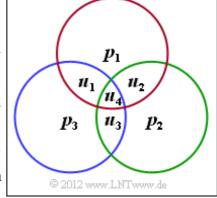
A1.7: H und G des (7, 4)—Hamming—Codes

Die Grafik zeigt die Prüfgleichungen des (7, 4, 3)-Hamming-Codes, der bereits in der **Aufgabe A1.6** eingehend betrachtet und anhand der Codetabelle beschrieben wurde.

In dieser Aufgabe wird dieser Code – wie in der Kanalcodierung allgemein üblich – nun durch zwei Matrizen charakterisiert:

• Die Prüfmatrix **H** ist eine Matrix mit m = n - k Zeilen und n Spalten. Sie beschreibt die m = 3 Prüfgleichungen, wobei sich die erste Zeile auf die Elemente des roten Kreises und die



- zweite Zeile auf die des grünen Kreises bezieht. Die letzte Zeile gibt die Modulo-2-Summe des blauen Kreises wieder.
- Eine zweite Beschreibungsmöglichkeit bietet die Generatormatrix G, mit k Zeilen und n Spalten. Sie gibt den Zusammenhang zwischen den Informationsworten \underline{u} und den Codeworten \underline{x} an:

$$\underline{x} = \underline{u} \cdot \mathbf{G}$$
.

Daraus und aus der Gleichung $\mathbf{H} \cdot \underline{x}^T = \mathbf{0}$ kann der Zusammenhang zwischen der Prüfmatrix \mathbf{H} und der Generatormatrix \mathbf{G} hergestellt werden:

$$\underline{x}^{\mathrm{T}} = \mathbf{G}^{\mathrm{T}} \cdot \underline{u}^{\mathrm{T}} \quad \Rightarrow \quad \mathbf{H} \cdot \mathbf{G}^{\mathrm{T}} \cdot \underline{u}^{\mathrm{T}} = \underline{0} \quad \forall \ \underline{u} \in \mathrm{GF}(2^k)$$
$$\Rightarrow \quad \mathbf{H} \cdot \mathbf{G}^{\mathrm{T}} = \mathbf{0}.$$

Anzumerken ist, dass in diesen Gleichungen $\underline{0}$ einen Zeilenvektor mit k Elementen bezeichnet und $\mathbf{0}$ eine Matrix mit m Zeilen und k Spalten. Alle Elemente von $\underline{0}$ bzw. $\mathbf{0}$ sind identisch 0.

Handelt es sich um einen **systematischen Code**, so können die beiden Beschreibungsgrößen **H** und **G** unter Zuhilfenahme von *Einheitsmatrizen* wie folgt geschrieben werden:

$$\mathbf{G} = (\mathbf{I}_k ; \mathbf{P}) ,$$

 $\mathbf{H} = (\mathbf{P}^{\mathrm{T}} ; \mathbf{I}_m) .$

 \mathbf{P} ist dabei eine Matrix mit k Zeilen und m Spalten. Dementsprechend besitzt die transponierte Matrix \mathbf{P}^{T} m Zeilen und k Spalten.

Hinweis: Die Aufgabe bezieht sich auf das Kapitel 1.4.

Fragebogen zu "A1.7: H und G des (7, 4)-Hamming-Codes"

a)	Welches	Format	hat die	Prüfma	itrix?

H: Spaltenzahl =

H: Zeilenzahl =

h)	Welche	Aussagen	hinsichtlich	der	Priifmatrix	н	sind	zutreffend	
ν	VV CICIIC	Aussagen	1 III IS IC I I I I I I I I I I I I I I I	uci .	riumianix	11	SILIC	Zuu Cuchu	

Die erste Zeile lautet: 1101100.

Die zweite Zeile lautet: 0111010.

Die dritte Zeile lautet: 1011001.

c) Woran erkennt man, dass ein systematischer Code vorliegt?

☐ In jeder Zeile gibt es eine gerade Anzahl von Einsen.

Am Ende von **H** erkennt man eine Einheitsmatrix.

Die mittlere Spalte von H ist mit Einsen besetzt.

d) Geben Sie die Generatormatrix G an. Welche Aussagen stimmen?

Die erste Zeile lautet: 1000101,

Die zweite Zeile lautet: 0111010,

Die letzte Zeile lautet: 0001111.

e) Welches Codewort \underline{x}_{11} ergibt sich für $\underline{u}_{11} = (1, 0, 1, 1)$?

 $\underline{\underline{x}}_{11} = (1, 1, 1, 1, 0, 0, 0),$

 $\underline{\underline{x}}_{11} = (1, 0, 1, 1, 0, 0, 0),$

 $\underline{\underline{x}}_{11} = (1, 0, 1, 1, 0, 0, 1).$

Z1.7: Klassifizierung von Blockcodes

Wir betrachten Blockcodes der Länge n = 4:

• den Single Parity-check Code SPC (4, 3) mit

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix},$$

• den Wiederholungscode RC (4, 1) mit der Prüfmatrix

$$\mathbf{H} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix},$$

• den (4, 2)—Blockcode mit der Generatormatrix

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix},$$

• den (4, 2)-Blockcode mit der Generatormatrix

$$\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix},$$

• einen weiteren Code mit dem Codeumfang |C| = 6.

Diese Codes werden im Folgenden mit Code 1, ... , Code 5 bezeichnet. In der Grafik sind die einzelnen Codes explizit angegegeben.

Bei den Fragen zu diesen Aufgaben geht es um die Begriffe

- lineare Codes,
- systematische Codes,
- duale Codes.

Hinweis: Die Aufgabe gehört zum Themengebiet von Kapitel 1.4.

```
© 2013 www.LNTwww.de
Code 1:
\{(0,0,0,0),(0,0,1,1),(0,1,0,1),
 (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0),
 (1,1,0,0),(1,1,1,1)
Code 2:
{(0,0,0,0), (1,1,1,1)}
Code 3:
\{(0,0,0,0),(0,1,1,0),(1,0,0,1),
 (1,1,1,1)
Code 4:
\big\{\,(0,0,0,0),\,(0,0,1,1),\,(1,1,0,0),
 (1,1,1,1)
Code 5:
\big\{(0,0,1,1),(0,1,0,1),(0,1,1,0),
 (1,0,0,1), (1,0,1,0), (1,1,0,0)
```

Fragebogen zu "Z1.7: Klassifizierung von Blockcodes"

a)	Wie	lässt sich Code 5 beschreiben?
		In jedem Codewort sind genau 2 Nullen enthalten.
		In jedem Codewort sind genau 2 Einsen enthalten.
		Nach jeder 0 sind die Symbole 0 und 1 gleichwahrscheinlich.
b)	We	lche der folgenden Blockcodes sind linear?
		Code 1,
		Code 2,
		Code 3,
		Code 4,
		Code 5.
c)	We	lche der folgenden Blockcodes sind systematisch?
c)	We	Iche der folgenden Blockcodes sind systematisch? Code 1,
c)	We	
c)	We	Code 1,
c)	We I	Code 1, Code 2,
(c)	We	Code 1, Code 2, Code 3,
		Code 1, Code 2, Code 3, Code 4,
		Code 1, Code 2, Code 3, Code 4, Code 5.
		Code 1, Code 2, Code 3, Code 4, Code 5.

Buch: Einführung in die Kanalcodierung Kapitel: 1 Binäre Blockcodes zur Kanalcodierung

A1.8: Identische Codes

Wir betrachten einen Blockcode *C*, der durch folgende Generatormatrix beschrieben wird:

$$\mathbf{G} = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \,.$$

Die Zuordnung zwischen den Informationsworten \underline{u} und den Codeworten \underline{x} kann der beiliegenden Tabelle entnommen werden. Man erkennt, dass es sich dabei nicht um einen systematischen Code handelt.

$\underline{\boldsymbol{u}_0}=(0,0,0)$	$\underline{x}_0 = (0, 0, 0, 0, 0, 0)$
$\underline{u}_1 = (0, 0, 1)$	$\underline{x}_1 = (0, 1, 1, 1, 1, 0)$
$\underline{u_2} = (0, 1, 0)$	$\underline{x_2} = (1, 0, 0, 1, 1, 0)$
$\underline{u}_3 = (0, 1, 1)$	$\underline{x}_3 = (1, 1, 1, 0, 0, 0)$
$\underline{u}_4 = (1, 0, 0)$	$\underline{x_4} = (0, 0, 1, 0, 1, 1)$
$\underline{u}_{5}=(1,0,1)$	$\underline{x}_5 = (0, 1, 0, 1, 0, 1)$
$\underline{u}_6 = (1, 1, 0)$	$\underline{x}_{6} = (1, 0, 1, 1, 0, 1)$
$\underline{u}_7 = (1, 1, 1)$	$\underline{x}_7 = (1, 1, 0, 0, 1, 1)$

© 2013 www.LNTwww.de

Durch Manipulation der Generatormatrix **G** lassen sich daraus identische Codes konstruieren. Darunter versteht man Codes mit gleichen Codeworten, jedoch unterschiedlicher Zuordnung $\underline{u} \rightarrow \underline{x}$. Folgende Operationen sind erlaubt, um einen identischen Code zu erhalten:

- Vertauschen oder Permutieren der Zeilen,
- Multiplizieren aller Zeilen mit einem konstanten Vektor ungleich 0,
- Ersetzen einer Zeile durch eine Linearkombination zwischen dieser Zeile und einer anderen.

Für den in der Teilaufgabe c) gesuchten Code $C_{\text{sys}} \Rightarrow$ Generatormatrix G_{sys} wird weiter gefordert, dass er systematisch ist.

Hinweis: Die Aufgabe bezieht sich vorwiegend auf die Seite Systematische Codes im Kapitel 1.4. Bezug genommen wird zudem auf die so genannte Singleton-Schranke. Diese besagt, dass die minimale Hamming-Distanz eines (n, k)-Blockcodes nach oben beschränkt ist:

$$d_{\min} \le n - k + 1.$$

Fragebogen zu "A1.8: Identische Codes"

a) Geben Sie die Kenngrößen des gegebenen Codes ${\cal C}$ an.

n =

k =

|C| =

R =

m =

 $d_{\min} =$

- b) Gibt es einen (6, 3)–Blockcode mit größerer Minimaldistanz?
 - O Ja.
 - O Nein.
- c) Wie lautet die Generatormatrix $\mathbf{G}_{\mathrm{SYS}}$ des identischen systematischen Codes?
 - ☐ Die 1. Zeile lautet "1 0 1 1 0 1".
 - ☐ Die 2. Zeile lautet "0 1 0 1 0 1".
 - ☐ Die 3. Zeile lautet "0 0 1 0 1 1".
- d) Welche Zuordnungen ergeben sich bei dieser Codierung?
 - $\underline{\underline{u}} = (0, 0, 0) \implies \underline{x}_{SYS} = (0, 0, 0, 0, 0, 0).$
 - $\underline{\underline{u}} = (0, 0, 1) \implies \underline{x}_{SYS} = (0, 0, 1, 0, 0, 1).$
 - $\underline{\underline{u}} = (0, 1, 0) \implies \underline{x}_{SVS} = (0, 1, 0, 1, 1, 0).$
- e) Welche Prüfbits hat der systematische Code $\underline{x}_{\text{Sys}} = (u_1, u_2, u_3, p_1, p_2, p_3)$?
 - $p_1 = u_1 \oplus u_2$

 - \square $p_3 = u_1 \oplus u_3$.

Z1.8: Äquivalente Codes

In der Grafik sind die Zuordnungen $\underline{u} \to \underline{x}$ für verschiedene Codes angegeben, die im Folgenden jeweils durch die Generatormatrix **G** und die Prüfimatrix **H** charakterisiert werden:

• Code A:

$$\mathbf{G}_{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} ,$$

$$\mathbf{H}_{\mathbf{A}} = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \,.$$

• Code B:

$$\mathbf{G}_{\mathrm{B}} = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix},$$

$$\mathbf{H}_{\mathrm{B}} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}.$$

Info	Code A	Code B
000	000000	000000
001	001011	011110
010	010101	100110
011	011110	111000
100	100110	001011
101	101101	010101
111	111000	110011
Info	Code C	Code D
000 001 010 011 100 101 110	000000 001111 010011 011000 100101 101010 110110	000000 001010 010100 011110 100101 101111 110001 111011

© 2012 www.LNTwww.de

• Code C:

$$\mathbf{G}_{\mathrm{C}} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}, \qquad \mathbf{H}_{\mathrm{C}} = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix},$$

• Code D:

$$\mathbf{G}_D = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \,, \qquad \mathbf{H}_D = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \,.$$

In dieser Aufgabe soll untersucht werden, welche dieser Codes bzw. Codepaare

- systematisch sind,
- identisch sind (das heißt: Verschiedene Codes haben gleiche Codeworte),
- äquivalent sind (das heißt: Verschiedene Codes haben gleiche Codeparameter).

Hinweis: Die Aufgabe gehört zum Themengebiet von **Kapitel 1.4.** Anzumerken ist, dass die Angabe einer Prüfmatrix **H** nicht eindeutig ist. Verändert man die Reihenfolge der Prüfgleichungen, so entspricht dies einer Vertauschung von Zeilen.

Fragebogen zu "Z1.8: Äquivalente Codes"

a) Welche der nachfolgend aufgeführten Codes sind systematisch?
□ Code A,
□ Code B,
☐ Code C,
☐ Code D.
b) Welche der vorgegebenen Codepaare sind identisch?
Code A und Code B,
☐ Code B und Code C,
☐ Code C und Code D.
c) Welche der gegebenen Codepaare sind äquivalent, aber nicht identisch?
☐ Code A und Code B,
☐ Code B und Code C,
☐ Code C und Code D.
d) Wie unterscheiden sich die Generatormatrizen $G_{\rm B}$ und $G_{\rm C}$?
Durch verschiedene Linearkombinationen verschiedener Zeilen.
☐ Durch zyklische Vertauschung der Zeilen um 1 nach unten.
☐ Durch zyklische Vertauschung der Spalten um 1 nach rechts.
e) Bei welchen Codes gilt $\mathbf{H} \cdot \mathbf{G}^{T} = 0$?
☐ Code A,
□ Code B,
□ Code C,
☐ Code D.

A1.9: Erweiterter Hamming-Code

Es sollen zwei Codes miteinander verglichen werden, deren Codetabellen rechts angegeben sind. Die ersten vier Bit eines jeden Codewortes \underline{x} geben das jeweilige Informationswort \underline{u} wider (schwarze Schrift). Danach folgen m = n - k Prüfbit (rote Schrift).

 Der systematische (7, 4)—Hamming–Code wurde bereits in Aufgabe A1.6 sowie Aufgabe A1.7 behandelt. Prüfinatrix und Generatormatrix dieses Codes sind wie folgt gegeben:

$$\begin{split} \mathbf{H}_1 &= \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}, \\ \mathbf{G}_1 &= \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}. \end{split}$$

Codeworte von C_1 Hamming-Code (7,4)	Codeworte von C_2 HC erweitert auf (8, 4)
(0, 0, 0, 0, 0, 0, 0, 0)	(0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 1, 1, 1, 1)	(0, 0, 0, 1, 1, 1, 1, 0)
(0, 0, 1, 0, 0, 1, 1)	(0, 0, 1, 0, 0, 1, 1, 1)
(0, 0, 1, 1, 1, 0, 0)	(0,0,1,1,1,0,0,1)
(0, 1, 0, 0, 1, 1, 0)	(0, 1, 0, 0, 1, 1, 0, 1)
(0, 1, 0, 1, 0, 0, 1)	(0, 1, 0, 1, 0, 0, 1, 1)
(0, 1, 1, 0, 1, 0, 1)	(0, 1, 1, 0, 1, 0, 1, 0)
(0, 1, 1, 1, 0, 1, 0)	(0, 1, 1, 1, 0, 1, 0, 0)
(1, 0, 0, 0, 1, 0, 1)	(1,0,0,0,1,0,1,1)
(1, 0, 0, 1, 0, 1, 0)	(1, 0, 0, 1, 0, 1, 0, 1)
(1, 0, 1, 0, 1, 1, 0)	(1, 0, 1, 0, 1, 1, 0, 0)
(1, 0, 1, 1, 0, 0, 1)	(1, 0, 1, 1, 0, 0, 1, 0)
(1, 1, 0, 0, 0, 1, 1)	(1, 1, 0, 0, 0, 1, 1, 0)
(1, 1, 0, 1, 1, 0, 0)	(1, 1, 0, 1, 1, 0, 0, 0)
(1, 1, 1, 0, 0, 0, 0, 0)	(1, 1, 1, 0, 0, 0, 0, 1)
(1, 1, 1, 1, 1, 1, 1)	(1, 1, 1, 1, 1, 1, 1)

© 2012 www.LNTwww.de

Im weiteren Verlauf der Aufgabe wird dieser (gelb hinterlegte) Code C_1 genannt.

• Die rechte Spalte in obiger Tabelle gibt einen Blockcode mit den Parametern n=8 und k=4 an, der in der Literatur meist als "erweiteter Hamming–Code" bezeichnet wird. Wir nennen diesen (grün hinterlegten) Code im Folgenden C_2 und bezeichnen dessen Prüfmatrix mit \mathbf{H}_2 und die dazugehörige Generatormatrix mit \mathbf{G}_2 .

Die Fragen zu dieser Aufgabe beziehen sich auf

- die Coderate,
- die **minimale Distanz** zwischen zwei Codeworten,
- die **Prüfmatrix** und die **Generatormatrix** des erweiterten (8, 4)–Hamming–Codes.

Hinweis: Die Aufgabe gehört zu **Kapitel 1.4.** Beachten Sie bei der Lösung, dass C_1 und C_2 jeweils **systematische Codes** sind. Die nachfolgende **Aufgabe Z1.9** behandelt die Erweiterung von Codes in etwas allgemeinerer Form.

Fragebogen zu "A1.9: Erweiterter Hamming-Code"

a)	Geben	Sie die	Coderaten	von C_1	und C_2 an.

$$C_1$$
: $R =$

$$C_2$$
: $R =$

b) Geben Sie die minimalen Distanzen von C_1 und C_2 an.

$$C_1$$
: $d_{\min} =$

$$C_2$$
: $d_{\min} =$

c) Welches Format besitzt die Prüfmatrix von C_2 ?

$$H_2$$
: Spaltenzahl =

$$H_2$$
: Zeilenzahl =

d) Leiten Sie aus der Codetabelle die Gleichung für das Codebit x_8 (= p_4) ab.

$$\square$$
 $x_8 = 0$.

$$\square$$
 $x_8 = x_1 \oplus x_2 \oplus x_4 \oplus x_5$.

e) Welche Aussagen gelten für H₂? *Hinweis*: Richtig sind 3 von 4 Antworten.

Die erste Zeile lautet:	1	1	Λ	1	1	Λ	Λ	Λ
			11			11	11	11

- Die zweite Zeile lautet: 0 1 1 1 0 1 0 0.
- Die dritte Zeile lautet: 00001111.
- Die letzte Zeile lautet: 11111111.

f) Welche Umformung ist für die letzte Zeile von \mathbf{H}_2 zulässig?

$$\square$$
 11111111 \rightarrow 00000000,

$$\square$$
 11111111 \rightarrow 11100001,

g) Geben Sie die zugehörige Generatormatrix G_2 an. Welche Aussagen treffen zu?

$$\square$$
 G₂ hat gleiches Format wie die Matrix G₁ des (7, 4)–Codes.

$$\square$$
 G_2 beginnt wie G_1 mit einer Diagonalmatrix I_4 .

\square G_2 hat im betrachteten Beispiel das gleiche Format wie H_2 .	

Z1.9: Erweiterung – Punktierung

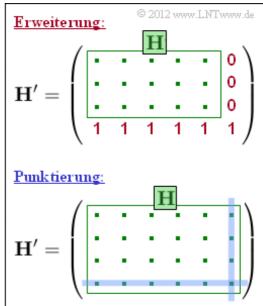
Häufig kennt man einen Code, der für eine Anwendung als geeignet erscheint, dessen Coderate aber nicht exakt mit den Vorgaben übereinstimmt.

Zur Ratenanpassung gibt es verschiedene Möglichkeiten:

• Erweiterung (englisch Extension): Ausgehend vom (n, k)—Code, dessen Prüfmatrix H gegeben ist, erhält man einen (n+1, k)—Code, indem man die Prüfmatrix um eine Zeile und eine Spalte erweitert und die neuen Matrixelemente entsprechend der oberen Grafik mit Nullen und Einsen ergänzt. Man fügt ein neues Prüfbit

$$x_{n+1} = x_1 \oplus x_2 \oplus \ldots \oplus x_n$$

hinzu und damit auch eine neue Prüfgleichung, die in H' berücksichtigt ist.



- Punktierung (englisch *Puncturing*): Entsprechend der unteren Abbildung kommt man zu einem (n-1, k)—Code größerer Rate, wenn man auf ein Prüfbit und eine Prüfgleichung verzichtet, was gleichbedeutend damit ist, aus der Prüfmatrix **H** eine Zeile und eine Spalte zu streichen.
- Verkürzung (englisch *Shortening*): Verzichtet man anstelle eines Prüfbits auf ein Informationsbit, so ergibt sich ein (n-1, k-1)—Code kleinerer Rate.

In dieser Aufgabe sollen ausgehend von einem (5, 2)-Blockcode

$$C = \{(0, 0, 0, 0, 0), (0, 1, 0, 1, 1), (1, 0, 1, 1, 0), (1, 1, 1, 0, 1)\}$$

folgende Codes konstruiert und analysiert werden:

- ein (6, 2)—Code durch einmalige Erweiterung,
- ein (7, 2)—Code durch nochmalige Erweiterung,
- ein (4, 2)—Code durch Punktierung.

Die Prüfmatrix und die Generatormatrix des systematischen (5, 2)—Codes lauten:

$$\mathbf{H}_{(5,2)} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} \quad \Leftrightarrow \quad \mathbf{G}_{(5,2)} = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}.$$

Hinweis: Die Aufgabe bezieht sich auf das **Kapitel 1.4.** In der **Aufgabe A1.9** wird beispielhaft gezeigt, wie aus dem (7, 4, 3)–Hamming–Code durch Erweiterung ein (8, 4, 4)–Code entsteht.

Fragebogen zu "Z1.9: Erweiterung – Punktierung"

a) Geben Sie die Kenngrößen des vorgegebenen (5, 2)-Codes an.

(5, 2)–Code:
$$R =$$

$$d_{\min} =$$

b) Welche Codeworte besitzt der (6, 2)-Code nach Erweiterung?

$$\square$$
 (0 0 0 0 0 1), (0 1 0 1 1 0), (1 0 1 1 0 0), (1 1 1 0 1 1).

$$\square$$
 (0 0 0 0 0 0), (0 1 0 1 1 1), (1 0 1 1 0 1), (1 1 1 0 1 0).

c) Geben Sie die Kenngrößen des erweiterten (6, 2)-Codes an.

$$(6, 2)$$
-Code: $R =$

$$d_{\min} =$$

d) Wie lautet die systematische Generatormatrix des (7, 2)-Codes?

 \square Zeile 1 von **G**: 1, 0, 1, 1, 0, 1, 0.

☐ Zeile 2 von **G**: 0, 1, 0, 1, 1, 1, 0.

e) Geben Sie die Kenngrößen des erweiterten (7, 2)-Codes an.

$$(7, 2)$$
-Code: $R =$

$$d_{\min} =$$

f) Welche Aussagen gelten für den (4, 2)-Code (Punktierung des letzten Prüfbits)?

 \square Die Coderate beträgt nun R = 2/4 = 0.5.

$$C_{(4,2)} = \{(0,0,0,0), (1,0,1,1), (0,1,0,1), (1,1,1,0)\}.$$

Die Minimaldistanz bleibt gegenüber dem (5, 2)–Code gleich.

Buch: Einführung in die Kanalcodierung Kapitel: 1 Binäre Blockcodes zur Kanalcodierung

A1.10: Einige Generatormatrizen

Wir betrachten nun verschiedene Binärcodes einheitlicher Länge n. Alle Codes der Form

$$\underline{x} = (x_1, x_2, ..., x_n),$$

 $x_i \in \{0, 1\}, i = 1, ..., n$

lassen sich in einem n-dimensionalen Vektorraum darstellen und interpretieren \Rightarrow GF(2^n).

Durch eine $k \times n$ —Generatormatrix **G** (also eine Matrix mit k Zeilen und n Spalten) ergibt sich ein (n, k)—Code, allerdings nur dann, wenn der Rang (englisch: Rank) der Matrix **G** ebenfalls gleich k ist. Weiter gilt:

- Jeder Code C spannt einen k-dimensionalen linearen Untervektorraum des Galoisfeldes $GF(2^n)$ auf.
- Als Basisvektoren dieses Untervektorraums können *k* unabhängige Codeworte von *C* verwendet werden. Eine weitere Einschränkung gibt es für die Basisvektoren nicht.
- Die Prüfmatrix **H** spannt ebenfalls einen Untervektorraum von $GF(2^n)$ auf. Dieser hat aber die Dimension m = n k und ist orthogonal zum Untervektorraum, der auf **G** basiert.
- Bei einem linearen Code gilt $\underline{x} = \underline{u} \cdot \mathbf{G}$, wobei $\underline{u} = (u_1, u_2, \dots, u_k)$ das Informationswort angibt. Ein systematischer Code liegt vor, wenn $x_1 = u_1, \dots, x_k = u_k$ gilt.
- Bei einem systematischen Code besteht ein einfacher Zusammenhang zwischen G und H. Nähere Angaben hierzu finden Sie im Theorieteil.

Hinweis: Die Aufgabe bezieht sich auf das **Kapitel 1.4.** Für die gesamte Aufgabe gilt n = 6. In der Teilaufgabe (d) soll geklärt werden, welche der Matrizen G_A , G_B bzw. G_C zu einem (6, 3)—Blockcode mit den nachfolgend aufgeführten Codeworten führen:

$$\mathcal{C}_{(6,3)} = \{ (0,0,0,0,0,0), (0,0,1,0,1,1), (0,1,0,1,0,1), (0,1,1,1,1,0), (1,0,0,1,1,0), (1,0,1,1,0,1), (1,1,0,0,1,1), (1,1,1,0,0,0) \}.$$

Fragebogen zu "A1.10: Einige Generatormatrizen"

a)	Bekannt sind nur die zwei Codeworte (0, 1, 0, 1, 0, 1) und (1, 0, 0, 1, 1, 0) eines linearen Codes. Welche Aussagen sind zutreffend?
	☐ Es könnte sich um einen (5, 2)—Code handeln.
	\square Es könnte sich um einen (6, 2)–Code handeln.
	☐ Es könnte sich um einen (6, 3)—Code handeln.
b)	Wie lauten die Codeworte des linearen (6, 2)–Codes explizit?
	\square (0 0 1 0 1 1), (0 1 0 1 0 1), (1 0 0 1 1 0), (1 1 0 0 1 1).
	\square (0 0 0 0 0), (0 1 0 1 0 1), (1 0 0 1 1 0), (1 1 0 0 1 1).
	\square (0 0 0 0 0), (0 1 0 1 0 1), (1 0 0 1 1 0), (1 1 1 0 0 0).
c)	Welche Aussagen gelten für diesen (6, 2)–Code C?
	☐ Für alle Codeworte $(i = 1,, 4)$ gilt $\underline{x}_i \in GF(2^6)$.
	\square <i>C</i> ist ein 2–dimensionaler linearer Untervektorraum von GF(2^6).
	\square G gibt Basisvektoren dieses Untervektorraumes GF(2^2) an.
	☐ G und H sind jeweils 2×6–Matrizen.
d)	Welche der Generatormatrizen (siehe Grafik) führen zu einem (6, 3)-Code?
	\square Generatormatrix G_A ,
	\square Generatormatrix \mathbf{G}_{B} ,
	\square Generatormatrix \mathbf{G}_{C} .