Difference between revisions of "Aufgaben:Exercise 2.5Z: Nyquist Equalization"

From LNTwww
Line 6: Line 6:
 
Ein digitales Basisbandübertragungssystem kann durch das dargestellte Blockschaltbild modelliert werden.
 
Ein digitales Basisbandübertragungssystem kann durch das dargestellte Blockschaltbild modelliert werden.
  
:* <i>H</i><sub>S</sub>(<i>f</i>), <i>H</i><sub>K</sub>(<i>f</i>) und <i>H</i><sub>E</sub>(<i>f</i>) beschreiben die Komponenten &bdquo;Sender&rdquo;, &bdquo;Kanal&rdquo; und &bdquo;Empfänger&rdquo; im Frequenzbereich.
+
* Die Komponenten &bdquo;Sender&rdquo;, &bdquo;Kanal&rdquo; und &bdquo;Empfänger&rdquo; werden im Frequenzbereich durch $H_{\rm S}(f)$, $H_{\rm K}(f)$ und $H_{\rm E}(f)$ beschrieben .
  
:* Der Gesamtfrequenzgang <i>H</i>(<i>f</i>) = <i>H</i><sub>S</sub>(<i>f</i>) &middot; <i>H</i><sub>K</sub>(<i>f</i>) &middot; <i>H</i><sub>E</sub>(<i>f</i>) soll einen cos<sup>2</sup>&ndash;förmigen Verlauf haben:
+
* Der Gesamtfrequenzgang $H(f) = H_{\rm S}(f) \cdot H_{\rm K}(f) \cdotH_{\rm E}(f)$ soll einen $\cos^2$&ndash;förmigen Verlauf haben:
 
:$$H(f) = \left\{ \begin{array}{c} \cos^2\left(\frac{\pi}{2} \cdot  f \cdot  T \right)  \\
 
:$$H(f) = \left\{ \begin{array}{c} \cos^2\left(\frac{\pi}{2} \cdot  f \cdot  T \right)  \\
 
  0 \\  \end{array} \right.\quad \quad
 
  0 \\  \end{array} \right.\quad \quad
Line 16: Line 16:
 
{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| \ge 1/T.}  \\
 
{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| \ge 1/T.}  \\
 
\end{array}$$
 
\end{array}$$
 +
* Das Signal $y(t)$ vor dem (Schwellenwert&ndash;)Entscheider weist deshalb äquidistante Nulldurchgänge im Abstand $T$ auf.
 +
* Vorausgesetzt wird dabei, dass die Quelle einen [[Signaldarstellung/Einige_Sonderfälle_impulsartiger_Signale#Diracimpuls|Diracimpuls]] $x(t)$ mit Gewicht $T$ abgibt (siehe Grafik).
  
:* Das Signal <i>y</i>(<i>t</i>) vor dem (Schwellenwert&ndash;)Entscheider weist deshalb äquidistante Nulldurchgänge im Abstand <i>T</i> auf.
+
Es wird darauf hingewiesen, dass es sich hierbei um ein so genanntes &bdquo;Nyquistsystem&rdquo; handelt. Wie im Buch [[Digitalsignalübertragung]] noch ausführlich diskutiert werden wird, stellen diese Nyquistsysteme eine wichtige Klasse digitaler Übertragungssysteme dar, da sich bei diesen die sequenziell übertragenen Symbole nicht gegenseitig beeinflussen.
  
:* Vorausgesetzt wird dabei, dass die Quelle einen Diracimpuls <i>x</i>(<i>t</i>) mit Gewicht <i>T</i> abgibt (siehe Grafik).
+
Für die Lösung dieser Aufgabe werden diese weiterreichenden Aspekte jedoch nicht benötigt. Es wird hier lediglich vorausgesetzt, dass
  
:Es wird darauf hingewiesen, dass es sich hierbei um ein so genanntes <i>Nyquistsystem</i> handelt. Wie im Buch [[Digitalsignalübertragung]] noch ausführlich diskutiert werden wird, stellen diese Nyquistsysteme eine wichtige Klasse digitaler Übertragungssysteme dar, da sich bei diesen die sequenziell übertragenen Symbole nicht gegenseitig beeinflussen.
+
* der Sendeimpuls <i>s</i>(<i>t</i>) rechteckförmig sei mit Impulsdauer <i>T</i>:
 
 
:Für die Lösung dieser Aufgabe werden diese weiterreichenden Aspekte jedoch nicht benötigt. Es wird hier lediglich vorausgesetzt, dass
 
 
 
:* der Sendeimpuls <i>s</i>(<i>t</i>) rechteckförmig sei mit Impulsdauer <i>T</i>:
 
 
:$$H_{\rm S}(f) = {\rm si}(\pi f T),$$
 
:$$H_{\rm S}(f) = {\rm si}(\pi f T),$$
  
Line 31: Line 29:
 
:$$H_{\rm K}(f) = {\rm e}^{-\pi(f \cdot T)^2} .$$
 
:$$H_{\rm K}(f) = {\rm e}^{-\pi(f \cdot T)^2} .$$
  
:Gesucht ist für beide Kanäle der Empfänger- und gleichzeitig Entzerrerfrequenzgang <i>H</i><sub>E</sub>(<i>f</i>), damit der Gesamtfrequenzgang die gewünschte Nyquistform aufweist.
+
Gesucht ist für beide Kanäle der Empfänger- und gleichzeitig Entzerrerfrequenzgang <i>H</i><sub>E</sub>(<i>f</i>), damit der Gesamtfrequenzgang die gewünschte Nyquistform aufweist.
  
 
''Hinweise:''  
 
''Hinweise:''  

Revision as of 15:12, 3 February 2017

Zur Nyquistentzerrung

Ein digitales Basisbandübertragungssystem kann durch das dargestellte Blockschaltbild modelliert werden.

  • Die Komponenten „Sender”, „Kanal” und „Empfänger” werden im Frequenzbereich durch $H_{\rm S}(f)$, $H_{\rm K}(f)$ und $H_{\rm E}(f)$ beschrieben .
  • Der Gesamtfrequenzgang $H(f) = H_{\rm S}(f) \cdot H_{\rm K}(f) \cdotH_{\rm E}(f)$ soll einen $\cos^2$–förmigen Verlauf haben:
$$H(f) = \left\{ \begin{array}{c} \cos^2\left(\frac{\pi}{2} \cdot f \cdot T \right) \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < 1/T,} \\ {\left|\hspace{0.005cm} f \hspace{0.05cm} \right| \ge 1/T.} \\ \end{array}$$
  • Das Signal $y(t)$ vor dem (Schwellenwert–)Entscheider weist deshalb äquidistante Nulldurchgänge im Abstand $T$ auf.
  • Vorausgesetzt wird dabei, dass die Quelle einen Diracimpuls $x(t)$ mit Gewicht $T$ abgibt (siehe Grafik).

Es wird darauf hingewiesen, dass es sich hierbei um ein so genanntes „Nyquistsystem” handelt. Wie im Buch Digitalsignalübertragung noch ausführlich diskutiert werden wird, stellen diese Nyquistsysteme eine wichtige Klasse digitaler Übertragungssysteme dar, da sich bei diesen die sequenziell übertragenen Symbole nicht gegenseitig beeinflussen.

Für die Lösung dieser Aufgabe werden diese weiterreichenden Aspekte jedoch nicht benötigt. Es wird hier lediglich vorausgesetzt, dass

  • der Sendeimpuls s(t) rechteckförmig sei mit Impulsdauer T:
$$H_{\rm S}(f) = {\rm si}(\pi f T),$$
  • der Kanal bis einschließlich Teilaufgabe 2) als ideal vorausgesetzt wird, während für die letzte Teilaufgabe gelten soll:
$$H_{\rm K}(f) = {\rm e}^{-\pi(f \cdot T)^2} .$$

Gesucht ist für beide Kanäle der Empfänger- und gleichzeitig Entzerrerfrequenzgang HE(f), damit der Gesamtfrequenzgang die gewünschte Nyquistform aufweist.

Hinweise:

  • Die Aufgabe gehört zum Kapitel Lineare Verzerrungen.
  • Der im Fragenkatalog verwendete Begriff „Gesamtverzerrung” bezieht sich auf das Eingangssignal $x(t)$ und das Ausgangssignal $z(t)$.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 2.3. Als bekannt vorausgesetzt wird die folgende trigonometrische Beziehung:
$$\frac{\cos^2(\alpha /2)}{\sin(\alpha )} = \frac{1}{2} \cdot {\rm cot}(\alpha /2) .$$


Fragebogen

1

Berechnen Sie den Ausgangssignalwert zum Zeitpunkt t = 0.

$y(t = 0)$ =

2

Zunächst sei HK(f) = 1. Berechnen Sie für diesen Fall den Frequenzgang HE(f). Welche Werte ergeben sich bei den nachfolgend genannten Frequenzen?

idealer Kanal: $|H_E(f \cdot T = 0)|$ =

$|H_E(f \cdot T = 0.25)|$ =

$|H_E(f \cdot T = 0.5)|$ =

$|H_E(f \cdot T = 0.75)|$ =

$|H_E(f \cdot T = 1)|$ =

3

Berechnen Sie HE(f) für den gaußförmigen Kanal entsprechend der Angabe.

GAusßkanal: $|H_E(f \cdot T = 0)|$ =

$|H_E(f \cdot T = 0.25)| $ =

$|H_E(f \cdot T = 0.5)|$ =

$|H_E(f \cdot T = 0.75)|$ =

$|H_E(f \cdot T = 1)|$ =


Musterlösung

P ID922 LZI Z 2 5 a.png
1.  Mit dem konstanten Spektrum X(f) = T erhält man für die Spektralfunktion des Empfängerausgangssignals y(t):
$$Y(f)= T \cdot {H(f)}.$$
Der Signalwert bei t = 0 ist gleich der Fläche unter Y(f). Wie aus der nebenstehenden Skizze hervorgeht, ist diese gleich 1. Daraus folgt: y(t = 0) = 1.
2.  Aus der Bedingung HS(f) · HE(f) = H(f) folgt im betrachteten Bereich:
P ID923 LZI Z 2 5 c neu.png
$$H_{\rm E}(f)= \frac{H(f)}{H_{\rm S}(f)} = \frac{\cos^2(\pi f T/2)}{\sin(\pi f T)/(\pi f T)}.$$
Wegen cos(0) = 1, si(0) = 1 gilt auch HE(f = 0) = 1. Mit der gegebenen trigonometrischen Umformung gilt weiter:

$$H_{\rm E}(f) \hspace{-0.15cm} = \hspace{-0.15cm} \frac{\pi f T}{2} \cdot {\rm cot}\left( \frac{\pi f T}{2}\right),\\ H_{\rm E}(f \cdot T = 0.25) \hspace{-0.15cm} = \hspace{-0.15cm} \frac{\pi }{8} \cdot {\rm cot}\left( 22.5^{\circ}\right)=\\ = \hspace{-0.15cm}\frac{\pi }{8} \cdot 2.414 = \hspace{0.15cm}\underline{0.948},\\ H_{\rm E}(f \cdot T = 0.5) \hspace{-0.15cm} = \hspace{-0.15cm} \frac{\pi }{4} \cdot {\rm cot}\left( 45^{\circ}\right) =\\ = \hspace{-0.15cm}\frac{\pi }{4} \cdot 1 \hspace{0.15cm}\underline{= 0.785},$$

$$ H_{\rm E}(f \cdot T = 0.75) \hspace{-0.15cm} = \hspace{-0.15cm} \frac{3 \pi }{8} \cdot {\rm cot}\left( 67.5^{\circ}\right) =\frac{3 \pi }{8} \cdot 0.414 \hspace{0.15cm}\underline{= 0.488},\\ H_{\rm E}(f \cdot T = 1) \hspace{-0.15cm} = \hspace{-0.15cm} \frac{ \pi }{2} \cdot {\rm cot}\left( 90^{\circ}\right) =\frac{ \pi }{2} \cdot 0 \hspace{0.15cm}\underline{ = 0}.$$

3.  Unter Berücksichtigung des Gaußkanals gilt:
$$H_{\rm E}(f)= \frac{H(f)}{H_{\rm S}(f) \cdot H_{\rm K}(f)} = H_{\rm E}^{(b)}(f)\cdot {\rm e}^{\pi (f T)^2}.$$
HE(b)(f) bezeichnet den unter Punkt b) berechneten Entzerrerfrequenzgang unter der Voraussetzung eines idealen Kanals. Man erhält folgende numerische Ergebnisse:
$$H_{\rm E}(f\cdot T = 0) = 1 \cdot {\rm e}^{0} \hspace{0.15cm}\underline{= 1},\\ H_{\rm E}(f \cdot T = 0.25) = 0.948 \cdot 1.217 \hspace{0.15cm}\underline{= 1.154},\\ H_{\rm E}(f \cdot T = 0.5) = 0.785 \cdot 2.193 \hspace{0.15cm}\underline{= 1.722},\\ H_{\rm E}(f \cdot T = 0.75) = 0.488 \cdot 5.854 \hspace{0.15cm}\underline{= 2.857},\\ H_{\rm E}(f \cdot T = 1) = 0 \cdot 23.141 \hspace{0.15cm}\underline{= 0}.$$
Die obige Grafik fasst die Ergebnisse dieser Aufgabe zusammen.