Aufgabe 3.14: Fehlerwahrscheinlichkeitsschranken

From LNTwww
Revision as of 13:50, 23 March 2021 by Javier (talk | contribs) (Text replacement - "Category:Aufgaben zu Kanalcodierung" to "Category:Channel Coding: Exercises")

Bhattacharyya– und die Viterbi–Schranke beim BSC–Modell (unvollständige Tabelle)

Für den häufig verwendeten Faltungscode mit

  • der Coderate  $R = 1/2$,
  • dem Gedächtnis  $m = 2$, und
  • der Übertragungsfunktionsmatrix
$${\boldsymbol{\rm G}}(D) = \big ( 1 + D + D^2\hspace{0.05cm},\hspace{0.1cm} 1 + D^2 \hspace{0.05cm}\big ) $$

lautet die  erweiterte Pfadgewichtsfunktion:

$$T_{\rm enh}(X, U) = \frac{UX^5}{1- 2 \hspace{0.05cm}U \hspace{-0.05cm}X} \hspace{0.05cm}.$$

Mit der schon häufiger benutzten Reihenentwicklung  $1/(1 \, –x) = 1 + x + x^2 + \text{...} \ $  kann hierfür auch geschrieben werden:

$$T_{\rm enh}(X, U) = U X^5 \cdot \left [ 1 + (2 \hspace{0.05cm}U \hspace{-0.05cm}X) + (2 \hspace{0.05cm}U\hspace{-0.05cm}X)^2 + (2 \hspace{0.05cm}U\hspace{-0.05cm}X)^3 +\text{...} \hspace{0.10cm} \right ] \hspace{0.05cm}.$$

Die „einfache” Pfadgewichtsfunktion  $T(X)$  ergibt sich daraus, wenn man die zweite Variable  $U = 1$  setzt.

Anhand dieser beiden Funktionen können Fehlerwahrscheinlichkeitsschranken angegeben werden:

  • Die  Burstfehlerwahrscheinlichkeit  wird durch die  Bhattacharyya–Schranke  begrenzt:
$${\rm Pr(Burstfehler)} \le {\rm Pr(Bhattacharyya)} = T(X = \beta) \hspace{0.05cm}.$$
  • Dagegen ist die  Bitfehlerwahrscheinlichkeit  stets kleiner (oder gleich) der  Viterbi–Schranke:
\[{\rm Pr(Bitfehler)} \le {\rm Pr(Viterbi)} = \left [ \frac {\rm d}{ {\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) \right ]_{\substack{X=\beta \\ U=1} } \hspace{0.05cm}.\]





Hinweise:

  •   der Bhattacharyya–Parameter  $\beta$,
  •   die Bhattacharyya–Schranke  ${\rm Pr}(\rm Bhattacharyya)$, und
  •   die Viterbi–Schranke  $\rm Pr(Viterbi)$.
  • Im Verlauf dieser Aufgabe sollen Sie die entsprechenden Größen für  $\varepsilon = 10^{-2}$  und  $\varepsilon = 10^{-4}$ berechnen.
  • Die vollständige Tabelle finden Sie in der Musterlösung.



Fragebogen

1

Welcher Bhattacharyya–Parameter ergibt sich für das BSC–Modell?

$\varepsilon = 10^{–2} \text{:} \hspace{0.4cm} \beta \ = \ $

$\varepsilon = 10^{–4} \text{:} \hspace{0.4cm} \beta \ = \ $

2

Wie lautet die Bhattacharyya–Schranke?

$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm} {\rm Pr(Bhattacharyya)} \ = \ $

$\ \cdot 10^{–4}$
$\varepsilon = 10^{-4} \text{:} \hspace{0.4cm} {\rm Pr(Bhattacharyya)} \ = \ $

$\ \cdot 10^{–9}$

3

Wie lautet die Viterbi–Schranke?

$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm} {\rm Pr(Viterbi)} \ = \ $

$\ \cdot 10^{–4}$
$\varepsilon = 10^{-4} \text{:} \hspace{0.4cm} {\rm Pr(Viterbi)} \ = \ $

$\ \cdot 10^{–9}$

4

Für welche Werte  $\varepsilon < \varepsilon_0$  sind beide Schranken nicht anwendbar?

$\varepsilon_0 \ = \ $


Musterlösung

(1)  Der Bhattacharyya–Parameter ergibt sich für das BSC–Modell mit $\varepsilon = 0.01$ zu

$$\beta = 2 \cdot \sqrt{\varepsilon \cdot (1- \varepsilon)} = 2 \cdot \sqrt{0.01 \cdot 0.99} \hspace{0.2cm}\underline {\approx 0.199} \hspace{0.05cm}.$$

Für noch kleinere Verfälschungswahrscheinlichkeiten $\varepsilon$ kann näherungsweise geschrieben werden:

$$\beta \approx 2 \cdot \sqrt{\varepsilon } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \varepsilon = 10^{-4}\hspace{-0.1cm}: \hspace{0.2cm} \beta \hspace{0.2cm}\underline {\approx 0.02} \hspace{0.05cm}.$$


(2)  Es gilt ${\rm Pr(Burstfehler)} ≤ {\rm Pr(Bhattacharyya)}$ mit ${\rm Pr(Bhattacharyya)} = T(X = \beta)$.

  • Für den betrachteten Faltungscode der Rate 1/2, dem Gedächtnis $m = 2$ und $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$ lautet die Pfadgewichtsfunktion:
$$T(X) = \frac{X^5 }{1- 2X} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(Bhattacharyya)} = T(X = \beta) = \frac{\beta^5 }{1- 2\beta}$$
$$\Rightarrow \hspace{0.3cm}\varepsilon = 10^{-2}\hspace{-0.1cm}: \hspace{0.1cm} {\rm Pr(Bhattacharyya)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac{0.199^5 }{1- 2\cdot 0.199} \hspace{0.2cm}\underline {\approx 5.18 \cdot 10^{-4}}\hspace{0.05cm},$$
$$\hspace{0.85cm} \varepsilon = 10^{-4}\hspace{-0.1cm}: \hspace{0.1cm} {\rm Pr(Bhattacharyya)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac{0.02^5 }{1- 2\cdot 0.02} \hspace{0.38cm}\underline {\approx 3.33 \cdot 10^{-9}}\hspace{0.05cm}.$$


(3)  Zur Berechnung der Viterbi–Schranke gehen wir von der erweiterten Pfadgewichtsfunktion aus:

$$T_{\rm enh}(X, U) = \frac{U X^5}{1- 2UX} \hspace{0.05cm}.$$
  • Die Ableitung dieser Funktion nach dem Eingangsparameter $U$ lautet:
$$\frac {\rm d}{{\rm d}U}\hspace{0.1cm}T_{\rm enh}(X, U) = \frac{(1- 2UX) \cdot X^5 - U X^5 \cdot (-2X)}{(1- 2UX)^2} = \frac{ X^5}{(1- 2UX)^2} \hspace{0.05cm}.$$
  • Diese Gleichung liefert für $U = 1$ und $X = \beta$ die Viterbi–Schranke:
$$\frac {\rm d}{{\rm d}U}\hspace{0.1cm}T_{\rm enh}(X, U) = \frac{(1- 2UX) \cdot X^5 - U X^5 \cdot (-2X)}{(1- 2UX)^2} = \frac{U X^5}{(1- 2UX)^2} \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}\varepsilon = 10^{-2}\hspace{-0.1cm}: \hspace{0.1cm} {\rm Pr(Viterbi)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac{0.199^5 }{(1- 2\cdot 0.199)^2} = \hspace{0.2cm}\underline {\approx 8.61 \cdot 10^{-4}}\hspace{0.05cm},$$
$$\hspace{0.85cm} \varepsilon = 10^{-4}\hspace{-0.1cm}: \hspace{0.1cm} {\rm Pr(Viterbi)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \frac{0.02^5 }{(1- 2\cdot 0.02)^2} = \hspace{0.2cm}\underline {\approx 3.47 \cdot 10^{-9}}\hspace{0.05cm}.$$
  • Wir überprüfen das Ergebnis anhand der folgenden Näherung:
$$T_{\rm enh}(X, U) = U X^5 + 2\hspace{0.05cm}U^2 X^6 + 4\hspace{0.05cm}U^3 X^7 + 8\hspace{0.05cm}U^4 X^8 + \text{...} $$
$$\Rightarrow \hspace{0.3cm}\frac {\rm d}{{\rm d}U}\hspace{0.1cm}T_{\rm enh}(X, U) = X^5 + 4\hspace{0.05cm}U X^6 + 12\hspace{0.05cm}U^2 X^7 + 32\hspace{0.05cm}U^3 X^8 + \text{...} $$
  • Setzt man $U = 1$ und $X = \beta$ so erhält man wieder die Viterbi–Schranke:
$${\rm Pr(Viterbi)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \beta^5 + 4\hspace{0.05cm}\beta^6 + 12\hspace{0.05cm}\beta^7 + 32\hspace{0.05cm}\beta^8 +\text{...} = \beta^5 \cdot (1+ 4\hspace{0.05cm}\beta + 12\hspace{0.05cm}\beta^2 + 32\hspace{0.05cm}\beta^3 + ... )\hspace{0.05cm}. $$
  • Für $\varepsilon = 10^{–2} \ \Rightarrow \ \beta = 0.199$ erhält man, wenn man die unendliche Summe nach dem $\beta^3$–Term abbricht:
$${\rm Pr(Viterbi)} \approx 3.12 \cdot 10^{-4} \cdot (1 + 0.796 + 0.475 + 0.252) = 7.87 \cdot 10^{-4} \hspace{0.05cm}.$$
  • Der Abbruchfehler – bezogen auf $8.61 \cdot 10^{–4}$ – beträgt hier ca. $8.6\%$. Für $\varepsilon = 10^{–4} \ \Rightarrow \ \beta = 0.02$ ist der Abbruchfehler noch geringer:
$${\rm Pr(Viterbi)} \approx 3.20 \cdot 10^{-9} \cdot (1 + 0.086 + 0.0048 + 0.0003) = 3.47 \cdot 10^{-9} \hspace{0.05cm}.$$


Bhattacharyya– und die Viterbi–Schranke beim BSC–Modell (vollständige Tabelle)

(4)  Für $\beta = 0.5$ ergeben sich für beide Schranken der Wert „unendlich”.

  • Für noch größere $\beta$–Werte wird die Bhattacharyya–Schranke negativ und auch das Ergebnis für die Viterbi–Schranke ist dann nicht anwendbar. Daraus folgt:
$$\beta_0 = 2 \cdot \sqrt{\varepsilon_0 \cdot (1- \varepsilon_0)} = 0.5$$
$$\Rightarrow \hspace{0.3cm} {\varepsilon_0 \cdot (1- \varepsilon_0)} = 0.25^2 = 0.0625$$
$$\Rightarrow \hspace{0.3cm} \varepsilon_0^2 - \varepsilon_0 + 0.0625 = 0$$
$$\Rightarrow \hspace{0.3cm} \varepsilon_0 = 0.5 \cdot (1 - \sqrt{0.75}) \hspace{0.15cm} \underline {\approx 0.067}\hspace{0.05cm}.$$