Exercise 2.2: Multi-Level Signals

From LNTwww
Revision as of 19:33, 3 December 2021 by Noah (talk | contribs)


Two similar multilevel signals

Let the square wave signal  $x(t)$  be dimensionless and can only have the current values  $0, \ 1, \ 2, \ \text{...} \ , \ M-2, \ M-1$  with equal probability. The upper graph shows this signal for the special case  $M = 5$.


The square wave signal  $y(t)$  is also  $M$–stepped, but zero mean and restricted to the range from  $y > -y_0$  to  $y < +y_0$  .


In the graph below you can see the signal  $y(t)$, again for the number of steps  $M = 5$.





Hints:



Questions

1

What is the linear mean  $m_x$  of the random variable  $x$  for  $M= 5$?

$m_x \ = \ $

2

What is the variance  $\sigma_x^2$  of the random variable  $x$  in general and für  $M= 5$?

$\sigma_x^2\ = \ $

3

Calculate the mean  $m_y$  of the random variable  $y$  für  $M= 5$.

$m_y \ = \ $

$\ \rm V$

4

What is the variance  $\sigma_y^2$  of the random variable  $y$?  Consider the result from  (2).  What is the value again for  $M= 5$?

$\sigma_y^2\ = \ $

$\ \rm V^2$


Musterlösung

(1)  Man erhält durch Mittelung über alle möglichen Signalwerte für den linearen Mittelwert:

$$m_{\it x}=\rm \sum_{\mu=0}^{\it M-{\rm 1}} \it p_\mu\cdot x_{\mu}=\frac{\rm 1}{\it M} \cdot \sum_{\mu=\rm 0}^{\it M-\rm 1}\mu=\frac{\rm 1}{\it M}\cdot\frac{(\it M-\rm 1)\cdot \it M}{\rm 2}=\frac{\it M-\rm 1}{\rm 2}.$$
  • Im Sonderfall  $M= 5$  ergibt sich der lineare Mittelwert zu  $m_x \;\underline{= 2}$.


(2)  Analog gilt für den quadratischen Mittelwert:

$$m_{\rm 2\it x}= \rm \sum_{\mu=0}^{\it M -\rm 1}\it p_\mu\cdot x_{\mu}^{\rm 2}=\frac{\rm 1}{\it M}\cdot \sum_{\mu=\rm 0}^{\rm M-1}\mu^{\rm 2} = \frac{\rm 1}{\it M}\cdot\frac{(\it M-\rm 1)\cdot \it M\cdot(\rm 2\it M-\rm 1)}{\rm 6} = \frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}.$$
  • Im Sonderfall $M= 5$  ergibt sich der quadratische Mittelwert zu  $m_{2x} {=6}$.
  • Daraus kann die Varianz mit dem Satz von Steiner berechnet werden:
$$\sigma_x^{\rm 2}=m_{\rm 2\it x}-m_x^{\rm 2}=\frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}-\frac{(\it M-\rm 1)^{\rm 2}}{\rm 4}=\frac{\it M^{\rm 2}-\rm 1}{\rm 12}.$$
  • Im Sonderfall  $M= 5$  ergibt sich für die Varianz  $\sigma_x^2 \;\underline{= 2}$.


(3)  Aufgrund der Symmetrie von  $y$  gilt unabhängig von  $M$:

$$m_x \;\underline{= 2}.$$


(4)  Zwischen  $x(t)$  und  $y(t)$  gilt folgender Zusammenhang:

$$y(t)=\frac{2\cdot y_{\rm 0}}{M-\rm 1}\cdot \big[x(t)-m_x\big].$$
  • Daraus folgt für die Varianzen:
$$\sigma_y^{\rm 2}=\frac{4\cdot y_{\rm 0}^{\rm 2}}{( M - 1)^{\rm 2}}\cdot \sigma_x^{\rm 2}=\frac{y_{\rm 0}^{\rm 2}\cdot (M^{\rm 2}-1)}{3\cdot (M- 1)^{\rm 2}}=\frac{y_{\rm 0}^{\rm 2}\cdot ( M+ 1)}{ 3\cdot ( M- 1)}.$$
  • Im Sonderfall  $M= 5$  ergibt sich hierfür:
$$\it \sigma_y^{\rm 2}= \frac {\it y_{\rm 0}^{\rm 2} \cdot {\rm 6}}{\rm 3 \cdot 4}\hspace{0.15cm} \underline{=\rm2\,V^{2}}.$$