Exercise 3.6: PM or FM? Or AM?

From LNTwww
Revision as of 15:25, 3 January 2018 by Guenter (talk | contribs) (Guenter verschob die Seite 3.6 PM oder FM? Oder AM? nach Aufgabe 3.6: PM oder FM? Oder AM?)

Zwei Ortskurven für Winkelmodulation

Zur Analyse eines Modulators wird an seinen Eingang das Signal

$$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N})$$

angelegt, wobei die Signalamplitude stets $A_{\rm N} = 2\ \rm V$ beträgt.

  • Mit der Signalfrequenz $f_{\rm N} = f_1 = 5 \ \rm kHz$ wird die Ortskurve $\rm O_1$ ermittelt.
  • Verwendet man die Nachrichtenfrequenz $f_{\rm N} = f_2$, so stellt sich die Ortskurve $\rm O_2$ ein.

Beachten Sie bei Ihrer Lösung, dass bei Winkelmodulation – dies ist der Sammelbegriff für Phasen– und Frequenzmodulation – der folgende Zusammenhang zwischen dem Modulationsindex $η$ und der Modulatorkonstanten $K_{ßrm WM}$ besteht:

$$\eta = \left\{ \begin{array}{c} K_{\rm WM} \cdot A_{\rm N} \\ {K_{\rm WM} \cdot A_{\rm N}}/({2 \pi \cdot f_{\rm N})} \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}c} {\rm PM} \hspace{0.05cm}, \\ {\rm FM}. \hspace{0.05cm} \\ \end{array}$$

Hinweise:

  • Die Aufgabe gehört zum Kapitel Frequenzmodulation.
  • Bezug genommen wird aber auch auf das Kapitel Phasenmodulation.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Um welchen Modulator handelt es sich?

AM–Modulator.
PM–Modulator.
FM–Modulator.

2

Wie groß ist der Modulationsindex mit der Nachrichtenfrequenz $f_{\rm N} = f_1 = 5 \ \rm kHz$?

$η_1 \ = \ $

3

Welchen Wert besitzt die Modulatorkonstante? Hinweis. „Einheit” steht für $\rm V^{-1}$ (bei PM) oder $\rm (Vs)^{-1}$ (bei FM).

$K_{\rm WM} \ = \ $

$\ \cdot 10^4 $ „Einheit”

4

Welchen Winkel $ϕ_0$ weist die Ortskurve $\rm O_1$ mit $ϕ_{\rm N} = 30^\circ$ zum Zeitpunkt $t = 0$ auf?

$ϕ_0 \ = \ $

$\ \rm Grad$

5

Mit welcher Nachrichtenfrequenz $f_{\rm N} = f_2$ wurde die Ortskurve $\rm O_2$ ermittelt?

$f_2 \ = \ $

$\ \rm kHz$


Musterlösung

(1)  Richtig ist die Antwort 3:

  • Da die Ortskurve einen Kreisbogen beschreibt, handelt es sich um einen Winkelmodulator (PM oder FM) mit dem Modulationsindex $η$. *Da aber hier $η$ offensichtlich von der Nachrichtenfrequenz $f_{\rm N}$ abhängt, kann eine Phasenmodulation ausgeschlossen werden.


(2)  Der Modulationsindex kann aus der Grafik abgelesen werden. Es gilt $η_1 = 75°/180° · π\hspace{0.15cm}\underline { ≈ 1.3}$.


(3)  Bei Frequenzmodulation gilt:

$$ K_{\rm WM} = K_{\rm FM} = \frac{ 2 \pi \cdot f_{\rm N} \cdot \eta}{A_{\rm N}} = \frac{ 2 \pi \cdot 5 \cdot 10^3 \,\,{\rm Hz}\cdot 1.3}{2\,{\rm V}} \hspace{0.15cm}\underline {\approx 2.04 \cdot 10^4 \hspace{0.1cm}{\rm V^{-1}}{\rm s^{-1}}}\hspace{0.05cm}.$$

(4)  Der Frequenzmodulator kann als Phasenmodulator realisiert werden, wenn vorher das Quellensignal integriert wird. Dieses lautet:

$$q_{\rm I}(t) = \int q(t)\hspace{0.15cm}{\rm d}t = A_{\rm N} \cdot\int \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.15cm}{\rm d}t =\frac{A_{\rm N}}{\omega_{\rm N}} \cdot \sin(\omega_{\rm N} \cdot t + \phi_{\rm N}) = \frac{A_{\rm N}}{\omega_{\rm N}} \cdot \cos(\omega_{\rm N} \cdot t + \phi_{\rm N} - 90^\circ)\hspace{0.05cm}.$$

Somit ergibt sich für das äquivalente TP-Signal mit $ϕ_N = 30°$:

$$s_{\rm TP}(t) = {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\eta \hspace{0.03cm}\cdot \hspace{0.05cm}\cos(\omega_{\rm N} \hspace{0.03cm}\cdot \hspace{0.03cm}t \hspace{0.03cm} - \hspace{0.03cm}60^\circ)}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}s_{\rm TP}(t = 0) = {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\eta \hspace{0.03cm}\cdot \hspace{0.05cm}\cos(\hspace{0.03cm}60^\circ)} = {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\eta /2}\hspace{0.05cm}.$$

Der Nullphasenwinkel ist somit gleich $η/2$ entsprechend $ϕ_0\hspace{0.15cm}\underline {\approx 37.5^\circ}$.


(5)  Aus der Definition des Modulationsindex bei Frequenzmodulation folgt:

$$\eta_1 = \frac{K_{\rm WM} \cdot A_{\rm N}}{2 \pi \cdot f_{\rm 1}}\hspace{0.05cm},\hspace{0.3cm} \eta_2 = \frac{K_{\rm WM} \cdot A_{\rm N}}{2 \pi \cdot f_{\rm 2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{\eta_1}{\eta_2} = \frac{f_2}{f_1}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} f_2 = \frac{\eta_1}{\eta_2} \cdot f_1 = \frac{75^\circ}{125^\circ} \cdot 5\,{\rm kHz} \hspace{0.15cm}\underline {= 3\,{\rm kHz}}\hspace{0.05cm}.$$