Difference between revisions of "Aufgaben:Exercise 4.2: Low-Pass for Signal Reconstruction"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Line 23: Line 23:
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]].
 
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]].
 
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Pulscodemodulation#Abtastung_und_Signalrekonstruktion|Abtastung und Signalrekonstruktion]].
 
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Pulscodemodulation#Abtastung_und_Signalrekonstruktion|Abtastung und Signalrekonstruktion]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
  
  

Revision as of 14:19, 29 May 2018

Kontinuierliches und diskretes Spektrum

Wir betrachten in dieser Aufgabe zwei verschiedene Quellensignale $q_{\rm kon}(t)$ und $q_{\rm dis}(t)$, deren Betrags-Spektren $|Q_{\rm kon}(f)|$ und $|Q_{\rm dis}(f)|$ grafisch dargestellt sind. Die höchste in den Signalen vorkommende Frequenz ist jeweils $4 \ \rm kHz$.

  • Von der Spektralfunktion $Q_{\rm kon}(f)$ ist nicht mehr bekannt, als dass es sich um ein kontinuierliches Spektrum handelt, wobei gilt:
$$Q_{\rm kon}(|f| \le 4\,{\rm kHz}) \ne 0 \hspace{0.05cm}.$$
  • Das Spektrum $Q_{\rm dis}(f)$ beinhaltet Spektrallinien bei $±1 \ \rm kHz$, $±2 \ \rm kHz$, $±3 \ \rm kHz$ und $±4 \ \rm kHz$. Somit gilt:
$$q_{\rm dis}(t) = \sum_{i=1}^{4}C_i \cdot \cos (2 \pi \cdot f_i \cdot t - \varphi_i)$$
mit $C_1 = 1.0 \ \rm V$, $C_2 = 1.8 \ \rm V$, $C_3 = 0.8 \ \rm V$, $C_4 = 0.4 \ \rm V$. Die Phasenwerte $φ_1$,$φ_2$ und $φ_3$ liegen jeweils im Bereich $±18^\circ$ und es gilt $φ_4 = 90^\circ$.


Die Signale werden jeweils mit der Frequenz $f_{\rm A}$ abgetastet und sofort einem idealen, rechteckförmigen Tiefpass mit der Grenzfrequenz $f_{\rm G}$ zugeführt. Dieses Szenario gilt zum Beispiel für

  • die störungsfreie Pulsamplitudenmodulation (PAM) und
  • die störungsfreie Pulscodemodulation (PCM) bei unendlich großer Quantisierungsstufenzahl $M$.


Das Ausgangssignal des (rechteckförmigen) Tiefpasses wird als Sinkensignal $v(t)$ bezeichnet, und für das Fehlersignal gilt $ε(t) = v(t) - q(t)$. Dieses ist nur dann von $0$ verschieden, wenn die Parameter der Abtastung (Abtastfrequenz $f_{\rm A}$) und/oder der Signalrekonstruktion (Grenzfrequenz $f_{\rm G}$) nicht bestmöglich dimensioniert sind.


Hinweise:


Fragebogen

1

Welche Aussagen treffen für $f_{\rm A} = 8\ \rm kHz$ und für $f_{\rm G} = 4\ \rm kHz$ zu?

Das Signal $q_{\rm kon}(t)$ lässt sich vollständig rekonstruieren: $ε_{\rm kon}(t) = 0$.
Das Signal $q_{\rm dis}(t)$ lässt sich vollständig rekonstruieren: $ε_{\rm dis}(t) = 0$.

2

Welche Aussagen treffen für $f_{\rm A} = 10\ \rm kHz$ und $f_{\rm G} = 5\ \rm kHz$ zu?

Das Signal $q_{\rm dis}(t)$ lässt sich vollständig rekonstruieren: $ε_{\rm dis}(t) = 0$.
$ε_{\rm dis}(t)$ ist eine harmonische Schwingung mit $4 \ \rm kHz$.
$ε_{\rm dis}(t)$ ist eine harmonische Schwingung mit $6 \ \rm kHz$.

3

Welche Aussagen treffen für $f_{\rm A} = 10\ \rm kHz$ und $f_{\rm G} = 3.5\ \rm kHz$ zu?

Das Signal $q_{\rm dis}(t)$ lässt sich vollständig rekonstruieren: $ε_{\rm dis}(t) = 0$.
$ε_{\rm dis}(t)$ ist eine harmonische Schwingung mit $4 \ \rm kHz$.
$ε_{\rm dis}(t)$ ist eine harmonische Schwingung mit $6 \ \rm kHz$.

4

Welche Aussagen treffen für $f_{\rm A} = 10\ \rm kHz$ und $f_{\rm G} = 6.5\ \rm kHz$ zu?

Das Signal $q_{\rm dis}(t)$ lässt sich vollständig rekonstruieren: $ε_{\rm dis}(t) = 0$.
$ε_{\rm dis}(t)$ ist eine harmonische Schwingung mit $4 \ \rm kHz$.
$ε_{\rm dis}(t)$ ist eine harmonische Schwingung mit $6 \ \rm kHz$.


Musterlösung

(1)  Richtig ist nur die erste Aussage:

  • Die Abtastung von $q_{\rm dis}(t)$ mit der Abtastfrequenz $f_{\rm A} = 8 \ \rm kHz$ führt zu einem irreversiblen Fehler, da $Q_{\rm dis}(f)$ einen diskreten Spektralanteil (Diraclinie) bei $f_4 = 4\ \rm kHz$ beinhaltet und der Phasenwert $φ_4 ≠ 0$ ist.
  • Mit dem hier angegebenen Phasenwert $φ_4 = 90^\circ$ (4 kHz– Sinuskomponente) gilt $ε_{\rm dis}(t) = v_{\rm dis}(t) - q_{\rm dis}(t) = -0.4 \ \rm V · \sin(2π · f_4 · t)$. Siehe auch Musterlösung zur Aufgabe 4.2Z.
  • Dagegen kann das Signal $q_{\rm kon}(t)$ mit dem kontinuierlichen Spektrum $Q_{\rm kon}(f)$ auch dann mit einem Rechteck–Tiefpass (mit der Grenzfrequenz $f_{\rm G} = 4\ \rm kHz$) vollständig rekonstruiert werden, wenn die Abtastfrequenz $f_{\rm A} = 8\ \rm kHz$ verwendet wurde. Für alle Frequenzen ungleich $f_4$ ist das Abtasttheorem erfüllt.
  • Der Anteil der $f_4$–Komponente am gesamten Spektrum $Q_{\rm kon}(f)$ ist aber nur verschwindend klein   ⇒   ${\rm Pr}(f_4) → 0$, solange das Spektrum bei $f_4$ keine Diraclinie aufweist.


(2)  Richtig ist nur der Lösungsvorschlag 1:

  • Mit $f_{\rm A} = 10\ \rm kHz$ wird das Abtasttheorem in beiden Fällen erfüllt.
  • Mit $f_{\rm G} = f_{\rm A} /2$ sind beide Fehlersignale $ε_{\rm kon}(t)$ und $ε_{\rm dis}(t)$ identisch Null.
  • Die Signalrekonstruktion funktioniert darüber hinaus auch dann, solange $f_{\rm G} > 4 \ \rm kHz$ und $f_{\rm G} < 6 \ \rm kHz$ gilt.


(3)  Richtig ist hier der Lösungsvorschlag 2:

  • Mit $f_{\rm G} = 3.5 \ \rm kHz$ entfernt der Tiefpass fälschlicherweise den $4 kHz$–Anteil, das heißt dann gilt:
$$ v_{\rm dis}(t) = q_{\rm dis}(t) - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \varepsilon_{\rm dis}(t) = - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.05cm}.$$
Signalrekonstruktion mit zu großer Grenzfrequenz

(4)  Richtig ist hier der Lösungsvorschlag 3:

  • Durch die Abtastung mit $f_{\rm A} = 10\ \rm kHz$ ergibt sich das rechts skizzierte periodische Spektrum:
  • Der Tiefpass entfernt alle diskreten Frequenzanteile mit $|f| ≥ 7\ \rm kHz$, nicht aber den $6\ \rm kHz$–Anteil.

Das Fehlersignal $ε_{\rm dis}(t) = v_{\rm dis}(t) – q_{\rm dis}(t)$ ist dann eine harmonische Schwingung mit

  • der Frequenz $f_6 = f_{\rm A} – f_4 = 6\ \rm kHz$,
  • der Amplitude $A_4$ des $f_4$–Anteils,
  • der Phase $φ_{-4} = -φ_4$ des $Q(f)$–Anteils bei $f = -f_4$.