Exercise 4.7Z: Generation of a Joint PDF

From LNTwww
Revision as of 16:00, 22 March 2017 by Guenter (talk | contribs)

Vorgaben zur Erzeugung einer 2D-Zufallsgröße

Ausgehend von statistisch unabhängigen Größen $u$ und $v$ die beide zwischen $-1$ und $+1$ gleichverteilt sind und somit jeweils die Varianz $\sigma^2 = 2/3$ besitzen, soll eine 2D-Zufallsgröße $(x, y)$ generiert werden, wobei für die Komponenten gilt:

$$x = A \cdot u + B \cdot v + C,$$
$$y= D \cdot u + E \cdot v + F.$$

Die zu erzeugende 2D–Zufallsgröße $(x, y)$ soll die folgenden statistischen Eigenschaften aufweisen:

  • Die Varianzen seien $\sigma_x^2 = 4$ und $\sigma_y^2 = 10$.
  • Die Zufallsgröße $x$ sei mittelwertfrei $(m_x =0)$.
  • Für den Mittelwert von $y$ gelte $m_y = 1$.
  • Der Korrelationskoeffizient zwischen $x$ und $y$ betrage $\rho_{xy} = \sqrt{0.9} = 0.949.$
  • Die Zufallsgröße $x$ besitze eine dreieckförmige WDF $f_x(x)$ entsprechend der oberen Grafik.
  • Die Zufallsgröße $y$ besitze eine trapezförmige WDF $f_y(y)$ entsprechend der unteren Grafik.


Hinweise:


Fragebogen

1

Bestimmen Sie die Koeffizienten $C$ und $F$.

$C \ = $

$F\ = $

2

Bestimmen Sie die Koeffizienten $A$ und $B$.

$A \ = $

$B \ = $

3

Bestimmen Sie die Koeffizienten $D$ und $E$, wobei $D > E$ gelten soll.

$D \ = $

$E \ = $

4

Geben Sie die Maximalwerte für $x$ und $y$ an.

$x_\text{max}\ = $

$y_\text{max}\ = $


Musterlösung

(1)  Aufgrund der angegebenen Mittelwerte muss gelten:

$$ C = m_x\hspace{0.15cm}\underline{ = 0},$$
$$ F = m_y\hspace{0.15cm}\underline{ = 1}.$$

(2)  Unter Berücksichtigung von $\sigma^2 = 2/3$ gilt:

$$\sigma_x^2 = \sigma^2 \cdot ( A^2 + B^2)= {2}/{3} \cdot ( A^2 + B^2) .$$

Wegen $\sigma_x^2 = 4$ folgt daraus $A^2 + B^2= 6$. Eine dreieckförmige WDF bedeutet, dass $A = \pm B$ gelten muss. Somit erhält man, da negative Koeffizienten ausgeschlossen wurden:

$$ A = B = \sqrt{3}\hspace{0.15cm}\underline{ = 1.732}.$$

(3)  Mit $ A = B = \sqrt{3}$ entsprechend der letzten Teilaufgabe verbleiben zwei Bestimmungsgleichungen für $D$ und $E$:

Rautenförmige 2D-WDF
$$\sigma_y^2 = \sigma^2 \cdot ( D^2 + E^2)= 10 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} D^2 + E^2 = \frac {\sigma_y^2}{\sigma^2} = \frac {10}{2/3} \stackrel{!}{=}15,$$
$$\rho_{xy} = \frac{A \cdot D + B \cdot E}{\sqrt{(A^2 + B^2)(D^2 + E^2)}} = \frac{\sqrt{3} \cdot (D + E)}{\sqrt{6 \cdot (D^2 + E^2)}} \stackrel{!}{=} \sqrt{0.9}.$$

Daraus folgt weiter: $D + E = \sqrt{1.8 \cdot ( D^2 + E^2)} = \sqrt{27} = 3 \cdot \sqrt{3}.$ Die Gleichung führt in Verbindung mit $D^2 + E^2 = 15$ und der oben angegebenen Nebenbedingung$(D>E)$ zum Ergebnis:

$$ D= 2 \cdot \sqrt{3}\hspace{0.15cm}\underline{ = 3.464}, \hspace{0.5cm}E= \sqrt{3} \hspace{0.15cm}\underline{= 1.732}.$$

(4)  Die Zufallsgröße $x$ bzw. $y$ nehmen ihre maximalen Werte an, wenn jeweils $u= 1$ und $v= 1$ gilt:

$$ x_\text{max}= A+B \hspace{0.15cm}\underline{ = 3.464}, \hspace{0.5cm} x_\text{min} = - A - B= -3.464.$$
$$ y_\text{max}= D+E+F \hspace{0.15cm}\underline{ = 6.196}, \hspace{0.5cm} y_\text{min} = -D-E+F= -3.464.$$