Exercise 5.9: Minimization of the MSE

From LNTwww
Revision as of 16:44, 28 May 2021 by Javier (talk | contribs) (Text replacement - "”" to """)

Leistungsdichtespektren
beim Wiener-Filter

Gegeben ist ein stochastisches Nutzsignal  $s(t)$, von dem nur das Leistungsdichtespektrum (LDS) bekannt ist:

$${\it \Phi} _s (f) = \frac{\it{\Phi} _{\rm 0} }{1 + ( {f/f_0 } )^2 }.$$

Dieses Leistungsdichtespektrum  ${\it \Phi} _s (f)$  ist in der nebenstehenden Grafik blau dargestellt.

  • Die mittlere Leistung von  $s(t)$  ergibt sich durch Integration über das Leistungsdichtespektrum:
$$P_s = \int_{ - \infty }^{ + \infty } {{\it \Phi} _s (f)}\, {\rm d} f = {\it \Phi} _0 \cdot f_0 \cdot {\rm{\pi }}.$$
  • Additiv überlagert ist dem Nutzsignal  $s(t)$  Weißes Rauschen  $n(t)$  mit der Rauschleistungsdichte  ${\it \Phi}_n(f) = N_0/2.$
  • Als Abkürzung verwenden wir  $Q = 2 \cdot {\it \Phi}_0/N_0$, wobei  $Q$  als "Qualität" interpretiert werden könnte.
  • Zu beachten ist, dass  $Q$  kein Signal–zu–Rauschleistungsverhältnis darstellt.


In dieser Aufgabe soll der Frequenzgang  $H(f)$  eines Filters ermittelt werden, das den mittleren quadratischen Fehler  $\rm (MQF)$  zwischen dem Nutzsignal  $s(t)$  und dem Filterausgangssignal  $d(t)$  minimiert:

$${\rm{MQF}} = \mathop {\lim }\limits_{T_{\rm M} \to \infty } \frac{1}{T_{\rm M} }\int_{ - T_{\rm M} /2}^{T_{\rm M} /2} {\left| {d(t) - s(t)} \right|^2 \, {\rm{d}}t.}$$




Hinweise:

  • Zur Lösung vorgegeben wird das folgende unbestimmte Integral:
$$\int {\frac{1}{a^2 + x^2 }} \, {\rm{d}}x ={1}/{a} \cdot \arctan \left( {{x}/{a}} \right).$$



Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

$H(f)$  ist ein Gaußtiefpass.
$H(f)$  stellt ein Matched–Filter dar.
$H(f)$  ist ein Wiener–Kolmogorow–Filter.

2

Bestimmen Sie den Frequenzgang  $H(f)$  des hierfür optimalen Filters.  Welche Werte ergeben sich mit  $Q = 3$  bei  $f = 0$  und  $f = 2f_0$?

$H(f = 0) \ = \ $

$H(f = 2f_0)\ = \ $

3

Es gelte weiter  $Q = 3$.  Berechnen Sie den mittleren quadratischen Fehler  $(\rm MQF)$  bezogen auf  $P_s$  für das bestmögliche Filter.

${\rm MQF}/P_s \ = \ $

4

Wie groß muss der "Qualitätsfaktor"  $Q$  mindestens gewählt werden, damit für den Quotienten der Wert  ${\rm MQF}/P_s = 0.1$  erreicht werden kann?

$Q_\text{min} \ = \ $

5

Welche der folgenden Aussagen sind zutreffend?

Ein formgleiches Filter  $H(f) = K \cdot H_{\rm WF}(f)$  führt zum gleichen Ergebnis.
Das Ausgangssignal  $d(t)$  enthält bei größerem  $Q$  mehr höherfrequente Anteile.


Musterlösung

(1)  Richtig ist nur der letzte Lösungsvorschlag:

  • Die Aufgabenstellung   ⇒   "Minimierung des mittleren quadratischen Fehlers" weist bereits auf das Filter nach Wiener–Kolmogorow hin.
  • Das Matched–Filter verwendet man dagegen, um die Signalenergie zu bündeln und dadurch für einen vorgegebenen Zeitpunkt das S/N–Verhältnis zu maximieren.


(2)  Für den optimalen Frequenzgang gilt nach Wiener und Kolmogorow allgemein:

$$H(f) = H_{\rm WF} (f) = \frac{1}{{1 + {\it \Phi} _n (f)/{\it \Phi} _s (f)}}.$$
  • Mit den gegebenen Leistungsdichtespektren kann hierfür auch geschrieben werden:
$$H(f) = \frac{1}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} = \frac{1}{{1 + {1}/{Q}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}}.$$
  • Mit  $Q = 3$  folgt daraus:
$$H( {f = 0} ) = \frac{1}{{1 + {1}/{Q}}} = \frac{Q}{Q + 1} \hspace{0.15cm}\underline {= 0.75},$$
$$H( {f = 2f_0 } ) = \frac{1}{{1 + {5}/{Q}}} = \frac{Q}{Q + 5} \hspace{0.15cm}\underline {= 0.375}.$$


(3)  Für das in der Teilaufgabe  (2)  berechnete Filter gilt unter Berücksichtigung der Symmetrie:

$${\rm{MQF = }}\int_{-\infty}^{+\infty} H(f) \cdot {\it \Phi} _n (f) \,\, {\rm{d}}f = \int_{0}^{+\infty} \frac{N_0}{{1 + {N_0 }/({{2{\it \Phi} _0 })}\cdot \left[ {1 + ( {f/f_0 } )^2 } \right]}} \,\, {\rm{d}}f .$$
  • Hierfür kann mit  $Q = 2 \cdot {\it \Phi}_0/N_0$  und  $a^2 = Q + 1$  auch geschrieben werden:
$${\rm{MQF = }}\int_0^\infty {\frac{{2{\it \Phi} _0 }}{{ Q+1 + ( {f/f_0 })^2 }}} \,\, {\rm{d}}f = 2{\it \Phi} _0 \cdot f_0 \int_0^\infty {\frac{1}{a^2 + x^2 }}\,\, {\rm{d}}x.$$
  • Mit dem angegebenen Integral führt dies zum Ergebnis:
$${\rm{MQF}} = \frac{{2{\it \Phi} _0 f_0 }}{{\sqrt {1 + Q} }}\left( {\arctan ( \infty ) - \arctan ( 0 )} \right) = \frac{{{\it \Phi} _0 f_0 {\rm{\pi }}}}{{\sqrt {1 + Q} }}.$$
  • Normiert man MQF auf die Nutzleistung  $P_s$, so erhält man für  $Q=3$:
$$\frac{\rm{MQF}}{P_s} = \frac{1}{{\sqrt {1 + Q} }} \hspace{0.15cm}\underline { = 0.5}.$$


(4)  Aus der Berechnung in der Teilaufgabe  (3)  folgt für  ${\rm MQF}/P_s \ge 0.1$ direkt die Bedingung  $Q \ge 99$   ⇒   $Q_{\rm min} \hspace{0.15cm}\underline{= 99}$.

  • Je größer  $Q$  ist, desto kleiner wird der mittlere quadratische Fehler.



(5)  Richtig ist nur der zweite Lösungsvorschlag:

  • Ein zum Wiener–Kolmogorow–Filter formgleicher Frequenzgang   ⇒   $H(f) = K \cdot H_{\rm WF}(f)$  mit  $K \ne 1$  führt stets zu großen Verfälschungen.
  • Dies kann man sich zum Beispiel am rauschfreien Fall  $(Q \to \infty)$  verdeutlichen.  In diesem Fall wäre  $d(t) = K \cdot s(t)$  und die Optimierungsaufgabe trotz guter Bedingungen extrem schlecht gelöst.
  • Aus der Gleichung
$${\rm{MQF}} = \int_{ - \infty }^{ + \infty } {H_{\rm WF} (f)} \cdot \it{\Phi} _n (f)\,\,{\rm{d}}f$$
könnte man fälschlicherweise schließen, dass durch ein Filter  $H(f) = 2 \cdot H_{\rm WF}(f)$  der mittlere quadratische Fehler nur verdoppelt wird.
  • Dem ist jedoch nicht so, da  $H(f)$  dann kein Wiener-Filter mehr ist und obige Gleichung auch nicht mehr anwendbar.


Leistungsdichtespektren beim Wiener-Filter

Die zweite Aussage ist zutreffend, wie aus der nebenstehenden Skizze hervorgeht.

  • Die Punkte markieren den Frequenzgang  $H_{\rm WF}(f))$  des Wiener–Kolmogorow–Filters für  $Q = 3$  bzw. für  $Q = 10$.
  • Bei größerem  $Q (= 10)$  werden hohe Anteile weniger gedämpft als bei niedrigerem  $Q (= 3)$.
  • Deshalb beinhaltet das Filterausgangssignal im Fall  $Q = 10$  auch mehr höherfrequente Anteile, die auf das Rauschen  $n(t)$  zurückgehen.