Difference between revisions of "Aufgaben:Exercise 1.4Z: Everything Rectangular"

From LNTwww
Line 5: Line 5:
 
Wir betrachten das periodische Rechtecksignal  $x(t)$  gemäß obiger Skizze, dessen Periodendauer  $T_0 = 2T$  ist.  
 
Wir betrachten das periodische Rechtecksignal  $x(t)$  gemäß obiger Skizze, dessen Periodendauer  $T_0 = 2T$  ist.  
  
Dieses Signal besitzt Spektralanteile bei der Grundfrequenz  $f_0 = 1/T_0 = 1/(2T)$  und allen ungeradzahligen Vielfachen davon, d.h. bei  $3f_0$,  $5f_0,$  usw. Zusätzlich gibt es einen Gleichanteil.  
+
*Dieses Signal besitzt Spektralanteile bei der Grundfrequenz  $f_0 = 1/T_0 = 1/(2T)$  und allen ungeradzahligen Vielfachen davon, das heißt bei  $3f_0$,  $5f_0,$  usw. Zusätzlich gibt es einen Gleichanteil.  
  
 
*Dazu betrachten wir zwei Filter  $\rm A$  und  $\rm B$  mit jeweils rechteckförmiger Impulsantwort  $h_{\rm A}(t)$  mit der Dauer  $6T$  bzw.  $h_{\rm B}(t)$  mit der Dauer  $5T$.  
 
*Dazu betrachten wir zwei Filter  $\rm A$  und  $\rm B$  mit jeweils rechteckförmiger Impulsantwort  $h_{\rm A}(t)$  mit der Dauer  $6T$  bzw.  $h_{\rm B}(t)$  mit der Dauer  $5T$.  
Line 18: Line 18:
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel  [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich|Systembeschreibung im Zeitbereich]]  
 
*Die Aufgabe gehört zum  Kapitel  [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich|Systembeschreibung im Zeitbereich]]  
* Informationen zur Faltung finden Sie im Kapitel   [[Signaldarstellung/Faltungssatz_und_Faltungsoperation|Faltungssatz und Faltungsoperation]]  des Buches „Signaldarstellung”.
+
* Informationen zur Faltung finden Sie im Kapitel   [[Signaldarstellung/Faltungssatz_und_Faltungsoperation|Faltungssatz und Faltungsoperation]]  im Buch „Signaldarstellung”.
*Wir verweisen auch auf das interaktive Applet  [[Applets:Zur_Verdeutlichung_der_grafischen_Faltung|Zur Verdeutlichung der graphischen Faltung]].
+
*Wir verweisen Sie auch auf das interaktive Applet  [[Applets:Zur_Verdeutlichung_der_grafischen_Faltung|Zur Verdeutlichung der graphischen Faltung]].
 
   
 
   
 
   
 
   
Line 27: Line 27:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das Ausgangssignal $y_{\rm A}(t)$ von Filter $\rm A$, insbesondere die Werte bei $t = 0$ und $t = T$.  
+
{Berechnen Sie das Ausgangssignal&nbsp; $y_{\rm A}(t)$&nbsp; von Filter&nbsp; $\rm A$, insbesondere die Werte bei&nbsp; $t = 0$&nbsp; und&nbsp; $t = T$.  
 
|type="{}"}
 
|type="{}"}
 
$y_{\rm A}(t = 0) \ =\ $ { 1 3% } &nbsp;$\rm V$
 
$y_{\rm A}(t = 0) \ =\ $ { 1 3% } &nbsp;$\rm V$
Line 33: Line 33:
  
  
{Geben Sie die Betragsfunktion $|H_{\rm A}(f)|$ an. Welcher Wert ergibt sich bei der Frequenz $f = f_0$? <br>Interpretieren Sie das Ergebnis der Teilaufgabe '''(1)'''.
+
{Geben Sie die Betragsfunktion&nbsp; $|H_{\rm A}(f)|$&nbsp; an. &nbsp; Welcher Wert ergibt sich bei der Frequenz&nbsp; $f = f_0$? <br>Interpretieren Sie das Ergebnis der Teilaufgabe&nbsp; '''(1)'''.
 
|type="{}"}
 
|type="{}"}
 
$|H_{\rm A}(f = f_0)| \ =\ $ { 0. }
 
$|H_{\rm A}(f = f_0)| \ =\ $ { 0. }
  
  
{Berechnen Sie das Ausgangssignal $y_{\rm B}(t)$ von Filter $\rm B$, insbesondere die Werte bei $t = 0$ und $t = T$.  
+
{Berechnen Sie das Ausgangssignal&nbsp; $y_{\rm B}(t)$&nbsp; von Filter&nbsp; $\rm B$, insbesondere die Werte bei&nbsp; $t = 0$&nbsp; und&nbsp; $t = T$.  
 
|type="{}"}
 
|type="{}"}
 
$y_{\rm B}(t = 0) \ =\ $ { 0.8 3% } &nbsp;$\rm V$
 
$y_{\rm B}(t = 0) \ =\ $ { 0.8 3% } &nbsp;$\rm V$
Line 44: Line 44:
  
  
{Wie lautet die Betragsfunktion $|H_{\rm B}(f)|$, insbesondere bei den Frequenzen $f = f_0$ und $f = 3 · f_0$? <br>Interpretieren Sie damit das Ergebnis von Teilaufgabe '''(3)'''.  
+
{Wie lautet die Betragsfunktion&nbsp; $|H_{\rm B}(f)|$, insbesondere bei den Frequenzen&nbsp; $f = f_0$&nbsp; und&nbsp; $f = 3 · f_0$? <br>Interpretieren Sie damit das Ergebnis der Teilaufgabe&nbsp; '''(3)'''.  
 
|type="{}"}
 
|type="{}"}
 
$|H_{\rm B}(f = f_0)| \ =\ $ { 0.127 5%  }
 
$|H_{\rm B}(f = f_0)| \ =\ $ { 0.127 5%  }

Revision as of 13:42, 18 October 2019

Periodisches Rechtecksignal und
Filter mit rechteckförmiger Impulsantwort

Wir betrachten das periodische Rechtecksignal  $x(t)$  gemäß obiger Skizze, dessen Periodendauer  $T_0 = 2T$  ist.

  • Dieses Signal besitzt Spektralanteile bei der Grundfrequenz  $f_0 = 1/T_0 = 1/(2T)$  und allen ungeradzahligen Vielfachen davon, das heißt bei  $3f_0$,  $5f_0,$  usw. Zusätzlich gibt es einen Gleichanteil.
  • Dazu betrachten wir zwei Filter  $\rm A$  und  $\rm B$  mit jeweils rechteckförmiger Impulsantwort  $h_{\rm A}(t)$  mit der Dauer  $6T$  bzw.  $h_{\rm B}(t)$  mit der Dauer  $5T$.
  • Die Höhen der beiden Impulsantworten sind so gewählt, dass die Flächen der Rechtecke jeweils  $1$  ergeben.




Hinweise:



Fragebogen

1

Berechnen Sie das Ausgangssignal  $y_{\rm A}(t)$  von Filter  $\rm A$, insbesondere die Werte bei  $t = 0$  und  $t = T$.

$y_{\rm A}(t = 0) \ =\ $

 $\rm V$
$y_{\rm A}(t = T) \ =\ $

 $\rm V$

2

Geben Sie die Betragsfunktion  $|H_{\rm A}(f)|$  an.   Welcher Wert ergibt sich bei der Frequenz  $f = f_0$?
Interpretieren Sie das Ergebnis der Teilaufgabe  (1).

$|H_{\rm A}(f = f_0)| \ =\ $

3

Berechnen Sie das Ausgangssignal  $y_{\rm B}(t)$  von Filter  $\rm B$, insbesondere die Werte bei  $t = 0$  und  $t = T$.

$y_{\rm B}(t = 0) \ =\ $

 $\rm V$
$y_{\rm B}(t = T) \ =\ $

 $\rm V$

4

Wie lautet die Betragsfunktion  $|H_{\rm B}(f)|$, insbesondere bei den Frequenzen  $f = f_0$  und  $f = 3 · f_0$?
Interpretieren Sie damit das Ergebnis der Teilaufgabe  (3).

$|H_{\rm B}(f = f_0)| \ =\ $

$|H_{\rm B}(f = 3f_0)| \ =\ $


Musterlösung

(1)  Das Ausgangssignal ist das Ergebnis der Faltungsoperation zwischen $x(t)$ und $h_{\rm A}(t)$:

$$y_{\rm A}(t) = x (t) * h_{\rm A} (t) = \int_{ - \infty }^{ + \infty } {x ( \tau )} \cdot h_{\rm A} ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
  • Aufgrund der Rechteckfunktion und der Dauer $6T$ kann hierfür auch geschrieben werden:
$$y_{\rm A}(t) = \frac{1}{6T}\cdot \int_{t-6T}^{t}x(\tau)\hspace{0.15cm} {\rm d}\tau.$$
  • Man erkennt, dass diese Gleichung für alle $t$ das gleiche Ergebnis $y_{\rm A}(t) \rm \underline{\: = 1V}$ liefert.


(2)  Der Betragsfrequenzgang lautet $|H_{\rm A}(f)| = |{\rm si}(\pi \cdot f \cdot 6T)|.$ Dieser weist Nullstellen im Abstand $1/(6T)$ auf.

  • Somit liegen auch bei $f_0$, $3f_0$, $5f_0$ usw. jeweils Nullstellen vor.
  • Insbesondere gilt auch $|H_{\rm A}(f = f_0)| \underline{\: = 0}$.
  • Vom Spektrum $X(f)$ bleibt somit nur der Gleichanteil $1 \hspace{0.05cm} \rm V$ unverändert erhalten.
  • Dagegen sind alle anderen Spektrallinien in $Y_{\rm A}(f)$ nicht mehr enthalten.


rechts

(3)  Analog zur Teilaufgabe (1) kann man hier für das Ausgangssignal schreiben:

$$y_{\rm B}(t) = \frac{1}{5T}\cdot \int_{t-5T}^{t}x(\tau)\hspace{0.15cm} {\rm d}\tau.$$

Es ergibt sich nun ein um den Mittelwert $1 \ \rm V$ schwankender dreieckförmiger Verlauf, wie aus der unteren Grafik zu ersehen ist.

  • Da jeweils zwei Rechtecke und drei Lücken ins Integrationsintervall fallen, gilt zu den Zeiten $t = 0, t = 2T, t = 4T$, ...:
$$y_{\rm B}(t) = \frac{2\,{\rm V} \cdot 2T }{5T} \hspace{0.15cm}\underline{= 0.8\,{\rm V} =y_{\rm B}(t=0) }.$$
  • Dagegen sind bei $t = T, 3T, 5T,$ usw. jeweils drei Rechtecke und zwei Lücken zu berücksichtigen, und man erhält:
$$y_{\rm B}(t) \underline{\: = 1.2 \: {\rm V}=y_{\rm B}(t=T)}.$$


(4)  Die Betragsfunktion lautet nun allgemein bzw. bei den Frequenzen $f = f_0 = 1/(2T)$ und $f = 3f_0$:

$$\begin{align*} |H_{\rm B}(f)| & = |{\rm si}(\pi \cdot f \cdot 5T)|, \\ |H_{\rm B}(f = f_0)| & = |{\rm si}(\pi \frac{5T}{2T})| = |{\rm si}(2.5\pi )| = \frac{1}{2.5 \pi} \hspace{0.15cm}\underline{= 0.127}, \\ |H_{\rm B}(f = 3f_0)| & = |{\rm si}(7.5\pi )| = \frac{1}{7.5 \pi} \hspace{0.15cm}\underline{=0.042}.\end{align*}$$

Interpretation:

  • Die Spektralanteile des Rechtecksignals bei $f_0, 3f_0,$ usw. werden zwar nun nicht mehr unterdrückt, aber mit steigender Frequenz immer mehr abgeschwächt und zwar in der Form, dass der Rechteckverlauf in ein periodisches Dreiecksignal gewandelt wird. Der Gleichanteil $(1 \hspace{0.05cm} \rm V)$ bleibt auch hier unverändert.
  • Beide Filter liefern also den Mittelwert des Eingangssignals. Beim vorliegenden Signal $x(t)$ ist für die Bestimmung des Mittelwertes das Filter $\rm A$ besser geeignet als das Filter $\rm B$, da bei Ersterem die Länge der Impulsantwort ein Vielfaches der Periodendauer $T_0 = 2T$ ist.
  • Ist diese Bedingung – wie beim Filter $\rm B$ – nicht erfüllt, so überlagert sich dem Mittelwert noch ein (in diesem Beispiel dreieckförmiges) Fehlersignal.