Difference between revisions of "Aufgaben:Exercise 2.1: Election Demand"

From LNTwww
Line 6: Line 6:
 
In an election, the three candidates  $A$,  $B$  and  $C$  are running for mayor.  
 
In an election, the three candidates  $A$,  $B$  and  $C$  are running for mayor.  
 
*The candidate who receives more than  $50\%$  of the votes cast is elected.  
 
*The candidate who receives more than  $50\%$  of the votes cast is elected.  
*If none of the three candidates succeeds in the first ballot, a run-off election shall be held between the two candidates with the most votes.
+
*If none of the three candidates succeeds in the first ballot, a runoff election shall be held between the two candidates with the most votes.
  
  
Line 59: Line 59:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Man sollte dieser Nachfrage zumindest glauben, dass  $\underline{\text{Kandidat} \ A}$  wahrscheinlich gewinnt.
+
'''(1)'''  One should at least believe this demand that  $\underline{\text{candidate} \ A}$  is likely to win.
  
  
'''(2)'''  Die Wahrscheinlichkeit, dass die Nachfrage  $(h_{\rm A})$  vom endgültigen Ergebnis  $(p_{\rm A})$  betragsmäßig um mehr als  $2\%$  abweicht, ist nach dem Bernouillischen Gesetz der großen Zahlen mit  $N = 2000$:
+
'''(2)'''  The probability that the demand  $(h_{\rm A})$  differs from the final outcome  $(p_{\rm A})$  by more than  $2\%$  is, according to Bernoulli's law of large numbers, with  $N = 2000$:
:$${\rm Pr}(|h_{\rm A} - p_{\rm A}| \geq 0.02) \leq \frac{1}{4 \cdot 2000\cdot 0.02^2} = 0.3125.$$
+
$${\rm Pr}(|h_{\rm A} - p_{\rm A}| \geq 0.02) \leq \frac{1}{4 \cdot 2000\cdot 0.02^2} = 0.3125.$$
*Diese Wahrscheinlichkeit beinhaltet die beiden gleichwahrscheinlichen Fälle, dass  $p_{\rm A} \le 46\%$  und  $p_{\rm A} \ge 50\%$  ist.  
+
*This probability includes the two equally likely cases that  $p_{\rm A} \le 46\%$  and  $p_{\rm A} \le 50\%$  is.  
*Nur im letzten Fall gibt es keine Stichwahl:
+
*Only in the last case there is no runoff:
:$${\rm Pr(keine\hspace{0.1cm}Stichwahl)} \le 0.156 \hspace{0.15cm}\underline{=15.6 \%}.$$
+
:$${\rm Pr(no\hspace{0.1cm}runoff)} \le 0.156 \hspace{0.15cm}\underline{=15.6 \%}.$$
  
  
'''(3)'''  Mit  $\varepsilon = 4\%$  $($ergibt sich aus  $0.26 -0.22)$  liefert das Gesetz der großen Zahlen:
+
'''(3)'''  With  $\varepsilon = 4\%$  $($is given by  $0.26 -0.22)$  yields the law of large numbers:
 
:$${\rm Pr}\left(|h_{\rm C}-p_{\rm C}|\ge 0.04\right)\le\rm\frac{1}{4\cdot 2000\cdot 0.04^2}=0.078.$$
 
:$${\rm Pr}\left(|h_{\rm C}-p_{\rm C}|\ge 0.04\right)\le\rm\frac{1}{4\cdot 2000\cdot 0.04^2}=0.078.$$
Daraus folgt:  
+
It follows that:  
*Die Wahrscheinlichkeit, dass Kandidat  $C$  mindestens  $26\%$  der Stimmen erhält, ist nicht größer als  $3.9\%$.
+
*The probability that candidate  $C$  receives at least  $26\%$  of the votes is not greater than  $3.9\%$.
*Da  $p_{\rm A} = 0.48$  fest vorausgesetzt wurde, gilt in diesem Fall gleichzeitig  $p_{\rm B} \le 0.26$.  
+
*Since  $p_{\rm A} = 0.48$  was assumed fixed, in this case simultaneously  $p_{\rm B} \le 0.26$.  
*Da es sich hier um kontinuierliche Zufallsgr&ouml;&szlig;en handelt, sind&nbsp; $(p_{\rm C} \ge 0.26, \; p_{\rm B} \le 0.26)$&nbsp; und&nbsp; $(p_{\rm C} > 0.26, \; p_{\rm B}< 0.26)$&nbsp; gleich.  
+
*Since these are continuous random variables,&nbsp; $(p_{\rm C} \ge 0.26, \; p_{\rm B} \le 0.26)$&nbsp; and&nbsp; $(p_{\rm C} > 0.26, \; p_{\rm B}< 0.26)$&nbsp; are equal.  
*Damit ist die Wahrscheinlichkeit, dass&nbsp; $C$&nbsp; die Stichwahl erreicht,  ebenfalls auf&nbsp; $3.9\%$&nbsp; beschr&auml;nkt:
+
*Thus, the probability that&nbsp; $C$&nbsp; reaches the runoff is also limited to&nbsp; $3.9\%$&nbsp; :
:$${\rm Pr(}C\rm \hspace{0.1cm}erreicht\hspace{0.1cm}Stichwahl)\le 0.039 \hspace{0.15cm}\underline{= 3.9 \%}.$$
+
:$${\rm Pr(}C\rm \hspace{0.1cm}reaches\hspace{0.1cm}runoff \hspace{0.1cm}election)\le 0.039 \hspace{0.15cm}\underline{= 3.9 \%}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Theory of Stochastic Signals: Exercises|^2.1 From Experiment to Random Variable^]]
 
[[Category:Theory of Stochastic Signals: Exercises|^2.1 From Experiment to Random Variable^]]

Revision as of 23:13, 30 November 2021

Result of election demand

In an election, the three candidates  $A$,  $B$  and  $C$  are running for mayor.

  • The candidate who receives more than  $50\%$  of the votes cast is elected.
  • If none of the three candidates succeeds in the first ballot, a runoff election shall be held between the two candidates with the most votes.


Immediately after the closing of the polling stations, the result of an election demand shall be presented:

Candidate  $A$:   $48\%$,       Candidate  $B$:   $30\%$,       Candidate  $C$:   $22\%$.

This demand is based on a survey of only  $N = 2000$  of the total  $N' = 800 \hspace{0.05cm}000$  voters.

In answering the following questions, assume the following:

  • The actual (percentage) votes obtained in the election by candidates  $A$,  $B$  and  $C$  can be taken as the probabilities  $p_{\rm A}$,  $p_{\rm B}$  and  $p_{\rm C}$  although these are also themselves determined as relative frequencies  $($related to  $N')$  .
  • The  $2000$  selected voters ideally represent the entire electorate in a statistical sense and answered truthfully when asked to vote.
  • According to Bernoulli's Law of Large Numbers  the results of this demand are to be understood as relative frequencies:
$$h_{\rm A} = 0.48,\hspace{0.8cm}h_{\rm B} = 0.30,\hspace{0.9cm} h_{\rm C} = 0.22.$$




Hints:


Questions

1

Who do you expect as future mayor after this demand?

candidate  $A$,
Candidate  $B$,
Candidate  $C$.

2

What is the probability that no runoff will be required?  Specify the upper bound here.

$\text{Maximum: Pr(no runoff)} \ = \ $

$\ \rm \%$

3

We now assume that candidate  $A$  actually receives exactly  $48\%$  of the votes.
What is the probability (at most) that candidate $C$ will reach the runoff?

$\text{Maximum: Pr(}C \ \text{in runoff)}\ = \ $

$\ \rm \%$


Musterlösung

(1)  One should at least believe this demand that  $\underline{\text{candidate} \ A}$  is likely to win.


(2)  The probability that the demand  $(h_{\rm A})$  differs from the final outcome  $(p_{\rm A})$  by more than  $2\%$  is, according to Bernoulli's law of large numbers, with  $N = 2000$: $${\rm Pr}(|h_{\rm A} - p_{\rm A}| \geq 0.02) \leq \frac{1}{4 \cdot 2000\cdot 0.02^2} = 0.3125.$$

  • This probability includes the two equally likely cases that  $p_{\rm A} \le 46\%$  and  $p_{\rm A} \le 50\%$  is.
  • Only in the last case there is no runoff:
$${\rm Pr(no\hspace{0.1cm}runoff)} \le 0.156 \hspace{0.15cm}\underline{=15.6 \%}.$$


(3)  With  $\varepsilon = 4\%$  $($is given by  $0.26 -0.22)$  yields the law of large numbers:

$${\rm Pr}\left(|h_{\rm C}-p_{\rm C}|\ge 0.04\right)\le\rm\frac{1}{4\cdot 2000\cdot 0.04^2}=0.078.$$

It follows that:

  • The probability that candidate  $C$  receives at least  $26\%$  of the votes is not greater than  $3.9\%$.
  • Since  $p_{\rm A} = 0.48$  was assumed fixed, in this case simultaneously  $p_{\rm B} \le 0.26$.
  • Since these are continuous random variables,  $(p_{\rm C} \ge 0.26, \; p_{\rm B} \le 0.26)$  and  $(p_{\rm C} > 0.26, \; p_{\rm B}< 0.26)$  are equal.
  • Thus, the probability that  $C$  reaches the runoff is also limited to  $3.9\%$  :
$${\rm Pr(}C\rm \hspace{0.1cm}reaches\hspace{0.1cm}runoff \hspace{0.1cm}election)\le 0.039 \hspace{0.15cm}\underline{= 3.9 \%}.$$