_{\rm M}/{\rm 2}}y(t)\cdot x(t+\tau)\,\, \rm d \it t .$$
 
:$$\varphi_{yx}(\tau)={\rm E} \big[{y(t)\cdot x(t+\tau)}\big]=\lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M}}\cdot\int^{T_{\rm M}/{\rm 2}}_{-T_{\rm M}/{\rm 2}}y(t)\cdot x(t+\tau)\,\, \rm d \it t .$$
*There is a relationship between the two functions&nbsp; $φ_{yx}(τ) = φ_{xy}(-τ)$.&nbsp; In&nbsp; $\text{example 1}$&nbsp; of the last section,&nbsp; $φ_{yx}(τ)$&nbsp; would have its maximum at&nbsp; $τ = -3 \ \rm ms$.  
+
*There is a relationship between the two functions: &nbsp; $φ_{yx}(τ) = φ_{xy}(-τ)$.&nbsp; In&nbsp; [[Theory_of_Stochastic_Signals/Cross-Correlation_Function_and_Cross_Power-Spectral_Density#Definition_of_the_cross-correlation_function|$\text{Example 1}$]]&nbsp; of the last section,&nbsp; the second cross-correlation function&nbsp; $φ_{yx}(τ)$&nbsp; would have its maximum at&nbsp; $τ = -3 \ \rm ms$.  
*In general, the&nbsp; ''maximum CCF''&nbsp; does not occur at $τ = 0$&nbsp; $($exception: &nbsp; $y = α - x)$&nbsp; and the KKF value&nbsp; $φ_{xy}(τ = 0)$&nbsp; does not have any special, physically interpretable meaning as in the ACF, where this value reflects the process power.  
+
*In general,&nbsp; the&nbsp; &raquo;maximum CCF&laquo;&nbsp; does not occur at&nbsp; $τ = 0$&nbsp; $($exception: &nbsp; $y = α \cdot x)$&nbsp; and the CCF value&nbsp; $φ_{xy}(τ = 0)$&nbsp; does not have any special,&nbsp; physically interpretable meaning as in the ACF,&nbsp; where this value reflects the process power.  
*The magnitude of the KKF is less than or equal to the geometric mean of the two signal powers according to the&nbsp; [https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality Cauchy-Schwarz inequality]&nbsp; for all&nbsp; $τ$-values:  
+
* For all&nbsp; $τ$-values,&nbsp; the&nbsp; &raquo;CCF magnitude&laquo;&nbsp; is less than or equal to the geometric mean of the two signal powers according to the&nbsp; [https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality $\text{Cauchy-Schwarz inequality}$]:  
 
:$$\varphi_{xy}( \tau) \le \sqrt {\varphi_{x}( \tau = 0) \cdot \varphi_{y}( \tau = 0)}.$$
 
:$$\varphi_{xy}( \tau) \le \sqrt {\varphi_{x}( \tau = 0) \cdot \varphi_{y}( \tau = 0)}.$$
*In&nbsp; $\text{Example 1}$&nbsp; on the last page, the equal sign applies:  
+
:In&nbsp; $\text{Example 1}$&nbsp; in the last section,&nbsp; the equal sign applies:&nbsp; $\varphi_{xy}( \tau = t_{\rm 0}) = \sqrt {\varphi_{x}( \tau = 0) \cdot \varphi_{y}( \tau = 0)} = \alpha \cdot \varphi_{x}( \tau = {\rm 0}) .$
:$$\varphi_{xy}( \tau = t_{\rm 0}) = \sqrt {\varphi_{x}( \tau = 0) \cdot \varphi_{y}( \tau = 0)} = \alpha \cdot \varphi_{x}( \tau = {\rm 0}) .$$
+
*If&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; do not contain a common periodic fraction,&nbsp; the&nbsp; &raquo;CCF limit&laquo;&nbsp; for&nbsp; $τ → ∞$&nbsp; gives the product of both means:  
*If&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; do not contain a common periodic fraction, the limit of the CCF for&nbsp; $τ → ∞$&nbsp; gives the product of both means:  
 
 
:$$\lim_{\tau \rightarrow \infty} \varphi _{xy} ( \tau ) = m_x \cdot m_y .$$
 
:$$\lim_{\tau \rightarrow \infty} \varphi _{xy} ( \tau ) = m_x \cdot m_y .$$
*If two signals&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; are ''uncorrelated'',&nbsp; then&nbsp; $φ_{xy}(τ) ≡ 0$, that is, it is&nbsp; $φ_{xy}(τ) = 0$&nbsp; for all values of&nbsp; $τ$. &nbsp; For example, this assumption is justified in most cases when considering a useful signal and an interfering signal together.  
+
*If two signals&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; are&nbsp; &raquo;uncorrelated&laquo;,&nbsp; then&nbsp; $φ_{xy}(τ) ≡ 0$,&nbsp; that is,&nbsp; it is&nbsp; $φ_{xy}(τ) = 0$&nbsp; for all values of&nbsp; $τ$. &nbsp; For example,&nbsp; this assumption is justified in most cases when considering a useful signal and a noise signal together.  
*It should always be noted, however, that the CCF includes only the&nbsp; ''linear statistical bindings''&nbsp; between the signals&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; . Bindings of other types - such as for the case&nbsp; $y(t) = x^2(t)$&nbsp; - on the other hand, are not taken into account in the CCF formation.  
+
*However,&nbsp; it should always be noted,&nbsp; that the CCF includes only the&nbsp; &raquo;linear statistical bindings&laquo;&nbsp; between the signals&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$.&nbsp; Bindings of other types&nbsp; &ndash; such as for the case&nbsp; $y(t) = x^2(t)$&nbsp; &ndash;&nbsp; are not taken into account in the CCF formation.  
  
==Applications of the cross correlation function==
+
==Applications of the cross-correlation function==
 
<br>
 
<br>
The applications of the cross-correlation function in message systems are many. Here are some examples:  
+
The applications of the cross-correlation function in Communication systems are many.&nbsp; Here are some examples:  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 2:}$&nbsp; In&nbsp; [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Amplitude Modulation]], but also in&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|BPSK systems]]&nbsp; (''Binary Phase Shift Keying''), the so-called synchronous demodulator is very often used for demodulation (resetting the signal to the original frequency range), whereby a carrier signal must also be added at the receiver, and this must be frequency and phase synchronous to the transmitter. If one forms the CCF between the receive signal and the receive carrier signal, the phase synchronous position between the two signals can be recognized by means of the peak of the KKF, and it can be readjusted in case of drifting apart}}.
+
$\text{Example 2:}$&nbsp; In&nbsp; [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|$\text{amplitude modulation}$]],&nbsp; but also in&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|$\text{BPSK systems}$]]&nbsp; ("Binary Phase Shift Keying"),&nbsp; the so-called&nbsp; [[Modulation_Methods/Synchronous_Demodulation|$\text{Synchronous Demodulator}$]]&nbsp; is often used for demodulation&nbsp; (resetting the signal to the original frequency range),&nbsp; whereby a carrier signal must also be added at the receiver,&nbsp; and this must be frequency and phase synchronous to the transmitter.  
 +
 
 +
&rArr; &nbsp; If one forms the CCF between the received signal&nbsp; $r(t)$&nbsp; and the carrier signal&nbsp; $z_{\rm E}(t)$&nbsp; on the receiver side,&nbsp; the phase synchronous position between the two signals can be recognized by means of the CCF peak,&nbsp; and it can be readjusted in case of drifting apart.}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 3:}$&nbsp;   
 
$\text{Example 3:}$&nbsp;   
The multiple access method&nbsp; [[Modulation_Methods/Spreading_Sequences_for_CDMA|CDMA]]&nbsp; (''Code Division Multiple Access'')&nbsp; is used, for example, in the mobile radio standard&nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS|UMTS]]&nbsp; . It requires strict phase synchronism, with respect to the added&nbsp; ''pseudonoise sequences''&nbsp; at the transmitter&nbsp; (''bandspread'')&nbsp; and at the receiver&nbsp; (''bandspread'') (Bitte um bessere Übersetzung).&nbsp; This synchronization problem is also usually solved using the cross-correlation function.}}
+
The multiple access method&nbsp; [[Modulation_Methods/Spreading_Sequences_for_CDMA|$\text{CDMA}$]]&nbsp; ("Code Division Multiple Access")&nbsp; is used,&nbsp; for example,&nbsp; in the mobile radio standard&nbsp; [[Examples_of_Communication_Systems/General_Description_of_UMTS|$\text{UMTS}$]].&nbsp; It requires strict phase synchronism,&nbsp; with respect to the added&nbsp; "pseudonoise sequences"&nbsp; at the transmitter&nbsp; ("band spreading")&nbsp; and at the receiver&nbsp; ("band compression").&nbsp;
 +
 
 +
&rArr; &nbsp; This synchronization problem is also usually solved using the cross-correlation function.}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 4:}$&nbsp;   
 
$\text{Example 4:}$&nbsp;   
The cross-correlation function can be used to determine whether or not a known signal&nbsp; $s(t)$&nbsp; is present in a noisy received signal &nbsp;$r(t) = α - s(t - t_0) + n(t)$&nbsp; and if so, at what time&nbsp; $t_0$&nbsp; it occurs. From the calculated value for&nbsp; $t_0$&nbsp; then, for example, a driving speed can be determined&nbsp; (''radar technique'').&nbsp; This task can also be solved with the so-called matched filter, which is still described in a&nbsp; [https://en.lntwww.de/Theory_of_Stochastic_Signals/Matched_Filter later chapter]&nbsp; and which has many similarities with the cross-correlation function.}}  
+
The CCF can be used to determine whether or not a known signal&nbsp; $s(t)$&nbsp; is present in a noisy received signal &nbsp;$r(t) = α - s(t - t_0) + n(t)$&nbsp; and if so,&nbsp; at what time&nbsp; $t_0$&nbsp; it occurs.  
 +
 
 +
*From the calculated&nbsp; $t_0$&nbsp; value,&nbsp; for example,&nbsp; a driving speed can be determined&nbsp; ("radar technique").&nbsp;  
 +
*This task can also be solved with the "matched filter",&nbsp;  which has many similarities with the CCF and is described in a&nbsp; [https://en.lntwww.de/Theory_of_Stochastic_Signals/Matched_Filter $\text{later chapter}$].}}  
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 5:}$&nbsp; In the so-called&nbsp; [[Digital_Signal_Transmission/Optimal_Receiver_Strategies#Matched.E2.80.93Filter.E2.80.93Empf.C3.A4nger_vs._Korrelationsempf.C3.A4nger|Correlation receiver]]&nbsp; one uses the CCF for signal detection. &nbsp; Here one forms the cross-correlation between the received signal distorted by noise and possibly also by distortions&nbsp; $r(t)$&nbsp; and all possible transmitted signals&nbsp; $s_i(t)$, where for the running index&nbsp; $i = 1$, ... , $I$&nbsp; shall hold.&nbsp; Deciding&nbsp; $N$&nbsp; binary symbols together, then&nbsp; $I = {\rm 2}^N$.&nbsp; One then decides on the symbol sequence with the largest CCF value, achieving the minimum error probability according to the&nbsp; ''maximum likelihood decision rule.''}}
+
$\text{Example 5:}$&nbsp; In the so-called&nbsp; [[Digital_Signal_Transmission/Optimal_Receiver_Strategies#Matched_filter_receiver_vs._correlation_receiver|$\text{correlation receiver}$]],&nbsp; one uses the CCF for signal detection. &nbsp; Here one forms the cross-correlation function
 +
* between the received signal&nbsp; $r(t)$&nbsp; $($distorted by noise and possibly also by distortions$)$&nbsp;  
 +
* and all possible transmitted signals&nbsp; $s_i(t)$,&nbsp; where for the control index&nbsp; $i = 1$, ... , $I$&nbsp; shall hold.&nbsp;
 +
 
 +
 
 +
&rArr; &nbsp; Deciding&nbsp; $N$&nbsp; binary symbols together,&nbsp; then&nbsp; $I = {\rm 2}^N$.&nbsp; One then decides on the symbol sequence with the largest CCF value,&nbsp; achieving the minimum error probability according to the&nbsp; "maximum likelihood decision rule".}}
  
==Kreuzleistungsdichtespektrum==
+
==Cross power-spectral density==
 
<br>
 
<br>
Für manche Anwendungen kann es durchaus vorteilhaft sein, die Korrelation zwischen zwei Zufallssignalen im Frequenzbereich zu beschreiben.  
+
For some applications it can be quite advantageous to describe the correlation between two random signals in the frequency domain.  
  
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=  
$\text{Definition:}$&nbsp; Die beiden&nbsp; '''Kreuzleistungsdichtespektren'''&nbsp; ${\it Φ}_{xy}(f)$&nbsp; und&nbsp; ${\it Φ}_{yx}(f)$&nbsp; ergeben sich aus den dazugehörigen Kreuzkorrelationsfunktionen&nbsp; $\varphi_{xy}({\it \tau})$ &nbsp;bzw.&nbsp; $\varphi_{yx}({\it \tau})$&nbsp; durch die Fouriertransformation:  
+
$\text{Definition:}$&nbsp;  
 +
 
 +
The two&nbsp; &raquo;'''cross power-spectral densities'''&laquo;&nbsp; ${\it Φ}_{xy}(f)$&nbsp; and&nbsp; ${\it Φ}_{yx}(f)$&nbsp; result from the corresponding cross-correlation functions&nbsp; $\varphi_{xy}({\it \tau})$,&nbsp; resp.&nbsp; $\varphi_{yx}({\it \tau})$&nbsp; by Fourier transform:  
 
:$${\it \Phi}_{xy}(f)=\int^{+\infty}_{-\infty}\varphi_{xy}({\it \tau}) \cdot {\rm e}^{ {\rm -j}\pi f \tau} \rm d \it \tau, $$
 
:$${\it \Phi}_{xy}(f)=\int^{+\infty}_{-\infty}\varphi_{xy}({\it \tau}) \cdot {\rm e}^{ {\rm -j}\pi f \tau} \rm d \it \tau, $$
:$${\it \Phi}_{yx}(f)=\int^{+\infty}_{-\infty}\varphi_{yx}({\it \tau}) \cdot {\rm e}^{ {\rm -j}\pi f \tau} \rm d \it \tau.$$
+
:$${\it \Phi}_{yx}(f)=\int^{+\infty}_{-\infty}\varphi_{yx}({\it \tau}) \cdot {\rm e}^{ {\rm -j}\pi f \tau} \rm d \it \tau.$$}}
Manchmal wird hierfür auch der Begriff&nbsp; ''spektrale Kreuzleistungsdichte''&nbsp; verwendet.}}
 
  
  
Es gilt hier der gleiche Zusammenhang wie
+
The same relationship applies here as between
*zwischen einem deterministischen Signal&nbsp; $x(t)$&nbsp; und seinem Spektrum&nbsp; $X(f)$&nbsp; bzw.
+
*a deterministic signal&nbsp; $x(t)$&nbsp; and its spectrum&nbsp; $X(f)$,&nbsp;  
*zwischen der Autokorrelationsfunktion&nbsp; ${\it φ}_x(τ)$&nbsp; eines ergodischen Prozesses&nbsp; $\{x_i(t)\}$&nbsp; und dem dazugehörigen Leistungsdichtespektrum&nbsp; ${\it Φ}_x(f)$.  
+
*the auto-correlation function&nbsp; ${\it φ}_x(τ)$&nbsp; of an ergodic process&nbsp; $\{x_i(t)\}$&nbsp; and the corresponding power-spectral density&nbsp; ${\it Φ}_x(f)$.  
  
  
Ebenso beschreibt hier die&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_zweite_Fourierintegral|Fourierrücktransformation]] &nbsp; ⇒ &nbsp; „Zweites Fourierintegral” den Übergang vom Spektralbereich in den Zeitbereich.  
+
Similarly,&nbsp; the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|$\text{inverse Fourier transform}$]] &nbsp; ⇒ &nbsp; "Second Fourier integral"&nbsp; describes here  the transition from the frequency domain to the time domain.  
  
[[File:P_ID772__Sto_T_4_6_S1neu.png |right|frame| Zur Definition der Kreuzkorrelationsfunktion]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 6:}$&nbsp;
+
$\text{Example 6:}$&nbsp;
Wir nehmen Bezug zum&nbsp; [[Theory_of_Stochastic_Signals/Kreuzkorrelationsfunktion_und_Kreuzleistungsdichte#Definition_der_Kreuzkorrelationsfunktion|$\text{Beispiel 1}$]]&nbsp; mit den beiden „rechteckförmigen Zufallsgrößen”&nbsp; $x(t)$&nbsp; &nbsp;und&nbsp; $y(t) = α · x(t t_0)$.  
+
We refer to&nbsp; [[Theory_of_Stochastic_Signals/Cross-Correlation_Function_and_Cross_Power_Density#Definition_of_the_cross-correlation_function|$\text{Example 1}$]]&nbsp;
 +
[[File:P_ID772__Sto_T_4_6_S1neu.png |right|frame| For the definition of the cross-correlation function]]   
 +
*with the rectangular random variable&nbsp; $x(t)$&nbsp; &nbsp;
 +
* and the attenuated and shifted signal&nbsp; $y(t) = α - x(t - t_0)$.
 +
 
 +
 
 +
&rArr; &nbsp; Since the auto-correlation function&nbsp; ${\it φ}_x(τ)$&nbsp; is triangular,&nbsp;  the power-spectral density&nbsp; ${\it Φ}_x(f)$&nbsp; has a&nbsp; ${\rm sinc}^2$-shaped profile.
 +
 
  
Da die AKF&nbsp; ${\it φ}_x(τ)$&nbsp; dreieckförmig verläuft, hat – wie im Kapitel&nbsp; [[Theory_of_Stochastic_Signals/Leistungsdichtespektrum_(LDS)|Leistungsdichtespektrum]]&nbsp; beschrieben – das LDS&nbsp; ${\it Φ}_x(f)$&nbsp; einen&nbsp; ${\rm si}^2$-förmigen Verlauf.
+
In general, what statements can we derive from this graph for the spectral functions?  
<br clear=all>
+
#In&nbsp; $\text{Example 1}$&nbsp; we found that the autocorrelation function&nbsp; ${\it φ}_y(τ)$&nbsp; differs from&nbsp; ${\it φ}_x(τ)$&nbsp; only by the constant factor&nbsp; $α^2$.  
Welche Aussagen können wir allgemein aus dieser Grafik für die Spektralfunktionen ableiten?  
+
#It is clear that the power-spectral density&nbsp; ${\it Φ}_y(f)$&nbsp; differs from&nbsp; ${\it \Phi}_x(f)$&nbsp; also only by this constant factor&nbsp; $α^2$.&nbsp; Both spectral functions are real.  
*Im zitierten&nbsp; $\text{Beispiel 1}$&nbsp; haben wir festgestellt, dass sich die Autokorrelationsfunktion&nbsp; ${\it φ}_y(τ)$&nbsp; von&nbsp; ${\it φ}_x(τ)$&nbsp; nur um den konstanten Faktor&nbsp; $α^2$&nbsp; unterscheidet.  
+
#In contrast,&nbsp; the cross power-spectral density has a complex functional:  
*Damit ist klar, dass das Leistungsdichtespektrum&nbsp; ${\it Φ}_y(f)$&nbsp; von&nbsp; ${\it \Phi}_x(f)$&nbsp; ebenfalls nur um diesen konstanten Faktor&nbsp; $α^2$&nbsp; abweicht.&nbsp; Beide Spektralfunktionen sind reell.
 
*Dagegen besitzt das Kreuzleistungsdichtespektrum einen komplexen Funktionsverlauf:  
 
 
:$${\it \Phi}_{xy}(f) ={\it \Phi}^\star_{yx}(f)= \alpha \cdot {\it \Phi}_{x}(f) \hspace{0.05cm}\cdot {\rm e}^{- {\rm j } \hspace{0.02cm}\pi f t_0}.$$}}
 
:$${\it \Phi}_{xy}(f) ={\it \Phi}^\star_{yx}(f)= \alpha \cdot {\it \Phi}_{x}(f) \hspace{0.05cm}\cdot {\rm e}^{- {\rm j } \hspace{0.02cm}\pi f t_0}.$$}}
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_4.14:_AKF_und_KKF_bei_Rechtecksignalen|Aufgabe 4.14: AKF und KKF bei Rechtecksignalen]]
+
[[Aufgaben:Exercise_4.14:_ACF_and_CCF_for_Square_Wave_Signals|Exercise 4.14: ACF and CCF for Square Wave Signals]]
  
[[Aufgaben:4.14Z Auffinden von Echos|Aufgabe 4.14Z: Auffinden von Echos]]
+
[[Aufgaben:Exercise_4.14Z:_Echo_Detection|Exercise 4.14Z: Echo Detection]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 19:52, 21 December 2022

Definition of the cross-correlation function


In many engineering applications,  one is interested in a quantitative measure to describe the statistical relatedness between different processes or between their pattern signals.  One such measure is the  "cross-correlation function",  which is given here under the assumptions of  "stationarity"'  and  "ergodicity".

$\text{Definition:}$  For the  »cross-correlation function«  $\rm (CCF)$ of two stationary and ergodic processes with the pattern functions  $x(t)$  and  $y(t)$  holds:

$$\varphi_{xy}(\tau)={\rm E} \big[{x(t)\cdot y(t+\tau)}\big]=\lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M} }\cdot\int^{T_{\rm M}/{\rm 2} }_{-T_{\rm M}/{\rm 2} }x(t)\cdot y(t+\tau)\,\rm d \it t.$$
  • The first defining equation characterizes the  expected value formation  ("ensemble averaging"),
  • while the second equation describes the  "time averaging"  over an  (as large as possible)  measurement period  $T_{\rm M}$.


A comparison with the  $\text{ACF definition}$  shows many similarities.  

  • Setting  $y(t) = x(t)$,  we get  $φ_{xy}(τ) = φ_{xx}(τ)$, i.e., the auto-correlation function,
  • for which,  however,  in our tutorial we mostly use the simplified notation  $φ_x(τ)$.


$\text{Example 1:}$  We consider a random signal  $x(t)$  with triangular auto-correlation function  $φ_x(τ)$   ⇒   blue curve.  This ACF shape results e.g. for

Cross-correlation function of a binary signal
  • a binary signal with equally probable bipolar amplitude coefficients  $(\pm1)$ 
  • and a rectangular basic pulse  $g(t)$.


We consider a second signal  $y(t) = \alpha \cdot x (t - t_{\rm 0})$,  which differs from  $x(t)$  only by an attenuation factor  $(α =0.5)$  and a delay time  $(t_0 = 3 \ \rm ms)$.

This attenuated and shifted signal has the auto-correlation function drawn in red:

$$\varphi_{y}(\tau) = \alpha^2 \cdot \varphi_{x}(\tau) .$$

The shift around  $t_0$  is not seen in this auto-correlation function in contrast to the  (green)  cross-correlation function  $\rm (CCF)$  for which the following relation holds:

$$\varphi_{xy}(\tau) = \alpha \cdot \varphi_{x}(\tau- t_{\rm 0}) .$$

Properties of the cross-correlation function


In the following,  essential properties of the cross-correlation function  $\rm (CCF)$  are composed.  Important differences to the auto-correlation function  $\rm (ACF)$  are:

  • The formation of the cross-correlation function is  »not commutative«.  Rather,  there are always two distinct functions,  viz.
$$\varphi_{xy}(\tau)={\rm E} \big[{x(t)\cdot y(t+\tau)}\big]=\lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M}}\cdot\int^{T_{\rm M}/{\rm 2}}_{-T_{\rm M}/{\rm 2}}x(t)\cdot y(t+\tau)\,\, \rm d \it t,$$
$$\varphi_{yx}(\tau)={\rm E} \big[{y(t)\cdot x(t+\tau)}\big]=\lim_{T_{\rm M}\to\infty}\,\frac{1}{T_{\rm M}}\cdot\int^{T_{\rm M}/{\rm 2}}_{-T_{\rm M}/{\rm 2}}y(t)\cdot x(t+\tau)\,\, \rm d \it t .$$
  • There is a relationship between the two functions:   $φ_{yx}(τ) = φ_{xy}(-τ)$.  In  $\text{Example 1}$  of the last section,  the second cross-correlation function  $φ_{yx}(τ)$  would have its maximum at  $τ = -3 \ \rm ms$.
  • In general,  the  »maximum CCF«  does not occur at  $τ = 0$  $($exception:   $y = α \cdot x)$  and the CCF value  $φ_{xy}(τ = 0)$  does not have any special,  physically interpretable meaning as in the ACF,  where this value reflects the process power.
  • For all  $τ$-values,  the  »CCF magnitude«  is less than or equal to the geometric mean of the two signal powers according to the  $\text{Cauchy-Schwarz inequality}$:
$$\varphi_{xy}( \tau) \le \sqrt {\varphi_{x}( \tau = 0) \cdot \varphi_{y}( \tau = 0)}.$$
In  $\text{Example 1}$  in the last section,  the equal sign applies:  $\varphi_{xy}( \tau = t_{\rm 0}) = \sqrt {\varphi_{x}( \tau = 0) \cdot \varphi_{y}( \tau = 0)} = \alpha \cdot \varphi_{x}( \tau = {\rm 0}) .$
  • If  $x(t)$  and  $y(t)$  do not contain a common periodic fraction,  the  »CCF limit«  for  $τ → ∞$  gives the product of both means:
$$\lim_{\tau \rightarrow \infty} \varphi _{xy} ( \tau ) = m_x \cdot m_y .$$
  • If two signals  $x(t)$  and  $y(t)$  are  »uncorrelated«,  then  $φ_{xy}(τ) ≡ 0$,  that is,  it is  $φ_{xy}(τ) = 0$  for all values of  $τ$.   For example,  this assumption is justified in most cases when considering a useful signal and a noise signal together.
  • However,  it should always be noted,  that the CCF includes only the  »linear statistical bindings«  between the signals  $x(t)$  and  $y(t)$.  Bindings of other types  – such as for the case  $y(t) = x^2(t)$  –  are not taken into account in the CCF formation.

Applications of the cross-correlation function


The applications of the cross-correlation function in Communication systems are many.  Here are some examples:

$\text{Example 2:}$  In  $\text{amplitude modulation}$,  but also in  $\text{BPSK systems}$  ("Binary Phase Shift Keying"),  the so-called  $\text{Synchronous Demodulator}$  is often used for demodulation  (resetting the signal to the original frequency range),  whereby a carrier signal must also be added at the receiver,  and this must be frequency and phase synchronous to the transmitter.

⇒   If one forms the CCF between the received signal  $r(t)$  and the carrier signal  $z_{\rm E}(t)$  on the receiver side,  the phase synchronous position between the two signals can be recognized by means of the CCF peak,  and it can be readjusted in case of drifting apart.


$\text{Example 3:}$  The multiple access method  $\text{CDMA}$  ("Code Division Multiple Access")  is used,  for example,  in the mobile radio standard  $\text{UMTS}$.  It requires strict phase synchronism,  with respect to the added  "pseudonoise sequences"  at the transmitter  ("band spreading")  and at the receiver  ("band compression"). 

⇒   This synchronization problem is also usually solved using the cross-correlation function.


$\text{Example 4:}$  The CCF can be used to determine whether or not a known signal  $s(t)$  is present in a noisy received signal  $r(t) = α - s(t - t_0) + n(t)$  and if so,  at what time  $t_0$  it occurs.

  • From the calculated  $t_0$  value,  for example,  a driving speed can be determined  ("radar technique"). 
  • This task can also be solved with the "matched filter",  which has many similarities with the CCF and is described in a  $\text{later chapter}$.


$\text{Example 5:}$  In the so-called  $\text{correlation receiver}$,  one uses the CCF for signal detection.   Here one forms the cross-correlation function

  • between the received signal  $r(t)$  $($distorted by noise and possibly also by distortions$)$ 
  • and all possible transmitted signals  $s_i(t)$,  where for the control index  $i = 1$, ... , $I$  shall hold. 


⇒   Deciding  $N$  binary symbols together,  then  $I = {\rm 2}^N$.  One then decides on the symbol sequence with the largest CCF value,  achieving the minimum error probability according to the  "maximum likelihood decision rule".

Cross power-spectral density


For some applications it can be quite advantageous to describe the correlation between two random signals in the frequency domain.

$\text{Definition:}$ 

The two  »cross power-spectral densities«  ${\it Φ}_{xy}(f)$  and  ${\it Φ}_{yx}(f)$  result from the corresponding cross-correlation functions  $\varphi_{xy}({\it \tau})$,  resp.  $\varphi_{yx}({\it \tau})$  by Fourier transform:

$${\it \Phi}_{xy}(f)=\int^{+\infty}_{-\infty}\varphi_{xy}({\it \tau}) \cdot {\rm e}^{ {\rm -j}\pi f \tau} \rm d \it \tau, $$
$${\it \Phi}_{yx}(f)=\int^{+\infty}_{-\infty}\varphi_{yx}({\it \tau}) \cdot {\rm e}^{ {\rm -j}\pi f \tau} \rm d \it \tau.$$


The same relationship applies here as between

  • a deterministic signal  $x(t)$  and its spectrum  $X(f)$, 
  • the auto-correlation function  ${\it φ}_x(τ)$  of an ergodic process  $\{x_i(t)\}$  and the corresponding power-spectral density  ${\it Φ}_x(f)$.


Similarly,  the  $\text{inverse Fourier transform}$   ⇒   "Second Fourier integral"  describes here the transition from the frequency domain to the time domain.

$\text{Example 6:}$  We refer to  $\text{Example 1}$ 

For the definition of the cross-correlation function
  • with the rectangular random variable  $x(t)$   
  • and the attenuated and shifted signal  $y(t) = α - x(t - t_0)$.


⇒   Since the auto-correlation function  ${\it φ}_x(τ)$  is triangular,  the power-spectral density  ${\it Φ}_x(f)$  has a  ${\rm sinc}^2$-shaped profile.


In general, what statements can we derive from this graph for the spectral functions?

  1. In  $\text{Example 1}$  we found that the autocorrelation function  ${\it φ}_y(τ)$  differs from  ${\it φ}_x(τ)$  only by the constant factor  $α^2$.
  2. It is clear that the power-spectral density  ${\it Φ}_y(f)$  differs from  ${\it \Phi}_x(f)$  also only by this constant factor  $α^2$.  Both spectral functions are real.
  3. In contrast,  the cross power-spectral density has a complex functional:
$${\it \Phi}_{xy}(f) ={\it \Phi}^\star_{yx}(f)= \alpha \cdot {\it \Phi}_{x}(f) \hspace{0.05cm}\cdot {\rm e}^{- {\rm j } \hspace{0.02cm}\pi f t_0}.$$

Exercises for the chapter


Exercise 4.14: ACF and CCF for Square Wave Signals

Exercise 4.14Z: Echo Detection